process.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/errno.h>
  3. #include <linux/kernel.h>
  4. #include <linux/mm.h>
  5. #include <linux/smp.h>
  6. #include <linux/prctl.h>
  7. #include <linux/slab.h>
  8. #include <linux/sched.h>
  9. #include <linux/init.h>
  10. #include <linux/export.h>
  11. #include <linux/pm.h>
  12. #include <linux/tick.h>
  13. #include <linux/random.h>
  14. #include <linux/user-return-notifier.h>
  15. #include <linux/dmi.h>
  16. #include <linux/utsname.h>
  17. #include <linux/stackprotector.h>
  18. #include <linux/tick.h>
  19. #include <linux/cpuidle.h>
  20. #include <trace/events/power.h>
  21. #include <linux/hw_breakpoint.h>
  22. #include <asm/cpu.h>
  23. #include <asm/apic.h>
  24. #include <asm/syscalls.h>
  25. #include <asm/idle.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/mwait.h>
  28. #include <asm/fpu/internal.h>
  29. #include <asm/debugreg.h>
  30. #include <asm/nmi.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mce.h>
  33. #include <asm/vm86.h>
  34. #include <asm/switch_to.h>
  35. #include <asm/spec-ctrl.h>
  36. /*
  37. * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  38. * no more per-task TSS's. The TSS size is kept cacheline-aligned
  39. * so they are allowed to end up in the .data..cacheline_aligned
  40. * section. Since TSS's are completely CPU-local, we want them
  41. * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  42. */
  43. __visible DEFINE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(struct tss_struct, cpu_tss) = {
  44. .x86_tss = {
  45. .sp0 = TOP_OF_INIT_STACK,
  46. #ifdef CONFIG_X86_32
  47. .ss0 = __KERNEL_DS,
  48. .ss1 = __KERNEL_CS,
  49. .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  50. #endif
  51. },
  52. #ifdef CONFIG_X86_32
  53. /*
  54. * Note that the .io_bitmap member must be extra-big. This is because
  55. * the CPU will access an additional byte beyond the end of the IO
  56. * permission bitmap. The extra byte must be all 1 bits, and must
  57. * be within the limit.
  58. */
  59. .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
  60. #endif
  61. #ifdef CONFIG_X86_32
  62. .SYSENTER_stack_canary = STACK_END_MAGIC,
  63. #endif
  64. };
  65. EXPORT_PER_CPU_SYMBOL(cpu_tss);
  66. #ifdef CONFIG_X86_64
  67. static DEFINE_PER_CPU(unsigned char, is_idle);
  68. static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  69. void idle_notifier_register(struct notifier_block *n)
  70. {
  71. atomic_notifier_chain_register(&idle_notifier, n);
  72. }
  73. EXPORT_SYMBOL_GPL(idle_notifier_register);
  74. void idle_notifier_unregister(struct notifier_block *n)
  75. {
  76. atomic_notifier_chain_unregister(&idle_notifier, n);
  77. }
  78. EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  79. #endif
  80. /*
  81. * this gets called so that we can store lazy state into memory and copy the
  82. * current task into the new thread.
  83. */
  84. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  85. {
  86. memcpy(dst, src, arch_task_struct_size);
  87. #ifdef CONFIG_VM86
  88. dst->thread.vm86 = NULL;
  89. #endif
  90. return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  91. }
  92. /*
  93. * Free current thread data structures etc..
  94. */
  95. void exit_thread(struct task_struct *tsk)
  96. {
  97. struct thread_struct *t = &tsk->thread;
  98. unsigned long *bp = t->io_bitmap_ptr;
  99. struct fpu *fpu = &t->fpu;
  100. if (bp) {
  101. struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
  102. t->io_bitmap_ptr = NULL;
  103. clear_thread_flag(TIF_IO_BITMAP);
  104. /*
  105. * Careful, clear this in the TSS too:
  106. */
  107. memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
  108. t->io_bitmap_max = 0;
  109. put_cpu();
  110. kfree(bp);
  111. }
  112. free_vm86(t);
  113. fpu__drop(fpu);
  114. }
  115. void flush_thread(void)
  116. {
  117. struct task_struct *tsk = current;
  118. flush_ptrace_hw_breakpoint(tsk);
  119. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  120. fpu__clear(&tsk->thread.fpu);
  121. }
  122. void disable_TSC(void)
  123. {
  124. preempt_disable();
  125. if (!test_and_set_thread_flag(TIF_NOTSC))
  126. /*
  127. * Must flip the CPU state synchronously with
  128. * TIF_NOTSC in the current running context.
  129. */
  130. cr4_set_bits(X86_CR4_TSD);
  131. preempt_enable();
  132. }
  133. static void enable_TSC(void)
  134. {
  135. preempt_disable();
  136. if (test_and_clear_thread_flag(TIF_NOTSC))
  137. /*
  138. * Must flip the CPU state synchronously with
  139. * TIF_NOTSC in the current running context.
  140. */
  141. cr4_clear_bits(X86_CR4_TSD);
  142. preempt_enable();
  143. }
  144. int get_tsc_mode(unsigned long adr)
  145. {
  146. unsigned int val;
  147. if (test_thread_flag(TIF_NOTSC))
  148. val = PR_TSC_SIGSEGV;
  149. else
  150. val = PR_TSC_ENABLE;
  151. return put_user(val, (unsigned int __user *)adr);
  152. }
  153. int set_tsc_mode(unsigned int val)
  154. {
  155. if (val == PR_TSC_SIGSEGV)
  156. disable_TSC();
  157. else if (val == PR_TSC_ENABLE)
  158. enable_TSC();
  159. else
  160. return -EINVAL;
  161. return 0;
  162. }
  163. static inline void switch_to_bitmap(struct tss_struct *tss,
  164. struct thread_struct *prev,
  165. struct thread_struct *next,
  166. unsigned long tifp, unsigned long tifn)
  167. {
  168. if (tifn & _TIF_IO_BITMAP) {
  169. /*
  170. * Copy the relevant range of the IO bitmap.
  171. * Normally this is 128 bytes or less:
  172. */
  173. memcpy(tss->io_bitmap, next->io_bitmap_ptr,
  174. max(prev->io_bitmap_max, next->io_bitmap_max));
  175. } else if (tifp & _TIF_IO_BITMAP) {
  176. /*
  177. * Clear any possible leftover bits:
  178. */
  179. memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
  180. }
  181. }
  182. #ifdef CONFIG_SMP
  183. struct ssb_state {
  184. struct ssb_state *shared_state;
  185. raw_spinlock_t lock;
  186. unsigned int disable_state;
  187. unsigned long local_state;
  188. };
  189. #define LSTATE_SSB 0
  190. static DEFINE_PER_CPU(struct ssb_state, ssb_state);
  191. void speculative_store_bypass_ht_init(void)
  192. {
  193. struct ssb_state *st = this_cpu_ptr(&ssb_state);
  194. unsigned int this_cpu = smp_processor_id();
  195. unsigned int cpu;
  196. st->local_state = 0;
  197. /*
  198. * Shared state setup happens once on the first bringup
  199. * of the CPU. It's not destroyed on CPU hotunplug.
  200. */
  201. if (st->shared_state)
  202. return;
  203. raw_spin_lock_init(&st->lock);
  204. /*
  205. * Go over HT siblings and check whether one of them has set up the
  206. * shared state pointer already.
  207. */
  208. for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
  209. if (cpu == this_cpu)
  210. continue;
  211. if (!per_cpu(ssb_state, cpu).shared_state)
  212. continue;
  213. /* Link it to the state of the sibling: */
  214. st->shared_state = per_cpu(ssb_state, cpu).shared_state;
  215. return;
  216. }
  217. /*
  218. * First HT sibling to come up on the core. Link shared state of
  219. * the first HT sibling to itself. The siblings on the same core
  220. * which come up later will see the shared state pointer and link
  221. * themself to the state of this CPU.
  222. */
  223. st->shared_state = st;
  224. }
  225. /*
  226. * Logic is: First HT sibling enables SSBD for both siblings in the core
  227. * and last sibling to disable it, disables it for the whole core. This how
  228. * MSR_SPEC_CTRL works in "hardware":
  229. *
  230. * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
  231. */
  232. static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
  233. {
  234. struct ssb_state *st = this_cpu_ptr(&ssb_state);
  235. u64 msr = x86_amd_ls_cfg_base;
  236. if (!static_cpu_has(X86_FEATURE_ZEN)) {
  237. msr |= ssbd_tif_to_amd_ls_cfg(tifn);
  238. wrmsrl(MSR_AMD64_LS_CFG, msr);
  239. return;
  240. }
  241. if (tifn & _TIF_SSBD) {
  242. /*
  243. * Since this can race with prctl(), block reentry on the
  244. * same CPU.
  245. */
  246. if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
  247. return;
  248. msr |= x86_amd_ls_cfg_ssbd_mask;
  249. raw_spin_lock(&st->shared_state->lock);
  250. /* First sibling enables SSBD: */
  251. if (!st->shared_state->disable_state)
  252. wrmsrl(MSR_AMD64_LS_CFG, msr);
  253. st->shared_state->disable_state++;
  254. raw_spin_unlock(&st->shared_state->lock);
  255. } else {
  256. if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
  257. return;
  258. raw_spin_lock(&st->shared_state->lock);
  259. st->shared_state->disable_state--;
  260. if (!st->shared_state->disable_state)
  261. wrmsrl(MSR_AMD64_LS_CFG, msr);
  262. raw_spin_unlock(&st->shared_state->lock);
  263. }
  264. }
  265. #else
  266. static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
  267. {
  268. u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
  269. wrmsrl(MSR_AMD64_LS_CFG, msr);
  270. }
  271. #endif
  272. static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
  273. {
  274. /*
  275. * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
  276. * so ssbd_tif_to_spec_ctrl() just works.
  277. */
  278. wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
  279. }
  280. static __always_inline void intel_set_ssb_state(unsigned long tifn)
  281. {
  282. u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
  283. wrmsrl(MSR_IA32_SPEC_CTRL, msr);
  284. }
  285. static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
  286. {
  287. if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
  288. amd_set_ssb_virt_state(tifn);
  289. else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
  290. amd_set_core_ssb_state(tifn);
  291. else
  292. intel_set_ssb_state(tifn);
  293. }
  294. void speculative_store_bypass_update(unsigned long tif)
  295. {
  296. preempt_disable();
  297. __speculative_store_bypass_update(tif);
  298. preempt_enable();
  299. }
  300. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  301. struct tss_struct *tss)
  302. {
  303. struct thread_struct *prev, *next;
  304. unsigned long tifp, tifn;
  305. prev = &prev_p->thread;
  306. next = &next_p->thread;
  307. tifn = READ_ONCE(task_thread_info(next_p)->flags);
  308. tifp = READ_ONCE(task_thread_info(prev_p)->flags);
  309. switch_to_bitmap(tss, prev, next, tifp, tifn);
  310. propagate_user_return_notify(prev_p, next_p);
  311. if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
  312. arch_has_block_step()) {
  313. unsigned long debugctl, msk;
  314. rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  315. debugctl &= ~DEBUGCTLMSR_BTF;
  316. msk = tifn & _TIF_BLOCKSTEP;
  317. debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
  318. wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
  319. }
  320. if ((tifp ^ tifn) & _TIF_NOTSC)
  321. cr4_toggle_bits(X86_CR4_TSD);
  322. if ((tifp ^ tifn) & _TIF_SSBD)
  323. __speculative_store_bypass_update(tifn);
  324. }
  325. /*
  326. * Idle related variables and functions
  327. */
  328. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  329. EXPORT_SYMBOL(boot_option_idle_override);
  330. static void (*x86_idle)(void);
  331. #ifndef CONFIG_SMP
  332. static inline void play_dead(void)
  333. {
  334. BUG();
  335. }
  336. #endif
  337. #ifdef CONFIG_X86_64
  338. void enter_idle(void)
  339. {
  340. this_cpu_write(is_idle, 1);
  341. atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
  342. }
  343. static void __exit_idle(void)
  344. {
  345. if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
  346. return;
  347. atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
  348. }
  349. /* Called from interrupts to signify idle end */
  350. void exit_idle(void)
  351. {
  352. /* idle loop has pid 0 */
  353. if (current->pid)
  354. return;
  355. __exit_idle();
  356. }
  357. #endif
  358. void arch_cpu_idle_enter(void)
  359. {
  360. local_touch_nmi();
  361. enter_idle();
  362. }
  363. void arch_cpu_idle_exit(void)
  364. {
  365. __exit_idle();
  366. }
  367. void arch_cpu_idle_dead(void)
  368. {
  369. play_dead();
  370. }
  371. /*
  372. * Called from the generic idle code.
  373. */
  374. void arch_cpu_idle(void)
  375. {
  376. x86_idle();
  377. }
  378. /*
  379. * We use this if we don't have any better idle routine..
  380. */
  381. void __cpuidle default_idle(void)
  382. {
  383. trace_cpu_idle_rcuidle(1, smp_processor_id());
  384. safe_halt();
  385. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  386. }
  387. #ifdef CONFIG_APM_MODULE
  388. EXPORT_SYMBOL(default_idle);
  389. #endif
  390. #ifdef CONFIG_XEN
  391. bool xen_set_default_idle(void)
  392. {
  393. bool ret = !!x86_idle;
  394. x86_idle = default_idle;
  395. return ret;
  396. }
  397. #endif
  398. void stop_this_cpu(void *dummy)
  399. {
  400. local_irq_disable();
  401. /*
  402. * Remove this CPU:
  403. */
  404. set_cpu_online(smp_processor_id(), false);
  405. disable_local_APIC();
  406. mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
  407. for (;;)
  408. halt();
  409. }
  410. bool amd_e400_c1e_detected;
  411. EXPORT_SYMBOL(amd_e400_c1e_detected);
  412. static cpumask_var_t amd_e400_c1e_mask;
  413. void amd_e400_remove_cpu(int cpu)
  414. {
  415. if (amd_e400_c1e_mask != NULL)
  416. cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
  417. }
  418. /*
  419. * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
  420. * pending message MSR. If we detect C1E, then we handle it the same
  421. * way as C3 power states (local apic timer and TSC stop)
  422. */
  423. static void amd_e400_idle(void)
  424. {
  425. if (!amd_e400_c1e_detected) {
  426. u32 lo, hi;
  427. rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
  428. if (lo & K8_INTP_C1E_ACTIVE_MASK) {
  429. amd_e400_c1e_detected = true;
  430. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
  431. mark_tsc_unstable("TSC halt in AMD C1E");
  432. pr_info("System has AMD C1E enabled\n");
  433. }
  434. }
  435. if (amd_e400_c1e_detected) {
  436. int cpu = smp_processor_id();
  437. if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
  438. cpumask_set_cpu(cpu, amd_e400_c1e_mask);
  439. /* Force broadcast so ACPI can not interfere. */
  440. tick_broadcast_force();
  441. pr_info("Switch to broadcast mode on CPU%d\n", cpu);
  442. }
  443. tick_broadcast_enter();
  444. default_idle();
  445. /*
  446. * The switch back from broadcast mode needs to be
  447. * called with interrupts disabled.
  448. */
  449. local_irq_disable();
  450. tick_broadcast_exit();
  451. local_irq_enable();
  452. } else
  453. default_idle();
  454. }
  455. /*
  456. * Intel Core2 and older machines prefer MWAIT over HALT for C1.
  457. * We can't rely on cpuidle installing MWAIT, because it will not load
  458. * on systems that support only C1 -- so the boot default must be MWAIT.
  459. *
  460. * Some AMD machines are the opposite, they depend on using HALT.
  461. *
  462. * So for default C1, which is used during boot until cpuidle loads,
  463. * use MWAIT-C1 on Intel HW that has it, else use HALT.
  464. */
  465. static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
  466. {
  467. if (c->x86_vendor != X86_VENDOR_INTEL)
  468. return 0;
  469. if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
  470. return 0;
  471. return 1;
  472. }
  473. /*
  474. * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
  475. * with interrupts enabled and no flags, which is backwards compatible with the
  476. * original MWAIT implementation.
  477. */
  478. static __cpuidle void mwait_idle(void)
  479. {
  480. if (!current_set_polling_and_test()) {
  481. trace_cpu_idle_rcuidle(1, smp_processor_id());
  482. if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
  483. mb(); /* quirk */
  484. clflush((void *)&current_thread_info()->flags);
  485. mb(); /* quirk */
  486. }
  487. __monitor((void *)&current_thread_info()->flags, 0, 0);
  488. if (!need_resched())
  489. __sti_mwait(0, 0);
  490. else
  491. local_irq_enable();
  492. trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
  493. } else {
  494. local_irq_enable();
  495. }
  496. __current_clr_polling();
  497. }
  498. void select_idle_routine(const struct cpuinfo_x86 *c)
  499. {
  500. #ifdef CONFIG_SMP
  501. if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
  502. pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
  503. #endif
  504. if (x86_idle || boot_option_idle_override == IDLE_POLL)
  505. return;
  506. if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
  507. pr_info("using AMD E400 aware idle routine\n");
  508. x86_idle = amd_e400_idle;
  509. } else if (prefer_mwait_c1_over_halt(c)) {
  510. pr_info("using mwait in idle threads\n");
  511. x86_idle = mwait_idle;
  512. } else
  513. x86_idle = default_idle;
  514. }
  515. void __init init_amd_e400_c1e_mask(void)
  516. {
  517. /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
  518. if (x86_idle == amd_e400_idle)
  519. zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
  520. }
  521. static int __init idle_setup(char *str)
  522. {
  523. if (!str)
  524. return -EINVAL;
  525. if (!strcmp(str, "poll")) {
  526. pr_info("using polling idle threads\n");
  527. boot_option_idle_override = IDLE_POLL;
  528. cpu_idle_poll_ctrl(true);
  529. } else if (!strcmp(str, "halt")) {
  530. /*
  531. * When the boot option of idle=halt is added, halt is
  532. * forced to be used for CPU idle. In such case CPU C2/C3
  533. * won't be used again.
  534. * To continue to load the CPU idle driver, don't touch
  535. * the boot_option_idle_override.
  536. */
  537. x86_idle = default_idle;
  538. boot_option_idle_override = IDLE_HALT;
  539. } else if (!strcmp(str, "nomwait")) {
  540. /*
  541. * If the boot option of "idle=nomwait" is added,
  542. * it means that mwait will be disabled for CPU C2/C3
  543. * states. In such case it won't touch the variable
  544. * of boot_option_idle_override.
  545. */
  546. boot_option_idle_override = IDLE_NOMWAIT;
  547. } else
  548. return -1;
  549. return 0;
  550. }
  551. early_param("idle", idle_setup);
  552. unsigned long arch_align_stack(unsigned long sp)
  553. {
  554. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  555. sp -= get_random_int() % 8192;
  556. return sp & ~0xf;
  557. }
  558. unsigned long arch_randomize_brk(struct mm_struct *mm)
  559. {
  560. return randomize_page(mm->brk, 0x02000000);
  561. }
  562. /*
  563. * Return saved PC of a blocked thread.
  564. * What is this good for? it will be always the scheduler or ret_from_fork.
  565. */
  566. unsigned long thread_saved_pc(struct task_struct *tsk)
  567. {
  568. struct inactive_task_frame *frame =
  569. (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
  570. return READ_ONCE_NOCHECK(frame->ret_addr);
  571. }
  572. /*
  573. * Called from fs/proc with a reference on @p to find the function
  574. * which called into schedule(). This needs to be done carefully
  575. * because the task might wake up and we might look at a stack
  576. * changing under us.
  577. */
  578. unsigned long get_wchan(struct task_struct *p)
  579. {
  580. unsigned long start, bottom, top, sp, fp, ip, ret = 0;
  581. int count = 0;
  582. if (!p || p == current || p->state == TASK_RUNNING)
  583. return 0;
  584. if (!try_get_task_stack(p))
  585. return 0;
  586. start = (unsigned long)task_stack_page(p);
  587. if (!start)
  588. goto out;
  589. /*
  590. * Layout of the stack page:
  591. *
  592. * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
  593. * PADDING
  594. * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
  595. * stack
  596. * ----------- bottom = start
  597. *
  598. * The tasks stack pointer points at the location where the
  599. * framepointer is stored. The data on the stack is:
  600. * ... IP FP ... IP FP
  601. *
  602. * We need to read FP and IP, so we need to adjust the upper
  603. * bound by another unsigned long.
  604. */
  605. top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
  606. top -= 2 * sizeof(unsigned long);
  607. bottom = start;
  608. sp = READ_ONCE(p->thread.sp);
  609. if (sp < bottom || sp > top)
  610. goto out;
  611. fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
  612. do {
  613. if (fp < bottom || fp > top)
  614. goto out;
  615. ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
  616. if (!in_sched_functions(ip)) {
  617. ret = ip;
  618. goto out;
  619. }
  620. fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
  621. } while (count++ < 16 && p->state != TASK_RUNNING);
  622. out:
  623. put_task_stack(p);
  624. return ret;
  625. }