123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- /*-
- * Copyright 2009 Colin Percival
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
- #include "cpusupport.h"
- #ifdef CPUSUPPORT_X86_SSE2
- #include <emmintrin.h>
- #include <stdint.h>
- #include "sysendian.h"
- #include "crypto_scrypt_smix_sse2.h"
- static void blkcpy(__m128i *, const __m128i *, size_t);
- static void blkxor(__m128i *, const __m128i *, size_t);
- static void salsa20_8(__m128i[4]);
- static void blockmix_salsa8(const __m128i *, __m128i *, __m128i *, size_t);
- static uint64_t integerify(const __m128i *, size_t);
- static void
- blkcpy(__m128i * dest, const __m128i * src, size_t len)
- {
- size_t L = len / 16;
- size_t i;
- for (i = 0; i < L; i++)
- dest[i] = src[i];
- }
- static void
- blkxor(__m128i * dest, const __m128i * src, size_t len)
- {
- size_t L = len / 16;
- size_t i;
- for (i = 0; i < L; i++)
- dest[i] = _mm_xor_si128(dest[i], src[i]);
- }
- /**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
- static void
- salsa20_8(__m128i B[4])
- {
- __m128i X0, X1, X2, X3;
- __m128i T;
- size_t i;
- X0 = B[0];
- X1 = B[1];
- X2 = B[2];
- X3 = B[3];
- for (i = 0; i < 8; i += 2) {
- /* Operate on "columns". */
- T = _mm_add_epi32(X0, X3);
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X1, X0);
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X1);
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X3, X2);
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
- /* Rearrange data. */
- X1 = _mm_shuffle_epi32(X1, 0x93);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x39);
- /* Operate on "rows". */
- T = _mm_add_epi32(X0, X1);
- X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
- X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
- T = _mm_add_epi32(X3, X0);
- X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
- X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
- T = _mm_add_epi32(X2, X3);
- X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
- X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
- T = _mm_add_epi32(X1, X2);
- X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
- X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
- /* Rearrange data. */
- X1 = _mm_shuffle_epi32(X1, 0x39);
- X2 = _mm_shuffle_epi32(X2, 0x4E);
- X3 = _mm_shuffle_epi32(X3, 0x93);
- }
- B[0] = _mm_add_epi32(B[0], X0);
- B[1] = _mm_add_epi32(B[1], X1);
- B[2] = _mm_add_epi32(B[2], X2);
- B[3] = _mm_add_epi32(B[3], X3);
- }
- /**
- * blockmix_salsa8(Bin, Bout, X, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size. The
- * temporary space X must be 64 bytes.
- */
- static void
- blockmix_salsa8(const __m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
- {
- size_t i;
- /* 1: X <-- B_{2r - 1} */
- blkcpy(X, &Bin[8 * r - 4], 64);
- /* 2: for i = 0 to 2r - 1 do */
- for (i = 0; i < r; i++) {
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 8], 64);
- salsa20_8(X);
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[i * 4], X, 64);
- /* 3: X <-- H(X \xor B_i) */
- blkxor(X, &Bin[i * 8 + 4], 64);
- salsa20_8(X);
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- blkcpy(&Bout[(r + i) * 4], X, 64);
- }
- }
- /**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- * Note that B's layout is permuted compared to the generic implementation.
- */
- static uint64_t
- integerify(const __m128i * B, size_t r)
- {
- const __m128i * X = B + (2*r - 1) * 4;
- uint32_t X0, X13;
- /* Get the first 32-bit element in X[0]. */
- X0 = (uint32_t)_mm_cvtsi128_si32(X[0]);
- /* Get the second 32-bit element in X[3]. */
- X13 = (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(X[3], 4));
- return (((uint64_t)(X13) << 32) + X0);
- }
- /**
- * crypto_scrypt_smix_sse2(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- *
- * Use SSE2 instructions.
- */
- void
- crypto_scrypt_smix_sse2(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
- {
- __m128i * X = XY;
- __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
- __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
- uint32_t * X32 = (void *)X;
- uint64_t i, j;
- size_t k;
- /* 1: X <-- B */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- X32[k * 16 + i] =
- le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
- }
- }
- /* 2: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 3: V_i <-- X */
- blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
- /* 4: X <-- H(X) */
- blockmix_salsa8(X, Y, Z, r);
- /* 3: V_i <-- X */
- blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
- Y, 128 * r);
- /* 4: X <-- H(X) */
- blockmix_salsa8(Y, X, Z, r);
- }
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
- /* 8: X <-- H(X \xor V_j) */
- blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
- blockmix_salsa8(X, Y, Z, r);
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(Y, r) & (N - 1);
- /* 8: X <-- H(X \xor V_j) */
- blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
- blockmix_salsa8(Y, X, Z, r);
- }
- /* 10: B' <-- X */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
- X32[k * 16 + i]);
- }
- }
- }
- #endif /* CPUSUPPORT_X86_SSE2 */
|