123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017 |
- /**************************************************************************/
- /* voxelizer.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #include "voxelizer.h"
- #include "core/config/project_settings.h"
- static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
- if (p_pos.is_equal_approx(p_vtx[0])) {
- r_uv = p_uv[0];
- r_normal = p_normal[0];
- return;
- }
- if (p_pos.is_equal_approx(p_vtx[1])) {
- r_uv = p_uv[1];
- r_normal = p_normal[1];
- return;
- }
- if (p_pos.is_equal_approx(p_vtx[2])) {
- r_uv = p_uv[2];
- r_normal = p_normal[2];
- return;
- }
- Vector3 v0 = p_vtx[1] - p_vtx[0];
- Vector3 v1 = p_vtx[2] - p_vtx[0];
- Vector3 v2 = p_pos - p_vtx[0];
- real_t d00 = v0.dot(v0);
- real_t d01 = v0.dot(v1);
- real_t d11 = v1.dot(v1);
- real_t d20 = v2.dot(v0);
- real_t d21 = v2.dot(v1);
- real_t denom = (d00 * d11 - d01 * d01);
- if (denom == 0) {
- r_uv = p_uv[0];
- r_normal = p_normal[0];
- return;
- }
- real_t v = (d11 * d20 - d01 * d21) / denom;
- real_t w = (d00 * d21 - d01 * d20) / denom;
- real_t u = 1.0f - v - w;
- r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
- r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
- }
- void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
- if (p_level == cell_subdiv) {
- //plot the face by guessing its albedo and emission value
- //find best axis to map to, for scanning values
- int closest_axis = 0;
- real_t closest_dot = 0;
- Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 normal = plane.normal;
- for (int i = 0; i < 3; i++) {
- Vector3 axis;
- axis[i] = 1.0;
- real_t dot = ABS(normal.dot(axis));
- if (i == 0 || dot > closest_dot) {
- closest_axis = i;
- closest_dot = dot;
- }
- }
- Vector3 axis;
- axis[closest_axis] = 1.0;
- Vector3 t1;
- t1[(closest_axis + 1) % 3] = 1.0;
- Vector3 t2;
- t2[(closest_axis + 2) % 3] = 1.0;
- t1 *= p_aabb.size[(closest_axis + 1) % 3] / real_t(color_scan_cell_width);
- t2 *= p_aabb.size[(closest_axis + 2) % 3] / real_t(color_scan_cell_width);
- Color albedo_accum;
- Color emission_accum;
- Vector3 normal_accum;
- float alpha = 0.0;
- //map to a grid average in the best axis for this face
- for (int i = 0; i < color_scan_cell_width; i++) {
- Vector3 ofs_i = real_t(i) * t1;
- for (int j = 0; j < color_scan_cell_width; j++) {
- Vector3 ofs_j = real_t(j) * t2;
- Vector3 from = p_aabb.position + ofs_i + ofs_j;
- Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
- Vector3 half = (to - from) * 0.5;
- //is in this cell?
- if (!Geometry3D::triangle_box_overlap(from + half, half, p_vtx)) {
- continue; //face does not span this cell
- }
- //go from -size to +size*2 to avoid skipping collisions
- Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
- Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
- if (normal.dot(ray_from - ray_to) < 0) {
- SWAP(ray_from, ray_to);
- }
- Vector3 intersection;
- if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
- if (ABS(plane.distance_to(ray_from)) < ABS(plane.distance_to(ray_to))) {
- intersection = plane.project(ray_from);
- } else {
- intersection = plane.project(ray_to);
- }
- }
- intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
- Vector2 uv;
- Vector3 lnormal;
- get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
- if (lnormal == Vector3()) { //just in case normal is not provided
- lnormal = normal;
- }
- int uv_x = CLAMP(int(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1);
- int uv_y = CLAMP(int(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1);
- int ofs = uv_y * bake_texture_size + uv_x;
- albedo_accum.r += p_material.albedo[ofs].r;
- albedo_accum.g += p_material.albedo[ofs].g;
- albedo_accum.b += p_material.albedo[ofs].b;
- albedo_accum.a += p_material.albedo[ofs].a;
- emission_accum.r += p_material.emission[ofs].r;
- emission_accum.g += p_material.emission[ofs].g;
- emission_accum.b += p_material.emission[ofs].b;
- normal_accum += lnormal;
- alpha += 1.0;
- }
- }
- if (alpha == 0) {
- //could not in any way get texture information.. so use closest point to center
- Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
- Vector3 inters = f.get_closest_point_to(p_aabb.get_center());
- Vector3 lnormal;
- Vector2 uv;
- get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
- if (lnormal == Vector3()) { //just in case normal is not provided
- lnormal = normal;
- }
- int uv_x = CLAMP(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1);
- int uv_y = CLAMP(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1);
- int ofs = uv_y * bake_texture_size + uv_x;
- alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- albedo_accum.r = p_material.albedo[ofs].r * alpha;
- albedo_accum.g = p_material.albedo[ofs].g * alpha;
- albedo_accum.b = p_material.albedo[ofs].b * alpha;
- albedo_accum.a = p_material.albedo[ofs].a * alpha;
- emission_accum.r = p_material.emission[ofs].r * alpha;
- emission_accum.g = p_material.emission[ofs].g * alpha;
- emission_accum.b = p_material.emission[ofs].b * alpha;
- normal_accum = lnormal * alpha;
- } else {
- float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
- alpha *= accdiv;
- albedo_accum.r *= accdiv;
- albedo_accum.g *= accdiv;
- albedo_accum.b *= accdiv;
- albedo_accum.a *= accdiv;
- emission_accum.r *= accdiv;
- emission_accum.g *= accdiv;
- emission_accum.b *= accdiv;
- normal_accum *= accdiv;
- }
- //put this temporarily here, corrected in a later step
- bake_cells.write[p_idx].albedo[0] += albedo_accum.r;
- bake_cells.write[p_idx].albedo[1] += albedo_accum.g;
- bake_cells.write[p_idx].albedo[2] += albedo_accum.b;
- bake_cells.write[p_idx].emission[0] += emission_accum.r;
- bake_cells.write[p_idx].emission[1] += emission_accum.g;
- bake_cells.write[p_idx].emission[2] += emission_accum.b;
- bake_cells.write[p_idx].normal[0] += normal_accum.x;
- bake_cells.write[p_idx].normal[1] += normal_accum.y;
- bake_cells.write[p_idx].normal[2] += normal_accum.z;
- bake_cells.write[p_idx].alpha += alpha;
- } else {
- //go down
- int half = (1 << cell_subdiv) >> (p_level + 1);
- for (int i = 0; i < 8; i++) {
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
- int nx = p_x;
- int ny = p_y;
- int nz = p_z;
- if (i & 1) {
- aabb.position.x += aabb.size.x;
- nx += half;
- }
- if (i & 2) {
- aabb.position.y += aabb.size.y;
- ny += half;
- }
- if (i & 4) {
- aabb.position.z += aabb.size.z;
- nz += half;
- }
- //make sure to not plot beyond limits
- if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) {
- continue;
- }
- {
- AABB test_aabb = aabb;
- //test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
- Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
- if (!Geometry3D::triangle_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
- //if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
- //does not fit in child, go on
- continue;
- }
- }
- if (bake_cells[p_idx].children[i] == CHILD_EMPTY) {
- //sub cell must be created
- uint32_t child_idx = bake_cells.size();
- bake_cells.write[p_idx].children[i] = child_idx;
- bake_cells.resize(bake_cells.size() + 1);
- bake_cells.write[child_idx].level = p_level + 1;
- bake_cells.write[child_idx].x = nx / half;
- bake_cells.write[child_idx].y = ny / half;
- bake_cells.write[child_idx].z = nz / half;
- }
- _plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb);
- }
- }
- }
- Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
- Vector<Color> ret;
- if (p_image.is_null() || p_image->is_empty()) {
- ret.resize(bake_texture_size * bake_texture_size);
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- ret.write[i] = p_color_add;
- }
- return ret;
- }
- p_image = p_image->duplicate();
- if (p_image->is_compressed()) {
- p_image->decompress();
- }
- p_image->convert(Image::FORMAT_RGBA8);
- p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
- const uint8_t *r = p_image->get_data().ptr();
- ret.resize(bake_texture_size * bake_texture_size);
- for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
- Color c;
- c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
- c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
- c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
- c.a = r[i * 4 + 3] / 255.0;
- ret.write[i] = c;
- }
- return ret;
- }
- Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) {
- // This way of obtaining materials is inaccurate and also does not support some compressed formats very well.
- Ref<BaseMaterial3D> mat = p_material;
- Ref<Material> material = mat; //hack for now
- if (material_cache.has(material)) {
- return material_cache[material];
- }
- MaterialCache mc;
- if (mat.is_valid()) {
- Ref<Texture2D> albedo_tex = mat->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
- Ref<Image> img_albedo;
- if (albedo_tex.is_valid()) {
- img_albedo = albedo_tex->get_image();
- mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
- } else {
- mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
- }
- if (mat->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
- Ref<Texture2D> emission_tex = mat->get_texture(BaseMaterial3D::TEXTURE_EMISSION);
- Color emission_col = mat->get_emission();
- float emission_energy = mat->get_emission_energy_multiplier() * exposure_normalization;
- if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
- emission_energy *= mat->get_emission_intensity();
- }
- Ref<Image> img_emission;
- if (emission_tex.is_valid()) {
- img_emission = emission_tex->get_image();
- }
- if (mat->get_emission_operator() == BaseMaterial3D::EMISSION_OP_ADD) {
- mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
- } else {
- mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
- }
- } else {
- Ref<Image> empty;
- mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
- }
- } else {
- Ref<Image> empty;
- mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
- mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
- }
- material_cache[p_material] = mc;
- return mc;
- }
- void Voxelizer::plot_mesh(const Transform3D &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material) {
- ERR_FAIL_COND_MSG(!p_xform.is_finite(), "Invalid mesh bake transform.");
- for (int i = 0; i < p_mesh->get_surface_count(); i++) {
- if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
- continue; //only triangles
- }
- Ref<Material> src_material;
- if (p_override_material.is_valid()) {
- src_material = p_override_material;
- } else if (i < p_materials.size() && p_materials[i].is_valid()) {
- src_material = p_materials[i];
- } else {
- src_material = p_mesh->surface_get_material(i);
- }
- MaterialCache material = _get_material_cache(src_material);
- Array a = p_mesh->surface_get_arrays(i);
- Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
- const Vector3 *vr = vertices.ptr();
- Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
- const Vector2 *uvr = nullptr;
- Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
- const Vector3 *nr = nullptr;
- Vector<int> index = a[Mesh::ARRAY_INDEX];
- if (uv.size()) {
- uvr = uv.ptr();
- }
- if (normals.size()) {
- nr = normals.ptr();
- }
- if (index.size()) {
- int facecount = index.size() / 3;
- const int *ir = index.ptr();
- for (int j = 0; j < facecount; j++) {
- Vector3 vtxs[3];
- Vector2 uvs[3];
- Vector3 normal[3];
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
- }
- if (uvr) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[ir[j * 3 + k]];
- }
- }
- if (nr) {
- for (int k = 0; k < 3; k++) {
- normal[k] = nr[ir[j * 3 + k]];
- }
- }
- //test against original bounds
- if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) {
- continue;
- }
- //plot
- _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
- }
- } else {
- int facecount = vertices.size() / 3;
- for (int j = 0; j < facecount; j++) {
- Vector3 vtxs[3];
- Vector2 uvs[3];
- Vector3 normal[3];
- for (int k = 0; k < 3; k++) {
- vtxs[k] = p_xform.xform(vr[j * 3 + k]);
- }
- if (uvr) {
- for (int k = 0; k < 3; k++) {
- uvs[k] = uvr[j * 3 + k];
- }
- }
- if (nr) {
- for (int k = 0; k < 3; k++) {
- normal[k] = nr[j * 3 + k];
- }
- }
- //test against original bounds
- if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) {
- continue;
- }
- //plot face
- _plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
- }
- }
- }
- max_original_cells = bake_cells.size();
- }
- void Voxelizer::_sort() {
- // cells need to be sorted by level and coordinates
- // it is important that level has more priority (for compute), and that Z has the least,
- // given it may aid older implementations plot using GPU
- Vector<CellSort> sorted_cells;
- uint32_t cell_count = bake_cells.size();
- sorted_cells.resize(cell_count);
- {
- CellSort *sort_cellsp = sorted_cells.ptrw();
- const Cell *bake_cellsp = bake_cells.ptr();
- for (uint32_t i = 0; i < cell_count; i++) {
- sort_cellsp[i].x = bake_cellsp[i].x;
- sort_cellsp[i].y = bake_cellsp[i].y;
- sort_cellsp[i].z = bake_cellsp[i].z;
- sort_cellsp[i].level = bake_cellsp[i].level;
- sort_cellsp[i].index = i;
- }
- }
- sorted_cells.sort();
- //verify just in case, index 0 must be level 0
- ERR_FAIL_COND(sorted_cells[0].level != 0);
- Vector<Cell> new_bake_cells;
- new_bake_cells.resize(cell_count);
- Vector<uint32_t> reverse_map;
- {
- reverse_map.resize(cell_count);
- const CellSort *sort_cellsp = sorted_cells.ptr();
- uint32_t *reverse_mapp = reverse_map.ptrw();
- for (uint32_t i = 0; i < cell_count; i++) {
- reverse_mapp[sort_cellsp[i].index] = i;
- }
- }
- {
- const CellSort *sort_cellsp = sorted_cells.ptr();
- const Cell *bake_cellsp = bake_cells.ptr();
- const uint32_t *reverse_mapp = reverse_map.ptr();
- Cell *new_bake_cellsp = new_bake_cells.ptrw();
- for (uint32_t i = 0; i < cell_count; i++) {
- //copy to new cell
- new_bake_cellsp[i] = bake_cellsp[sort_cellsp[i].index];
- //remap children
- for (uint32_t j = 0; j < 8; j++) {
- if (new_bake_cellsp[i].children[j] != CHILD_EMPTY) {
- new_bake_cellsp[i].children[j] = reverse_mapp[new_bake_cellsp[i].children[j]];
- }
- }
- }
- }
- bake_cells = new_bake_cells;
- sorted = true;
- }
- void Voxelizer::_fixup_plot(int p_idx, int p_level) {
- if (p_level == cell_subdiv) {
- leaf_voxel_count++;
- float alpha = bake_cells[p_idx].alpha;
- bake_cells.write[p_idx].albedo[0] /= alpha;
- bake_cells.write[p_idx].albedo[1] /= alpha;
- bake_cells.write[p_idx].albedo[2] /= alpha;
- //transfer emission to light
- bake_cells.write[p_idx].emission[0] /= alpha;
- bake_cells.write[p_idx].emission[1] /= alpha;
- bake_cells.write[p_idx].emission[2] /= alpha;
- bake_cells.write[p_idx].normal[0] /= alpha;
- bake_cells.write[p_idx].normal[1] /= alpha;
- bake_cells.write[p_idx].normal[2] /= alpha;
- Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
- if (n.length() < 0.01) {
- //too much fight over normal, zero it
- bake_cells.write[p_idx].normal[0] = 0;
- bake_cells.write[p_idx].normal[1] = 0;
- bake_cells.write[p_idx].normal[2] = 0;
- } else {
- n.normalize();
- bake_cells.write[p_idx].normal[0] = n.x;
- bake_cells.write[p_idx].normal[1] = n.y;
- bake_cells.write[p_idx].normal[2] = n.z;
- }
- bake_cells.write[p_idx].alpha = 1.0;
- /*if (bake_light.size()) {
- for(int i=0;i<6;i++) {
- }
- }*/
- } else {
- //go down
- bake_cells.write[p_idx].emission[0] = 0;
- bake_cells.write[p_idx].emission[1] = 0;
- bake_cells.write[p_idx].emission[2] = 0;
- bake_cells.write[p_idx].normal[0] = 0;
- bake_cells.write[p_idx].normal[1] = 0;
- bake_cells.write[p_idx].normal[2] = 0;
- bake_cells.write[p_idx].albedo[0] = 0;
- bake_cells.write[p_idx].albedo[1] = 0;
- bake_cells.write[p_idx].albedo[2] = 0;
- float alpha_average = 0;
- for (int i = 0; i < 8; i++) {
- uint32_t child = bake_cells[p_idx].children[i];
- if (child == CHILD_EMPTY) {
- continue;
- }
- _fixup_plot(child, p_level + 1);
- alpha_average += bake_cells[child].alpha;
- }
- bake_cells.write[p_idx].alpha = alpha_average / 8.0;
- }
- }
- void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds, float p_exposure_normalization) {
- sorted = false;
- original_bounds = p_bounds;
- cell_subdiv = p_subdiv;
- exposure_normalization = p_exposure_normalization;
- bake_cells.resize(1);
- material_cache.clear();
- //find out the actual real bounds, power of 2, which gets the highest subdivision
- po2_bounds = p_bounds;
- int longest_axis = po2_bounds.get_longest_axis_index();
- axis_cell_size[longest_axis] = 1 << cell_subdiv;
- leaf_voxel_count = 0;
- for (int i = 0; i < 3; i++) {
- if (i == longest_axis) {
- continue;
- }
- axis_cell_size[i] = axis_cell_size[longest_axis];
- real_t axis_size = po2_bounds.size[longest_axis];
- //shrink until fit subdiv
- while (axis_size / 2.0 >= po2_bounds.size[i]) {
- axis_size /= 2.0;
- axis_cell_size[i] >>= 1;
- }
- po2_bounds.size[i] = po2_bounds.size[longest_axis];
- }
- Transform3D to_bounds;
- to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
- to_bounds.origin = po2_bounds.position;
- Transform3D to_grid;
- to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
- to_cell_space = to_grid * to_bounds.affine_inverse();
- cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
- }
- void Voxelizer::end_bake() {
- if (!sorted) {
- _sort();
- }
- _fixup_plot(0, 0);
- }
- //create the data for rendering server
- int Voxelizer::get_voxel_gi_octree_depth() const {
- return cell_subdiv;
- }
- Vector3i Voxelizer::get_voxel_gi_octree_size() const {
- return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]);
- }
- int Voxelizer::get_voxel_gi_cell_count() const {
- return bake_cells.size();
- }
- Vector<uint8_t> Voxelizer::get_voxel_gi_octree_cells() const {
- Vector<uint8_t> data;
- data.resize((8 * 4) * bake_cells.size()); //8 uint32t values
- {
- uint8_t *w = data.ptrw();
- uint32_t *children_cells = (uint32_t *)w;
- const Cell *cells = bake_cells.ptr();
- uint32_t cell_count = bake_cells.size();
- for (uint32_t i = 0; i < cell_count; i++) {
- for (uint32_t j = 0; j < 8; j++) {
- children_cells[i * 8 + j] = cells[i].children[j];
- }
- }
- }
- return data;
- }
- Vector<uint8_t> Voxelizer::get_voxel_gi_data_cells() const {
- Vector<uint8_t> data;
- data.resize((4 * 4) * bake_cells.size()); //8 uint32t values
- {
- uint8_t *w = data.ptrw();
- uint32_t *dataptr = (uint32_t *)w;
- const Cell *cells = bake_cells.ptr();
- uint32_t cell_count = bake_cells.size();
- for (uint32_t i = 0; i < cell_count; i++) {
- { //position
- uint32_t x = cells[i].x;
- uint32_t y = cells[i].y;
- uint32_t z = cells[i].z;
- uint32_t position = x;
- position |= y << 11;
- position |= z << 21;
- dataptr[i * 4 + 0] = position;
- }
- { //albedo + alpha
- uint32_t rgba = uint32_t(CLAMP(cells[i].alpha * 255.0, 0, 255)) << 24; //a
- rgba |= uint32_t(CLAMP(cells[i].albedo[2] * 255.0, 0, 255)) << 16; //b
- rgba |= uint32_t(CLAMP(cells[i].albedo[1] * 255.0, 0, 255)) << 8; //g
- rgba |= uint32_t(CLAMP(cells[i].albedo[0] * 255.0, 0, 255)); //r
- dataptr[i * 4 + 1] = rgba;
- }
- { //emission, as rgbe9995
- Color emission = Color(cells[i].emission[0], cells[i].emission[1], cells[i].emission[2]);
- dataptr[i * 4 + 2] = emission.to_rgbe9995();
- }
- { //normal
- Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
- n.normalize();
- uint32_t normal = uint32_t(uint8_t(int8_t(CLAMP(n.x * 127.0, -128, 127))));
- normal |= uint32_t(uint8_t(int8_t(CLAMP(n.y * 127.0, -128, 127)))) << 8;
- normal |= uint32_t(uint8_t(int8_t(CLAMP(n.z * 127.0, -128, 127)))) << 16;
- dataptr[i * 4 + 3] = normal;
- }
- }
- }
- return data;
- }
- Vector<int> Voxelizer::get_voxel_gi_level_cell_count() const {
- uint32_t cell_count = bake_cells.size();
- const Cell *cells = bake_cells.ptr();
- Vector<int> level_count;
- level_count.resize(cell_subdiv + 1); //remember, always x+1 levels for x subdivisions
- {
- int *w = level_count.ptrw();
- for (int i = 0; i < cell_subdiv + 1; i++) {
- w[i] = 0;
- }
- for (uint32_t i = 0; i < cell_count; i++) {
- w[cells[i].level]++;
- }
- }
- return level_count;
- }
- // euclidean distance computation based on:
- // https://prideout.net/blog/distance_fields/
- #define square(m_s) ((m_s) * (m_s))
- #define INF 1e20
- /* dt of 1d function using squared distance */
- static void edt(float *f, int stride, int n) {
- float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
- int *v = reinterpret_cast<int *>(&(d[n]));
- float *z = reinterpret_cast<float *>(&v[n]);
- int k = 0;
- v[0] = 0;
- z[0] = -INF;
- z[1] = +INF;
- for (int q = 1; q <= n - 1; q++) {
- float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
- while (s <= z[k]) {
- k--;
- s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
- }
- k++;
- v[k] = q;
- z[k] = s;
- z[k + 1] = +INF;
- }
- k = 0;
- for (int q = 0; q <= n - 1; q++) {
- while (z[k + 1] < q) {
- k++;
- }
- d[q] = square(q - v[k]) + f[v[k] * stride];
- }
- for (int i = 0; i < n; i++) {
- f[i * stride] = d[i];
- }
- }
- #undef square
- Vector<uint8_t> Voxelizer::get_sdf_3d_image() const {
- Vector3i octree_size = get_voxel_gi_octree_size();
- uint32_t float_count = octree_size.x * octree_size.y * octree_size.z;
- float *work_memory = memnew_arr(float, float_count);
- for (uint32_t i = 0; i < float_count; i++) {
- work_memory[i] = INF;
- }
- uint32_t y_mult = octree_size.x;
- uint32_t z_mult = y_mult * octree_size.y;
- //plot solid cells
- {
- const Cell *cells = bake_cells.ptr();
- uint32_t cell_count = bake_cells.size();
- for (uint32_t i = 0; i < cell_count; i++) {
- if (cells[i].level < (cell_subdiv - 1)) {
- continue; //do not care about this level
- }
- work_memory[cells[i].x + cells[i].y * y_mult + cells[i].z * z_mult] = 0;
- }
- }
- //process in each direction
- //xy->z
- for (int i = 0; i < octree_size.x; i++) {
- for (int j = 0; j < octree_size.y; j++) {
- edt(&work_memory[i + j * y_mult], z_mult, octree_size.z);
- }
- }
- //xz->y
- for (int i = 0; i < octree_size.x; i++) {
- for (int j = 0; j < octree_size.z; j++) {
- edt(&work_memory[i + j * z_mult], y_mult, octree_size.y);
- }
- }
- //yz->x
- for (int i = 0; i < octree_size.y; i++) {
- for (int j = 0; j < octree_size.z; j++) {
- edt(&work_memory[i * y_mult + j * z_mult], 1, octree_size.x);
- }
- }
- Vector<uint8_t> image3d;
- image3d.resize(float_count);
- {
- uint8_t *w = image3d.ptrw();
- for (uint32_t i = 0; i < float_count; i++) {
- uint32_t d = uint32_t(Math::sqrt(work_memory[i]));
- if (d == 0) {
- w[i] = 0;
- } else {
- w[i] = MIN(d, 254u) + 1;
- }
- }
- }
- memdelete_arr(work_memory);
- return image3d;
- }
- #undef INF
- void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) {
- if (p_level == cell_subdiv - 1) {
- Vector3 center = p_aabb.get_center();
- Transform3D xform;
- xform.origin = center;
- xform.basis.scale(p_aabb.size * 0.5);
- p_multimesh->set_instance_transform(idx, xform);
- Color col;
- col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
- //Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
- p_multimesh->set_instance_color(idx, col);
- idx++;
- } else {
- for (int i = 0; i < 8; i++) {
- uint32_t child = bake_cells[p_idx].children[i];
- if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) {
- continue;
- }
- AABB aabb = p_aabb;
- aabb.size *= 0.5;
- if (i & 1) {
- aabb.position.x += aabb.size.x;
- }
- if (i & 2) {
- aabb.position.y += aabb.size.y;
- }
- if (i & 4) {
- aabb.position.z += aabb.size.z;
- }
- _debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx);
- }
- }
- }
- Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
- Ref<MultiMesh> mm;
- mm.instantiate();
- mm->set_transform_format(MultiMesh::TRANSFORM_3D);
- mm->set_use_colors(true);
- mm->set_instance_count(leaf_voxel_count);
- Ref<ArrayMesh> mesh;
- mesh.instantiate();
- {
- Array arr;
- arr.resize(Mesh::ARRAY_MAX);
- Vector<Vector3> vertices;
- Vector<Color> colors;
- #define ADD_VTX(m_idx) \
- vertices.push_back(face_points[m_idx]); \
- colors.push_back(Color(1, 1, 1, 1));
- for (int i = 0; i < 6; i++) {
- Vector3 face_points[4];
- for (int j = 0; j < 4; j++) {
- real_t v[3];
- v[0] = 1.0;
- v[1] = 1 - 2 * ((j >> 1) & 1);
- v[2] = v[1] * (1 - 2 * (j & 1));
- for (int k = 0; k < 3; k++) {
- if (i < 3) {
- face_points[j][(i + k) % 3] = v[k];
- } else {
- face_points[3 - j][(i + k) % 3] = -v[k];
- }
- }
- }
- //tri 1
- ADD_VTX(0);
- ADD_VTX(1);
- ADD_VTX(2);
- //tri 2
- ADD_VTX(2);
- ADD_VTX(3);
- ADD_VTX(0);
- }
- arr[Mesh::ARRAY_VERTEX] = vertices;
- arr[Mesh::ARRAY_COLOR] = colors;
- mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
- }
- {
- Ref<StandardMaterial3D> fsm;
- fsm.instantiate();
- fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
- fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
- fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
- fsm->set_flag(StandardMaterial3D::FLAG_DISABLE_FOG, true);
- fsm->set_albedo(Color(1, 1, 1, 1));
- mesh->surface_set_material(0, fsm);
- }
- mm->set_mesh(mesh);
- int idx = 0;
- _debug_mesh(0, 0, po2_bounds, mm, idx);
- return mm;
- }
- Transform3D Voxelizer::get_to_cell_space_xform() const {
- return to_cell_space;
- }
- Voxelizer::Voxelizer() {
- }
|