123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500 |
- /*
- * Copyright © 2008 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- *
- * Authors:
- * Eric Anholt <eric@anholt.net>
- *
- */
- #include "linux/string.h"
- #include "linux/bitops.h"
- #include "drmP.h"
- #include "drm.h"
- #include "i915_drm.h"
- #include "i915_drv.h"
- /** @file i915_gem_tiling.c
- *
- * Support for managing tiling state of buffer objects.
- *
- * The idea behind tiling is to increase cache hit rates by rearranging
- * pixel data so that a group of pixel accesses are in the same cacheline.
- * Performance improvement from doing this on the back/depth buffer are on
- * the order of 30%.
- *
- * Intel architectures make this somewhat more complicated, though, by
- * adjustments made to addressing of data when the memory is in interleaved
- * mode (matched pairs of DIMMS) to improve memory bandwidth.
- * For interleaved memory, the CPU sends every sequential 64 bytes
- * to an alternate memory channel so it can get the bandwidth from both.
- *
- * The GPU also rearranges its accesses for increased bandwidth to interleaved
- * memory, and it matches what the CPU does for non-tiled. However, when tiled
- * it does it a little differently, since one walks addresses not just in the
- * X direction but also Y. So, along with alternating channels when bit
- * 6 of the address flips, it also alternates when other bits flip -- Bits 9
- * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
- * are common to both the 915 and 965-class hardware.
- *
- * The CPU also sometimes XORs in higher bits as well, to improve
- * bandwidth doing strided access like we do so frequently in graphics. This
- * is called "Channel XOR Randomization" in the MCH documentation. The result
- * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
- * decode.
- *
- * All of this bit 6 XORing has an effect on our memory management,
- * as we need to make sure that the 3d driver can correctly address object
- * contents.
- *
- * If we don't have interleaved memory, all tiling is safe and no swizzling is
- * required.
- *
- * When bit 17 is XORed in, we simply refuse to tile at all. Bit
- * 17 is not just a page offset, so as we page an objet out and back in,
- * individual pages in it will have different bit 17 addresses, resulting in
- * each 64 bytes being swapped with its neighbor!
- *
- * Otherwise, if interleaved, we have to tell the 3d driver what the address
- * swizzling it needs to do is, since it's writing with the CPU to the pages
- * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
- * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
- * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
- * to match what the GPU expects.
- */
- /**
- * Detects bit 6 swizzling of address lookup between IGD access and CPU
- * access through main memory.
- */
- void
- i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
- {
- drm_i915_private_t *dev_priv = dev->dev_private;
- uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
- uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
- if (INTEL_INFO(dev)->gen >= 6) {
- uint32_t dimm_c0, dimm_c1;
- dimm_c0 = I915_READ(MAD_DIMM_C0);
- dimm_c1 = I915_READ(MAD_DIMM_C1);
- dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
- dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
- /* Enable swizzling when the channels are populated with
- * identically sized dimms. We don't need to check the 3rd
- * channel because no cpu with gpu attached ships in that
- * configuration. Also, swizzling only makes sense for 2
- * channels anyway. */
- if (dimm_c0 == dimm_c1) {
- swizzle_x = I915_BIT_6_SWIZZLE_9_10;
- swizzle_y = I915_BIT_6_SWIZZLE_9;
- } else {
- swizzle_x = I915_BIT_6_SWIZZLE_NONE;
- swizzle_y = I915_BIT_6_SWIZZLE_NONE;
- }
- } else if (IS_GEN5(dev)) {
- /* On Ironlake whatever DRAM config, GPU always do
- * same swizzling setup.
- */
- swizzle_x = I915_BIT_6_SWIZZLE_9_10;
- swizzle_y = I915_BIT_6_SWIZZLE_9;
- } else if (IS_GEN2(dev)) {
- /* As far as we know, the 865 doesn't have these bit 6
- * swizzling issues.
- */
- swizzle_x = I915_BIT_6_SWIZZLE_NONE;
- swizzle_y = I915_BIT_6_SWIZZLE_NONE;
- } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
- uint32_t dcc;
- /* On 9xx chipsets, channel interleave by the CPU is
- * determined by DCC. For single-channel, neither the CPU
- * nor the GPU do swizzling. For dual channel interleaved,
- * the GPU's interleave is bit 9 and 10 for X tiled, and bit
- * 9 for Y tiled. The CPU's interleave is independent, and
- * can be based on either bit 11 (haven't seen this yet) or
- * bit 17 (common).
- */
- dcc = I915_READ(DCC);
- switch (dcc & DCC_ADDRESSING_MODE_MASK) {
- case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
- case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
- swizzle_x = I915_BIT_6_SWIZZLE_NONE;
- swizzle_y = I915_BIT_6_SWIZZLE_NONE;
- break;
- case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
- if (dcc & DCC_CHANNEL_XOR_DISABLE) {
- /* This is the base swizzling by the GPU for
- * tiled buffers.
- */
- swizzle_x = I915_BIT_6_SWIZZLE_9_10;
- swizzle_y = I915_BIT_6_SWIZZLE_9;
- } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
- /* Bit 11 swizzling by the CPU in addition. */
- swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
- swizzle_y = I915_BIT_6_SWIZZLE_9_11;
- } else {
- /* Bit 17 swizzling by the CPU in addition. */
- swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
- swizzle_y = I915_BIT_6_SWIZZLE_9_17;
- }
- break;
- }
- if (dcc == 0xffffffff) {
- DRM_ERROR("Couldn't read from MCHBAR. "
- "Disabling tiling.\n");
- swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
- swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
- }
- } else {
- /* The 965, G33, and newer, have a very flexible memory
- * configuration. It will enable dual-channel mode
- * (interleaving) on as much memory as it can, and the GPU
- * will additionally sometimes enable different bit 6
- * swizzling for tiled objects from the CPU.
- *
- * Here's what I found on the G965:
- * slot fill memory size swizzling
- * 0A 0B 1A 1B 1-ch 2-ch
- * 512 0 0 0 512 0 O
- * 512 0 512 0 16 1008 X
- * 512 0 0 512 16 1008 X
- * 0 512 0 512 16 1008 X
- * 1024 1024 1024 0 2048 1024 O
- *
- * We could probably detect this based on either the DRB
- * matching, which was the case for the swizzling required in
- * the table above, or from the 1-ch value being less than
- * the minimum size of a rank.
- */
- if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
- swizzle_x = I915_BIT_6_SWIZZLE_NONE;
- swizzle_y = I915_BIT_6_SWIZZLE_NONE;
- } else {
- swizzle_x = I915_BIT_6_SWIZZLE_9_10;
- swizzle_y = I915_BIT_6_SWIZZLE_9;
- }
- }
- dev_priv->mm.bit_6_swizzle_x = swizzle_x;
- dev_priv->mm.bit_6_swizzle_y = swizzle_y;
- }
- /* Check pitch constriants for all chips & tiling formats */
- static bool
- i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
- {
- int tile_width;
- /* Linear is always fine */
- if (tiling_mode == I915_TILING_NONE)
- return true;
- if (IS_GEN2(dev) ||
- (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
- tile_width = 128;
- else
- tile_width = 512;
- /* check maximum stride & object size */
- if (INTEL_INFO(dev)->gen >= 4) {
- /* i965 stores the end address of the gtt mapping in the fence
- * reg, so dont bother to check the size */
- if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
- return false;
- } else {
- if (stride > 8192)
- return false;
- if (IS_GEN3(dev)) {
- if (size > I830_FENCE_MAX_SIZE_VAL << 20)
- return false;
- } else {
- if (size > I830_FENCE_MAX_SIZE_VAL << 19)
- return false;
- }
- }
- /* 965+ just needs multiples of tile width */
- if (INTEL_INFO(dev)->gen >= 4) {
- if (stride & (tile_width - 1))
- return false;
- return true;
- }
- /* Pre-965 needs power of two tile widths */
- if (stride < tile_width)
- return false;
- if (stride & (stride - 1))
- return false;
- return true;
- }
- /* Is the current GTT allocation valid for the change in tiling? */
- static bool
- i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
- {
- u32 size;
- if (tiling_mode == I915_TILING_NONE)
- return true;
- if (INTEL_INFO(obj->base.dev)->gen >= 4)
- return true;
- if (INTEL_INFO(obj->base.dev)->gen == 3) {
- if (obj->gtt_offset & ~I915_FENCE_START_MASK)
- return false;
- } else {
- if (obj->gtt_offset & ~I830_FENCE_START_MASK)
- return false;
- }
- /*
- * Previous chips need to be aligned to the size of the smallest
- * fence register that can contain the object.
- */
- if (INTEL_INFO(obj->base.dev)->gen == 3)
- size = 1024*1024;
- else
- size = 512*1024;
- while (size < obj->base.size)
- size <<= 1;
- if (obj->gtt_space->size != size)
- return false;
- if (obj->gtt_offset & (size - 1))
- return false;
- return true;
- }
- /**
- * Sets the tiling mode of an object, returning the required swizzling of
- * bit 6 of addresses in the object.
- */
- int
- i915_gem_set_tiling(struct drm_device *dev, void *data,
- struct drm_file *file)
- {
- struct drm_i915_gem_set_tiling *args = data;
- drm_i915_private_t *dev_priv = dev->dev_private;
- struct drm_i915_gem_object *obj;
- int ret = 0;
- obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
- if (&obj->base == NULL)
- return -ENOENT;
- if (!i915_tiling_ok(dev,
- args->stride, obj->base.size, args->tiling_mode)) {
- drm_gem_object_unreference_unlocked(&obj->base);
- return -EINVAL;
- }
- if (obj->pin_count) {
- drm_gem_object_unreference_unlocked(&obj->base);
- return -EBUSY;
- }
- if (args->tiling_mode == I915_TILING_NONE) {
- args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
- args->stride = 0;
- } else {
- if (args->tiling_mode == I915_TILING_X)
- args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
- else
- args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
- /* Hide bit 17 swizzling from the user. This prevents old Mesa
- * from aborting the application on sw fallbacks to bit 17,
- * and we use the pread/pwrite bit17 paths to swizzle for it.
- * If there was a user that was relying on the swizzle
- * information for drm_intel_bo_map()ed reads/writes this would
- * break it, but we don't have any of those.
- */
- if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
- args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
- if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
- args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
- /* If we can't handle the swizzling, make it untiled. */
- if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
- args->tiling_mode = I915_TILING_NONE;
- args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
- args->stride = 0;
- }
- }
- mutex_lock(&dev->struct_mutex);
- if (args->tiling_mode != obj->tiling_mode ||
- args->stride != obj->stride) {
- /* We need to rebind the object if its current allocation
- * no longer meets the alignment restrictions for its new
- * tiling mode. Otherwise we can just leave it alone, but
- * need to ensure that any fence register is cleared.
- */
- i915_gem_release_mmap(obj);
- obj->map_and_fenceable =
- obj->gtt_space == NULL ||
- (obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
- i915_gem_object_fence_ok(obj, args->tiling_mode));
- /* Rebind if we need a change of alignment */
- if (!obj->map_and_fenceable) {
- u32 unfenced_alignment =
- i915_gem_get_unfenced_gtt_alignment(dev,
- obj->base.size,
- args->tiling_mode);
- if (obj->gtt_offset & (unfenced_alignment - 1))
- ret = i915_gem_object_unbind(obj);
- }
- if (ret == 0) {
- obj->tiling_changed = true;
- obj->tiling_mode = args->tiling_mode;
- obj->stride = args->stride;
- }
- }
- /* we have to maintain this existing ABI... */
- args->stride = obj->stride;
- args->tiling_mode = obj->tiling_mode;
- drm_gem_object_unreference(&obj->base);
- mutex_unlock(&dev->struct_mutex);
- return ret;
- }
- /**
- * Returns the current tiling mode and required bit 6 swizzling for the object.
- */
- int
- i915_gem_get_tiling(struct drm_device *dev, void *data,
- struct drm_file *file)
- {
- struct drm_i915_gem_get_tiling *args = data;
- drm_i915_private_t *dev_priv = dev->dev_private;
- struct drm_i915_gem_object *obj;
- obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
- if (&obj->base == NULL)
- return -ENOENT;
- mutex_lock(&dev->struct_mutex);
- args->tiling_mode = obj->tiling_mode;
- switch (obj->tiling_mode) {
- case I915_TILING_X:
- args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
- break;
- case I915_TILING_Y:
- args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
- break;
- case I915_TILING_NONE:
- args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
- break;
- default:
- DRM_ERROR("unknown tiling mode\n");
- }
- /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
- if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
- args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
- if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
- args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
- drm_gem_object_unreference(&obj->base);
- mutex_unlock(&dev->struct_mutex);
- return 0;
- }
- /**
- * Swap every 64 bytes of this page around, to account for it having a new
- * bit 17 of its physical address and therefore being interpreted differently
- * by the GPU.
- */
- static void
- i915_gem_swizzle_page(struct page *page)
- {
- char temp[64];
- char *vaddr;
- int i;
- vaddr = kmap(page);
- for (i = 0; i < PAGE_SIZE; i += 128) {
- memcpy(temp, &vaddr[i], 64);
- memcpy(&vaddr[i], &vaddr[i + 64], 64);
- memcpy(&vaddr[i + 64], temp, 64);
- }
- kunmap(page);
- }
- void
- i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
- {
- int page_count = obj->base.size >> PAGE_SHIFT;
- int i;
- if (obj->bit_17 == NULL)
- return;
- for (i = 0; i < page_count; i++) {
- char new_bit_17 = page_to_phys(obj->pages[i]) >> 17;
- if ((new_bit_17 & 0x1) !=
- (test_bit(i, obj->bit_17) != 0)) {
- i915_gem_swizzle_page(obj->pages[i]);
- set_page_dirty(obj->pages[i]);
- }
- }
- }
- void
- i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
- {
- int page_count = obj->base.size >> PAGE_SHIFT;
- int i;
- if (obj->bit_17 == NULL) {
- obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
- sizeof(long), GFP_KERNEL);
- if (obj->bit_17 == NULL) {
- DRM_ERROR("Failed to allocate memory for bit 17 "
- "record\n");
- return;
- }
- }
- for (i = 0; i < page_count; i++) {
- if (page_to_phys(obj->pages[i]) & (1 << 17))
- __set_bit(i, obj->bit_17);
- else
- __clear_bit(i, obj->bit_17);
- }
- }
|