123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728 |
- #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
- #include <linux/errno.h>
- #include <linux/kernel.h>
- #include <linux/mm.h>
- #include <linux/smp.h>
- #include <linux/prctl.h>
- #include <linux/slab.h>
- #include <linux/sched.h>
- #include <linux/init.h>
- #include <linux/export.h>
- #include <linux/pm.h>
- #include <linux/tick.h>
- #include <linux/random.h>
- #include <linux/user-return-notifier.h>
- #include <linux/dmi.h>
- #include <linux/utsname.h>
- #include <linux/stackprotector.h>
- #include <linux/tick.h>
- #include <linux/cpuidle.h>
- #include <trace/events/power.h>
- #include <linux/hw_breakpoint.h>
- #include <asm/cpu.h>
- #include <asm/apic.h>
- #include <asm/syscalls.h>
- #include <asm/idle.h>
- #include <asm/uaccess.h>
- #include <asm/mwait.h>
- #include <asm/fpu/internal.h>
- #include <asm/debugreg.h>
- #include <asm/nmi.h>
- #include <asm/tlbflush.h>
- #include <asm/mce.h>
- #include <asm/vm86.h>
- #include <asm/switch_to.h>
- #include <asm/spec-ctrl.h>
- /*
- * per-CPU TSS segments. Threads are completely 'soft' on Linux,
- * no more per-task TSS's. The TSS size is kept cacheline-aligned
- * so they are allowed to end up in the .data..cacheline_aligned
- * section. Since TSS's are completely CPU-local, we want them
- * on exact cacheline boundaries, to eliminate cacheline ping-pong.
- */
- __visible DEFINE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(struct tss_struct, cpu_tss) = {
- .x86_tss = {
- .sp0 = TOP_OF_INIT_STACK,
- #ifdef CONFIG_X86_32
- .ss0 = __KERNEL_DS,
- .ss1 = __KERNEL_CS,
- .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
- #endif
- },
- #ifdef CONFIG_X86_32
- /*
- * Note that the .io_bitmap member must be extra-big. This is because
- * the CPU will access an additional byte beyond the end of the IO
- * permission bitmap. The extra byte must be all 1 bits, and must
- * be within the limit.
- */
- .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
- #endif
- #ifdef CONFIG_X86_32
- .SYSENTER_stack_canary = STACK_END_MAGIC,
- #endif
- };
- EXPORT_PER_CPU_SYMBOL(cpu_tss);
- #ifdef CONFIG_X86_64
- static DEFINE_PER_CPU(unsigned char, is_idle);
- static ATOMIC_NOTIFIER_HEAD(idle_notifier);
- void idle_notifier_register(struct notifier_block *n)
- {
- atomic_notifier_chain_register(&idle_notifier, n);
- }
- EXPORT_SYMBOL_GPL(idle_notifier_register);
- void idle_notifier_unregister(struct notifier_block *n)
- {
- atomic_notifier_chain_unregister(&idle_notifier, n);
- }
- EXPORT_SYMBOL_GPL(idle_notifier_unregister);
- #endif
- /*
- * this gets called so that we can store lazy state into memory and copy the
- * current task into the new thread.
- */
- int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
- {
- memcpy(dst, src, arch_task_struct_size);
- #ifdef CONFIG_VM86
- dst->thread.vm86 = NULL;
- #endif
- return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
- }
- /*
- * Free current thread data structures etc..
- */
- void exit_thread(struct task_struct *tsk)
- {
- struct thread_struct *t = &tsk->thread;
- unsigned long *bp = t->io_bitmap_ptr;
- struct fpu *fpu = &t->fpu;
- if (bp) {
- struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
- t->io_bitmap_ptr = NULL;
- clear_thread_flag(TIF_IO_BITMAP);
- /*
- * Careful, clear this in the TSS too:
- */
- memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
- t->io_bitmap_max = 0;
- put_cpu();
- kfree(bp);
- }
- free_vm86(t);
- fpu__drop(fpu);
- }
- void flush_thread(void)
- {
- struct task_struct *tsk = current;
- flush_ptrace_hw_breakpoint(tsk);
- memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
- fpu__clear(&tsk->thread.fpu);
- }
- void disable_TSC(void)
- {
- preempt_disable();
- if (!test_and_set_thread_flag(TIF_NOTSC))
- /*
- * Must flip the CPU state synchronously with
- * TIF_NOTSC in the current running context.
- */
- cr4_set_bits(X86_CR4_TSD);
- preempt_enable();
- }
- static void enable_TSC(void)
- {
- preempt_disable();
- if (test_and_clear_thread_flag(TIF_NOTSC))
- /*
- * Must flip the CPU state synchronously with
- * TIF_NOTSC in the current running context.
- */
- cr4_clear_bits(X86_CR4_TSD);
- preempt_enable();
- }
- int get_tsc_mode(unsigned long adr)
- {
- unsigned int val;
- if (test_thread_flag(TIF_NOTSC))
- val = PR_TSC_SIGSEGV;
- else
- val = PR_TSC_ENABLE;
- return put_user(val, (unsigned int __user *)adr);
- }
- int set_tsc_mode(unsigned int val)
- {
- if (val == PR_TSC_SIGSEGV)
- disable_TSC();
- else if (val == PR_TSC_ENABLE)
- enable_TSC();
- else
- return -EINVAL;
- return 0;
- }
- static inline void switch_to_bitmap(struct tss_struct *tss,
- struct thread_struct *prev,
- struct thread_struct *next,
- unsigned long tifp, unsigned long tifn)
- {
- if (tifn & _TIF_IO_BITMAP) {
- /*
- * Copy the relevant range of the IO bitmap.
- * Normally this is 128 bytes or less:
- */
- memcpy(tss->io_bitmap, next->io_bitmap_ptr,
- max(prev->io_bitmap_max, next->io_bitmap_max));
- } else if (tifp & _TIF_IO_BITMAP) {
- /*
- * Clear any possible leftover bits:
- */
- memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
- }
- }
- #ifdef CONFIG_SMP
- struct ssb_state {
- struct ssb_state *shared_state;
- raw_spinlock_t lock;
- unsigned int disable_state;
- unsigned long local_state;
- };
- #define LSTATE_SSB 0
- static DEFINE_PER_CPU(struct ssb_state, ssb_state);
- void speculative_store_bypass_ht_init(void)
- {
- struct ssb_state *st = this_cpu_ptr(&ssb_state);
- unsigned int this_cpu = smp_processor_id();
- unsigned int cpu;
- st->local_state = 0;
- /*
- * Shared state setup happens once on the first bringup
- * of the CPU. It's not destroyed on CPU hotunplug.
- */
- if (st->shared_state)
- return;
- raw_spin_lock_init(&st->lock);
- /*
- * Go over HT siblings and check whether one of them has set up the
- * shared state pointer already.
- */
- for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
- if (cpu == this_cpu)
- continue;
- if (!per_cpu(ssb_state, cpu).shared_state)
- continue;
- /* Link it to the state of the sibling: */
- st->shared_state = per_cpu(ssb_state, cpu).shared_state;
- return;
- }
- /*
- * First HT sibling to come up on the core. Link shared state of
- * the first HT sibling to itself. The siblings on the same core
- * which come up later will see the shared state pointer and link
- * themself to the state of this CPU.
- */
- st->shared_state = st;
- }
- /*
- * Logic is: First HT sibling enables SSBD for both siblings in the core
- * and last sibling to disable it, disables it for the whole core. This how
- * MSR_SPEC_CTRL works in "hardware":
- *
- * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
- */
- static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
- {
- struct ssb_state *st = this_cpu_ptr(&ssb_state);
- u64 msr = x86_amd_ls_cfg_base;
- if (!static_cpu_has(X86_FEATURE_ZEN)) {
- msr |= ssbd_tif_to_amd_ls_cfg(tifn);
- wrmsrl(MSR_AMD64_LS_CFG, msr);
- return;
- }
- if (tifn & _TIF_SSBD) {
- /*
- * Since this can race with prctl(), block reentry on the
- * same CPU.
- */
- if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
- return;
- msr |= x86_amd_ls_cfg_ssbd_mask;
- raw_spin_lock(&st->shared_state->lock);
- /* First sibling enables SSBD: */
- if (!st->shared_state->disable_state)
- wrmsrl(MSR_AMD64_LS_CFG, msr);
- st->shared_state->disable_state++;
- raw_spin_unlock(&st->shared_state->lock);
- } else {
- if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
- return;
- raw_spin_lock(&st->shared_state->lock);
- st->shared_state->disable_state--;
- if (!st->shared_state->disable_state)
- wrmsrl(MSR_AMD64_LS_CFG, msr);
- raw_spin_unlock(&st->shared_state->lock);
- }
- }
- #else
- static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
- {
- u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
- wrmsrl(MSR_AMD64_LS_CFG, msr);
- }
- #endif
- static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
- {
- /*
- * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
- * so ssbd_tif_to_spec_ctrl() just works.
- */
- wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
- }
- static __always_inline void intel_set_ssb_state(unsigned long tifn)
- {
- u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
- wrmsrl(MSR_IA32_SPEC_CTRL, msr);
- }
- static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
- {
- if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
- amd_set_ssb_virt_state(tifn);
- else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
- amd_set_core_ssb_state(tifn);
- else
- intel_set_ssb_state(tifn);
- }
- void speculative_store_bypass_update(unsigned long tif)
- {
- preempt_disable();
- __speculative_store_bypass_update(tif);
- preempt_enable();
- }
- void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
- struct tss_struct *tss)
- {
- struct thread_struct *prev, *next;
- unsigned long tifp, tifn;
- prev = &prev_p->thread;
- next = &next_p->thread;
- tifn = READ_ONCE(task_thread_info(next_p)->flags);
- tifp = READ_ONCE(task_thread_info(prev_p)->flags);
- switch_to_bitmap(tss, prev, next, tifp, tifn);
- propagate_user_return_notify(prev_p, next_p);
- if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
- arch_has_block_step()) {
- unsigned long debugctl, msk;
- rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
- debugctl &= ~DEBUGCTLMSR_BTF;
- msk = tifn & _TIF_BLOCKSTEP;
- debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
- wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
- }
- if ((tifp ^ tifn) & _TIF_NOTSC)
- cr4_toggle_bits(X86_CR4_TSD);
- if ((tifp ^ tifn) & _TIF_SSBD)
- __speculative_store_bypass_update(tifn);
- }
- /*
- * Idle related variables and functions
- */
- unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
- EXPORT_SYMBOL(boot_option_idle_override);
- static void (*x86_idle)(void);
- #ifndef CONFIG_SMP
- static inline void play_dead(void)
- {
- BUG();
- }
- #endif
- #ifdef CONFIG_X86_64
- void enter_idle(void)
- {
- this_cpu_write(is_idle, 1);
- atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
- }
- static void __exit_idle(void)
- {
- if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
- return;
- atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
- }
- /* Called from interrupts to signify idle end */
- void exit_idle(void)
- {
- /* idle loop has pid 0 */
- if (current->pid)
- return;
- __exit_idle();
- }
- #endif
- void arch_cpu_idle_enter(void)
- {
- local_touch_nmi();
- enter_idle();
- }
- void arch_cpu_idle_exit(void)
- {
- __exit_idle();
- }
- void arch_cpu_idle_dead(void)
- {
- play_dead();
- }
- /*
- * Called from the generic idle code.
- */
- void arch_cpu_idle(void)
- {
- x86_idle();
- }
- /*
- * We use this if we don't have any better idle routine..
- */
- void __cpuidle default_idle(void)
- {
- trace_cpu_idle_rcuidle(1, smp_processor_id());
- safe_halt();
- trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
- }
- #ifdef CONFIG_APM_MODULE
- EXPORT_SYMBOL(default_idle);
- #endif
- #ifdef CONFIG_XEN
- bool xen_set_default_idle(void)
- {
- bool ret = !!x86_idle;
- x86_idle = default_idle;
- return ret;
- }
- #endif
- void stop_this_cpu(void *dummy)
- {
- local_irq_disable();
- /*
- * Remove this CPU:
- */
- set_cpu_online(smp_processor_id(), false);
- disable_local_APIC();
- mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
- for (;;)
- halt();
- }
- bool amd_e400_c1e_detected;
- EXPORT_SYMBOL(amd_e400_c1e_detected);
- static cpumask_var_t amd_e400_c1e_mask;
- void amd_e400_remove_cpu(int cpu)
- {
- if (amd_e400_c1e_mask != NULL)
- cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
- }
- /*
- * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
- * pending message MSR. If we detect C1E, then we handle it the same
- * way as C3 power states (local apic timer and TSC stop)
- */
- static void amd_e400_idle(void)
- {
- if (!amd_e400_c1e_detected) {
- u32 lo, hi;
- rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
- if (lo & K8_INTP_C1E_ACTIVE_MASK) {
- amd_e400_c1e_detected = true;
- if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
- mark_tsc_unstable("TSC halt in AMD C1E");
- pr_info("System has AMD C1E enabled\n");
- }
- }
- if (amd_e400_c1e_detected) {
- int cpu = smp_processor_id();
- if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
- cpumask_set_cpu(cpu, amd_e400_c1e_mask);
- /* Force broadcast so ACPI can not interfere. */
- tick_broadcast_force();
- pr_info("Switch to broadcast mode on CPU%d\n", cpu);
- }
- tick_broadcast_enter();
- default_idle();
- /*
- * The switch back from broadcast mode needs to be
- * called with interrupts disabled.
- */
- local_irq_disable();
- tick_broadcast_exit();
- local_irq_enable();
- } else
- default_idle();
- }
- /*
- * Intel Core2 and older machines prefer MWAIT over HALT for C1.
- * We can't rely on cpuidle installing MWAIT, because it will not load
- * on systems that support only C1 -- so the boot default must be MWAIT.
- *
- * Some AMD machines are the opposite, they depend on using HALT.
- *
- * So for default C1, which is used during boot until cpuidle loads,
- * use MWAIT-C1 on Intel HW that has it, else use HALT.
- */
- static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
- {
- if (c->x86_vendor != X86_VENDOR_INTEL)
- return 0;
- if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
- return 0;
- return 1;
- }
- /*
- * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
- * with interrupts enabled and no flags, which is backwards compatible with the
- * original MWAIT implementation.
- */
- static __cpuidle void mwait_idle(void)
- {
- if (!current_set_polling_and_test()) {
- trace_cpu_idle_rcuidle(1, smp_processor_id());
- if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
- mb(); /* quirk */
- clflush((void *)¤t_thread_info()->flags);
- mb(); /* quirk */
- }
- __monitor((void *)¤t_thread_info()->flags, 0, 0);
- if (!need_resched())
- __sti_mwait(0, 0);
- else
- local_irq_enable();
- trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
- } else {
- local_irq_enable();
- }
- __current_clr_polling();
- }
- void select_idle_routine(const struct cpuinfo_x86 *c)
- {
- #ifdef CONFIG_SMP
- if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
- pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
- #endif
- if (x86_idle || boot_option_idle_override == IDLE_POLL)
- return;
- if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
- pr_info("using AMD E400 aware idle routine\n");
- x86_idle = amd_e400_idle;
- } else if (prefer_mwait_c1_over_halt(c)) {
- pr_info("using mwait in idle threads\n");
- x86_idle = mwait_idle;
- } else
- x86_idle = default_idle;
- }
- void __init init_amd_e400_c1e_mask(void)
- {
- /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
- if (x86_idle == amd_e400_idle)
- zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
- }
- static int __init idle_setup(char *str)
- {
- if (!str)
- return -EINVAL;
- if (!strcmp(str, "poll")) {
- pr_info("using polling idle threads\n");
- boot_option_idle_override = IDLE_POLL;
- cpu_idle_poll_ctrl(true);
- } else if (!strcmp(str, "halt")) {
- /*
- * When the boot option of idle=halt is added, halt is
- * forced to be used for CPU idle. In such case CPU C2/C3
- * won't be used again.
- * To continue to load the CPU idle driver, don't touch
- * the boot_option_idle_override.
- */
- x86_idle = default_idle;
- boot_option_idle_override = IDLE_HALT;
- } else if (!strcmp(str, "nomwait")) {
- /*
- * If the boot option of "idle=nomwait" is added,
- * it means that mwait will be disabled for CPU C2/C3
- * states. In such case it won't touch the variable
- * of boot_option_idle_override.
- */
- boot_option_idle_override = IDLE_NOMWAIT;
- } else
- return -1;
- return 0;
- }
- early_param("idle", idle_setup);
- unsigned long arch_align_stack(unsigned long sp)
- {
- if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
- sp -= get_random_int() % 8192;
- return sp & ~0xf;
- }
- unsigned long arch_randomize_brk(struct mm_struct *mm)
- {
- return randomize_page(mm->brk, 0x02000000);
- }
- /*
- * Return saved PC of a blocked thread.
- * What is this good for? it will be always the scheduler or ret_from_fork.
- */
- unsigned long thread_saved_pc(struct task_struct *tsk)
- {
- struct inactive_task_frame *frame =
- (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
- return READ_ONCE_NOCHECK(frame->ret_addr);
- }
- /*
- * Called from fs/proc with a reference on @p to find the function
- * which called into schedule(). This needs to be done carefully
- * because the task might wake up and we might look at a stack
- * changing under us.
- */
- unsigned long get_wchan(struct task_struct *p)
- {
- unsigned long start, bottom, top, sp, fp, ip, ret = 0;
- int count = 0;
- if (!p || p == current || p->state == TASK_RUNNING)
- return 0;
- if (!try_get_task_stack(p))
- return 0;
- start = (unsigned long)task_stack_page(p);
- if (!start)
- goto out;
- /*
- * Layout of the stack page:
- *
- * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
- * PADDING
- * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
- * stack
- * ----------- bottom = start
- *
- * The tasks stack pointer points at the location where the
- * framepointer is stored. The data on the stack is:
- * ... IP FP ... IP FP
- *
- * We need to read FP and IP, so we need to adjust the upper
- * bound by another unsigned long.
- */
- top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
- top -= 2 * sizeof(unsigned long);
- bottom = start;
- sp = READ_ONCE(p->thread.sp);
- if (sp < bottom || sp > top)
- goto out;
- fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
- do {
- if (fp < bottom || fp > top)
- goto out;
- ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
- if (!in_sched_functions(ip)) {
- ret = ip;
- goto out;
- }
- fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
- } while (count++ < 16 && p->state != TASK_RUNNING);
- out:
- put_task_stack(p);
- return ret;
- }
|