smp.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. */
  15. #include <linux/sched.h>
  16. #include <linux/err.h>
  17. #include <linux/slab.h>
  18. #include <linux/smp.h>
  19. #include <asm/paravirt.h>
  20. #include <asm/desc.h>
  21. #include <asm/pgtable.h>
  22. #include <asm/cpu.h>
  23. #include <xen/interface/xen.h>
  24. #include <xen/interface/vcpu.h>
  25. #include <asm/xen/interface.h>
  26. #include <asm/xen/hypercall.h>
  27. #include <xen/xen.h>
  28. #include <xen/page.h>
  29. #include <xen/events.h>
  30. #include <xen/hvc-console.h>
  31. #include "xen-ops.h"
  32. #include "mmu.h"
  33. cpumask_var_t xen_cpu_initialized_map;
  34. static DEFINE_PER_CPU(int, xen_resched_irq);
  35. static DEFINE_PER_CPU(int, xen_callfunc_irq);
  36. static DEFINE_PER_CPU(int, xen_callfuncsingle_irq);
  37. static DEFINE_PER_CPU(int, xen_debug_irq) = -1;
  38. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  39. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
  40. /*
  41. * Reschedule call back.
  42. */
  43. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  44. {
  45. inc_irq_stat(irq_resched_count);
  46. scheduler_ipi();
  47. return IRQ_HANDLED;
  48. }
  49. static void __cpuinit cpu_bringup(void)
  50. {
  51. int cpu = smp_processor_id();
  52. cpu_init();
  53. touch_softlockup_watchdog();
  54. preempt_disable();
  55. xen_enable_sysenter();
  56. xen_enable_syscall();
  57. cpu = smp_processor_id();
  58. smp_store_cpu_info(cpu);
  59. cpu_data(cpu).x86_max_cores = 1;
  60. set_cpu_sibling_map(cpu);
  61. xen_setup_cpu_clockevents();
  62. set_cpu_online(cpu, true);
  63. percpu_write(cpu_state, CPU_ONLINE);
  64. wmb();
  65. /* We can take interrupts now: we're officially "up". */
  66. local_irq_enable();
  67. wmb(); /* make sure everything is out */
  68. }
  69. static void __cpuinit cpu_bringup_and_idle(void)
  70. {
  71. cpu_bringup();
  72. cpu_idle();
  73. }
  74. static int xen_smp_intr_init(unsigned int cpu)
  75. {
  76. int rc;
  77. const char *resched_name, *callfunc_name, *debug_name;
  78. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  79. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  80. cpu,
  81. xen_reschedule_interrupt,
  82. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  83. resched_name,
  84. NULL);
  85. if (rc < 0)
  86. goto fail;
  87. per_cpu(xen_resched_irq, cpu) = rc;
  88. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  89. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  90. cpu,
  91. xen_call_function_interrupt,
  92. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  93. callfunc_name,
  94. NULL);
  95. if (rc < 0)
  96. goto fail;
  97. per_cpu(xen_callfunc_irq, cpu) = rc;
  98. debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
  99. rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
  100. IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
  101. debug_name, NULL);
  102. if (rc < 0)
  103. goto fail;
  104. per_cpu(xen_debug_irq, cpu) = rc;
  105. callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
  106. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
  107. cpu,
  108. xen_call_function_single_interrupt,
  109. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  110. callfunc_name,
  111. NULL);
  112. if (rc < 0)
  113. goto fail;
  114. per_cpu(xen_callfuncsingle_irq, cpu) = rc;
  115. return 0;
  116. fail:
  117. if (per_cpu(xen_resched_irq, cpu) >= 0)
  118. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
  119. if (per_cpu(xen_callfunc_irq, cpu) >= 0)
  120. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
  121. if (per_cpu(xen_debug_irq, cpu) >= 0)
  122. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
  123. if (per_cpu(xen_callfuncsingle_irq, cpu) >= 0)
  124. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu),
  125. NULL);
  126. return rc;
  127. }
  128. static void __init xen_fill_possible_map(void)
  129. {
  130. int i, rc;
  131. if (xen_initial_domain())
  132. return;
  133. for (i = 0; i < nr_cpu_ids; i++) {
  134. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  135. if (rc >= 0) {
  136. num_processors++;
  137. set_cpu_possible(i, true);
  138. }
  139. }
  140. }
  141. static void __init xen_filter_cpu_maps(void)
  142. {
  143. int i, rc;
  144. unsigned int subtract = 0;
  145. if (!xen_initial_domain())
  146. return;
  147. num_processors = 0;
  148. disabled_cpus = 0;
  149. for (i = 0; i < nr_cpu_ids; i++) {
  150. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  151. if (rc >= 0) {
  152. num_processors++;
  153. set_cpu_possible(i, true);
  154. } else {
  155. set_cpu_possible(i, false);
  156. set_cpu_present(i, false);
  157. subtract++;
  158. }
  159. }
  160. #ifdef CONFIG_HOTPLUG_CPU
  161. /* This is akin to using 'nr_cpus' on the Linux command line.
  162. * Which is OK as when we use 'dom0_max_vcpus=X' we can only
  163. * have up to X, while nr_cpu_ids is greater than X. This
  164. * normally is not a problem, except when CPU hotplugging
  165. * is involved and then there might be more than X CPUs
  166. * in the guest - which will not work as there is no
  167. * hypercall to expand the max number of VCPUs an already
  168. * running guest has. So cap it up to X. */
  169. if (subtract)
  170. nr_cpu_ids = nr_cpu_ids - subtract;
  171. #endif
  172. }
  173. static void __init xen_smp_prepare_boot_cpu(void)
  174. {
  175. BUG_ON(smp_processor_id() != 0);
  176. native_smp_prepare_boot_cpu();
  177. /* We've switched to the "real" per-cpu gdt, so make sure the
  178. old memory can be recycled */
  179. make_lowmem_page_readwrite(xen_initial_gdt);
  180. xen_filter_cpu_maps();
  181. xen_setup_vcpu_info_placement();
  182. }
  183. static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  184. {
  185. unsigned cpu;
  186. unsigned int i;
  187. if (skip_ioapic_setup) {
  188. char *m = (max_cpus == 0) ?
  189. "The nosmp parameter is incompatible with Xen; " \
  190. "use Xen dom0_max_vcpus=1 parameter" :
  191. "The noapic parameter is incompatible with Xen";
  192. xen_raw_printk(m);
  193. panic(m);
  194. }
  195. xen_init_lock_cpu(0);
  196. smp_store_cpu_info(0);
  197. cpu_data(0).x86_max_cores = 1;
  198. for_each_possible_cpu(i) {
  199. zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
  200. zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
  201. zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
  202. }
  203. set_cpu_sibling_map(0);
  204. if (xen_smp_intr_init(0))
  205. BUG();
  206. if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
  207. panic("could not allocate xen_cpu_initialized_map\n");
  208. cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
  209. /* Restrict the possible_map according to max_cpus. */
  210. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  211. for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
  212. continue;
  213. set_cpu_possible(cpu, false);
  214. }
  215. for_each_possible_cpu (cpu) {
  216. struct task_struct *idle;
  217. if (cpu == 0)
  218. continue;
  219. idle = fork_idle(cpu);
  220. if (IS_ERR(idle))
  221. panic("failed fork for CPU %d", cpu);
  222. set_cpu_present(cpu, true);
  223. }
  224. }
  225. static int __cpuinit
  226. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  227. {
  228. struct vcpu_guest_context *ctxt;
  229. struct desc_struct *gdt;
  230. unsigned long gdt_mfn;
  231. if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
  232. return 0;
  233. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  234. if (ctxt == NULL)
  235. return -ENOMEM;
  236. gdt = get_cpu_gdt_table(cpu);
  237. ctxt->flags = VGCF_IN_KERNEL;
  238. ctxt->user_regs.ds = __USER_DS;
  239. ctxt->user_regs.es = __USER_DS;
  240. ctxt->user_regs.ss = __KERNEL_DS;
  241. #ifdef CONFIG_X86_32
  242. ctxt->user_regs.fs = __KERNEL_PERCPU;
  243. ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
  244. #else
  245. ctxt->gs_base_kernel = per_cpu_offset(cpu);
  246. #endif
  247. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  248. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  249. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  250. xen_copy_trap_info(ctxt->trap_ctxt);
  251. ctxt->ldt_ents = 0;
  252. BUG_ON((unsigned long)gdt & ~PAGE_MASK);
  253. gdt_mfn = arbitrary_virt_to_mfn(gdt);
  254. make_lowmem_page_readonly(gdt);
  255. make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
  256. ctxt->gdt_frames[0] = gdt_mfn;
  257. ctxt->gdt_ents = GDT_ENTRIES;
  258. ctxt->user_regs.cs = __KERNEL_CS;
  259. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  260. ctxt->kernel_ss = __KERNEL_DS;
  261. ctxt->kernel_sp = idle->thread.sp0;
  262. #ifdef CONFIG_X86_32
  263. ctxt->event_callback_cs = __KERNEL_CS;
  264. ctxt->failsafe_callback_cs = __KERNEL_CS;
  265. #endif
  266. ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
  267. ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
  268. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  269. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
  270. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  271. BUG();
  272. kfree(ctxt);
  273. return 0;
  274. }
  275. static int __cpuinit xen_cpu_up(unsigned int cpu)
  276. {
  277. struct task_struct *idle = idle_task(cpu);
  278. int rc;
  279. per_cpu(current_task, cpu) = idle;
  280. #ifdef CONFIG_X86_32
  281. irq_ctx_init(cpu);
  282. #else
  283. clear_tsk_thread_flag(idle, TIF_FORK);
  284. per_cpu(kernel_stack, cpu) =
  285. (unsigned long)task_stack_page(idle) -
  286. KERNEL_STACK_OFFSET + THREAD_SIZE;
  287. #endif
  288. xen_setup_runstate_info(cpu);
  289. xen_setup_timer(cpu);
  290. xen_init_lock_cpu(cpu);
  291. per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
  292. /* make sure interrupts start blocked */
  293. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  294. rc = cpu_initialize_context(cpu, idle);
  295. if (rc)
  296. return rc;
  297. if (num_online_cpus() == 1)
  298. alternatives_smp_switch(1);
  299. rc = xen_smp_intr_init(cpu);
  300. if (rc)
  301. return rc;
  302. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  303. BUG_ON(rc);
  304. while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
  305. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  306. barrier();
  307. }
  308. return 0;
  309. }
  310. static void xen_smp_cpus_done(unsigned int max_cpus)
  311. {
  312. }
  313. #ifdef CONFIG_HOTPLUG_CPU
  314. static int xen_cpu_disable(void)
  315. {
  316. unsigned int cpu = smp_processor_id();
  317. if (cpu == 0)
  318. return -EBUSY;
  319. cpu_disable_common();
  320. load_cr3(swapper_pg_dir);
  321. return 0;
  322. }
  323. static void xen_cpu_die(unsigned int cpu)
  324. {
  325. while (HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
  326. current->state = TASK_UNINTERRUPTIBLE;
  327. schedule_timeout(HZ/10);
  328. }
  329. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
  330. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
  331. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
  332. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu), NULL);
  333. xen_uninit_lock_cpu(cpu);
  334. xen_teardown_timer(cpu);
  335. if (num_online_cpus() == 1)
  336. alternatives_smp_switch(0);
  337. }
  338. static void __cpuinit xen_play_dead(void) /* used only with HOTPLUG_CPU */
  339. {
  340. play_dead_common();
  341. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  342. cpu_bringup();
  343. }
  344. #else /* !CONFIG_HOTPLUG_CPU */
  345. static int xen_cpu_disable(void)
  346. {
  347. return -ENOSYS;
  348. }
  349. static void xen_cpu_die(unsigned int cpu)
  350. {
  351. BUG();
  352. }
  353. static void xen_play_dead(void)
  354. {
  355. BUG();
  356. }
  357. #endif
  358. static void stop_self(void *v)
  359. {
  360. int cpu = smp_processor_id();
  361. /* make sure we're not pinning something down */
  362. load_cr3(swapper_pg_dir);
  363. /* should set up a minimal gdt */
  364. set_cpu_online(cpu, false);
  365. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  366. BUG();
  367. }
  368. static void xen_stop_other_cpus(int wait)
  369. {
  370. smp_call_function(stop_self, NULL, wait);
  371. }
  372. static void xen_smp_send_reschedule(int cpu)
  373. {
  374. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  375. }
  376. static void xen_send_IPI_mask(const struct cpumask *mask,
  377. enum ipi_vector vector)
  378. {
  379. unsigned cpu;
  380. for_each_cpu_and(cpu, mask, cpu_online_mask)
  381. xen_send_IPI_one(cpu, vector);
  382. }
  383. static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
  384. {
  385. int cpu;
  386. xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  387. /* Make sure other vcpus get a chance to run if they need to. */
  388. for_each_cpu(cpu, mask) {
  389. if (xen_vcpu_stolen(cpu)) {
  390. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  391. break;
  392. }
  393. }
  394. }
  395. static void xen_smp_send_call_function_single_ipi(int cpu)
  396. {
  397. xen_send_IPI_mask(cpumask_of(cpu),
  398. XEN_CALL_FUNCTION_SINGLE_VECTOR);
  399. }
  400. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  401. {
  402. irq_enter();
  403. generic_smp_call_function_interrupt();
  404. inc_irq_stat(irq_call_count);
  405. irq_exit();
  406. return IRQ_HANDLED;
  407. }
  408. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
  409. {
  410. irq_enter();
  411. generic_smp_call_function_single_interrupt();
  412. inc_irq_stat(irq_call_count);
  413. irq_exit();
  414. return IRQ_HANDLED;
  415. }
  416. static const struct smp_ops xen_smp_ops __initconst = {
  417. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  418. .smp_prepare_cpus = xen_smp_prepare_cpus,
  419. .smp_cpus_done = xen_smp_cpus_done,
  420. .cpu_up = xen_cpu_up,
  421. .cpu_die = xen_cpu_die,
  422. .cpu_disable = xen_cpu_disable,
  423. .play_dead = xen_play_dead,
  424. .stop_other_cpus = xen_stop_other_cpus,
  425. .smp_send_reschedule = xen_smp_send_reschedule,
  426. .send_call_func_ipi = xen_smp_send_call_function_ipi,
  427. .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
  428. };
  429. void __init xen_smp_init(void)
  430. {
  431. smp_ops = xen_smp_ops;
  432. xen_fill_possible_map();
  433. xen_init_spinlocks();
  434. }
  435. static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
  436. {
  437. native_smp_prepare_cpus(max_cpus);
  438. WARN_ON(xen_smp_intr_init(0));
  439. xen_init_lock_cpu(0);
  440. xen_init_spinlocks();
  441. }
  442. static int __cpuinit xen_hvm_cpu_up(unsigned int cpu)
  443. {
  444. int rc;
  445. rc = native_cpu_up(cpu);
  446. WARN_ON (xen_smp_intr_init(cpu));
  447. return rc;
  448. }
  449. static void xen_hvm_cpu_die(unsigned int cpu)
  450. {
  451. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
  452. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
  453. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
  454. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu), NULL);
  455. native_cpu_die(cpu);
  456. }
  457. void __init xen_hvm_smp_init(void)
  458. {
  459. if (!xen_have_vector_callback)
  460. return;
  461. smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
  462. smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
  463. smp_ops.cpu_up = xen_hvm_cpu_up;
  464. smp_ops.cpu_die = xen_hvm_cpu_die;
  465. smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
  466. smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
  467. }