crypto_scrypt_smix_sse2.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. /*-
  2. * Copyright 2009 Colin Percival
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. *
  14. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  15. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  16. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  17. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  18. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  19. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  20. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  21. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  22. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  23. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  24. * SUCH DAMAGE.
  25. *
  26. * This file was originally written by Colin Percival as part of the Tarsnap
  27. * online backup system.
  28. */
  29. #include "cpusupport.h"
  30. #ifdef CPUSUPPORT_X86_SSE2
  31. #include <emmintrin.h>
  32. #include <stdint.h>
  33. #include "sysendian.h"
  34. #include "crypto_scrypt_smix_sse2.h"
  35. static void blkcpy(__m128i *, const __m128i *, size_t);
  36. static void blkxor(__m128i *, const __m128i *, size_t);
  37. static void salsa20_8(__m128i[4]);
  38. static void blockmix_salsa8(const __m128i *, __m128i *, __m128i *, size_t);
  39. static uint64_t integerify(const __m128i *, size_t);
  40. static void
  41. blkcpy(__m128i * dest, const __m128i * src, size_t len)
  42. {
  43. size_t L = len / 16;
  44. size_t i;
  45. for (i = 0; i < L; i++)
  46. dest[i] = src[i];
  47. }
  48. static void
  49. blkxor(__m128i * dest, const __m128i * src, size_t len)
  50. {
  51. size_t L = len / 16;
  52. size_t i;
  53. for (i = 0; i < L; i++)
  54. dest[i] = _mm_xor_si128(dest[i], src[i]);
  55. }
  56. /**
  57. * salsa20_8(B):
  58. * Apply the salsa20/8 core to the provided block.
  59. */
  60. static void
  61. salsa20_8(__m128i B[4])
  62. {
  63. __m128i X0, X1, X2, X3;
  64. __m128i T;
  65. size_t i;
  66. X0 = B[0];
  67. X1 = B[1];
  68. X2 = B[2];
  69. X3 = B[3];
  70. for (i = 0; i < 8; i += 2) {
  71. /* Operate on "columns". */
  72. T = _mm_add_epi32(X0, X3);
  73. X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
  74. X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
  75. T = _mm_add_epi32(X1, X0);
  76. X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
  77. X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
  78. T = _mm_add_epi32(X2, X1);
  79. X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
  80. X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
  81. T = _mm_add_epi32(X3, X2);
  82. X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
  83. X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
  84. /* Rearrange data. */
  85. X1 = _mm_shuffle_epi32(X1, 0x93);
  86. X2 = _mm_shuffle_epi32(X2, 0x4E);
  87. X3 = _mm_shuffle_epi32(X3, 0x39);
  88. /* Operate on "rows". */
  89. T = _mm_add_epi32(X0, X1);
  90. X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
  91. X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
  92. T = _mm_add_epi32(X3, X0);
  93. X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
  94. X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
  95. T = _mm_add_epi32(X2, X3);
  96. X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
  97. X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
  98. T = _mm_add_epi32(X1, X2);
  99. X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
  100. X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
  101. /* Rearrange data. */
  102. X1 = _mm_shuffle_epi32(X1, 0x39);
  103. X2 = _mm_shuffle_epi32(X2, 0x4E);
  104. X3 = _mm_shuffle_epi32(X3, 0x93);
  105. }
  106. B[0] = _mm_add_epi32(B[0], X0);
  107. B[1] = _mm_add_epi32(B[1], X1);
  108. B[2] = _mm_add_epi32(B[2], X2);
  109. B[3] = _mm_add_epi32(B[3], X3);
  110. }
  111. /**
  112. * blockmix_salsa8(Bin, Bout, X, r):
  113. * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
  114. * bytes in length; the output Bout must also be the same size. The
  115. * temporary space X must be 64 bytes.
  116. */
  117. static void
  118. blockmix_salsa8(const __m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
  119. {
  120. size_t i;
  121. /* 1: X <-- B_{2r - 1} */
  122. blkcpy(X, &Bin[8 * r - 4], 64);
  123. /* 2: for i = 0 to 2r - 1 do */
  124. for (i = 0; i < r; i++) {
  125. /* 3: X <-- H(X \xor B_i) */
  126. blkxor(X, &Bin[i * 8], 64);
  127. salsa20_8(X);
  128. /* 4: Y_i <-- X */
  129. /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
  130. blkcpy(&Bout[i * 4], X, 64);
  131. /* 3: X <-- H(X \xor B_i) */
  132. blkxor(X, &Bin[i * 8 + 4], 64);
  133. salsa20_8(X);
  134. /* 4: Y_i <-- X */
  135. /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
  136. blkcpy(&Bout[(r + i) * 4], X, 64);
  137. }
  138. }
  139. /**
  140. * integerify(B, r):
  141. * Return the result of parsing B_{2r-1} as a little-endian integer.
  142. * Note that B's layout is permuted compared to the generic implementation.
  143. */
  144. static uint64_t
  145. integerify(const __m128i * B, size_t r)
  146. {
  147. const __m128i * X = B + (2*r - 1) * 4;
  148. uint32_t X0, X13;
  149. /* Get the first 32-bit element in X[0]. */
  150. X0 = (uint32_t)_mm_cvtsi128_si32(X[0]);
  151. /* Get the second 32-bit element in X[3]. */
  152. X13 = (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(X[3], 4));
  153. return (((uint64_t)(X13) << 32) + X0);
  154. }
  155. /**
  156. * crypto_scrypt_smix_sse2(B, r, N, V, XY):
  157. * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
  158. * the temporary storage V must be 128rN bytes in length; the temporary
  159. * storage XY must be 256r + 64 bytes in length. The value N must be a
  160. * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
  161. * multiple of 64 bytes.
  162. *
  163. * Use SSE2 instructions.
  164. */
  165. void
  166. crypto_scrypt_smix_sse2(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
  167. {
  168. __m128i * X = XY;
  169. __m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
  170. __m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
  171. uint32_t * X32 = (void *)X;
  172. uint64_t i, j;
  173. size_t k;
  174. /* 1: X <-- B */
  175. for (k = 0; k < 2 * r; k++) {
  176. for (i = 0; i < 16; i++) {
  177. X32[k * 16 + i] =
  178. le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
  179. }
  180. }
  181. /* 2: for i = 0 to N - 1 do */
  182. for (i = 0; i < N; i += 2) {
  183. /* 3: V_i <-- X */
  184. blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
  185. /* 4: X <-- H(X) */
  186. blockmix_salsa8(X, Y, Z, r);
  187. /* 3: V_i <-- X */
  188. blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
  189. Y, 128 * r);
  190. /* 4: X <-- H(X) */
  191. blockmix_salsa8(Y, X, Z, r);
  192. }
  193. /* 6: for i = 0 to N - 1 do */
  194. for (i = 0; i < N; i += 2) {
  195. /* 7: j <-- Integerify(X) mod N */
  196. j = integerify(X, r) & (N - 1);
  197. /* 8: X <-- H(X \xor V_j) */
  198. blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
  199. blockmix_salsa8(X, Y, Z, r);
  200. /* 7: j <-- Integerify(X) mod N */
  201. j = integerify(Y, r) & (N - 1);
  202. /* 8: X <-- H(X \xor V_j) */
  203. blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
  204. blockmix_salsa8(Y, X, Z, r);
  205. }
  206. /* 10: B' <-- X */
  207. for (k = 0; k < 2 * r; k++) {
  208. for (i = 0; i < 16; i++) {
  209. le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
  210. X32[k * 16 + i]);
  211. }
  212. }
  213. }
  214. #endif /* CPUSUPPORT_X86_SSE2 */