1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000 |
- // Functions related to lighting
- float D_GGX(float cos_theta_m, float alpha) {
- float a = cos_theta_m * alpha;
- float k = alpha / (1.0 - cos_theta_m * cos_theta_m + a * a);
- return k * k * (1.0 / M_PI);
- }
- // From Earl Hammon, Jr. "PBR Diffuse Lighting for GGX+Smith Microsurfaces" https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX
- float V_GGX(float NdotL, float NdotV, float alpha) {
- return 0.5 / mix(2.0 * NdotL * NdotV, NdotL + NdotV, alpha);
- }
- float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
- float alpha2 = alpha_x * alpha_y;
- highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * cos_theta_m);
- highp float v2 = dot(v, v);
- float w2 = alpha2 / v2;
- float D = alpha2 * w2 * w2 * (1.0 / M_PI);
- return D;
- }
- float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
- float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
- float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
- return 0.5 / (Lambda_V + Lambda_L);
- }
- float SchlickFresnel(float u) {
- float m = 1.0 - u;
- float m2 = m * m;
- return m2 * m2 * m; // pow(m,5)
- }
- vec3 F0(float metallic, float specular, vec3 albedo) {
- float dielectric = 0.16 * specular * specular;
- // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
- // see https://google.github.io/filament/Filament.md.html
- return mix(vec3(dielectric), albedo, vec3(metallic));
- }
- void light_compute(vec3 N, vec3 L, vec3 V, float A, vec3 light_color, bool is_directional, float attenuation, vec3 f0, uint orms, float specular_amount, vec3 albedo, inout float alpha,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_boost,
- float transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 B, vec3 T, float anisotropy,
- #endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- vec4 orms_unpacked = unpackUnorm4x8(orms);
- float roughness = orms_unpacked.y;
- float metallic = orms_unpacked.z;
- #if defined(LIGHT_CODE_USED)
- // light is written by the light shader
- mat4 inv_view_matrix = scene_data_block.data.inv_view_matrix;
- #ifdef USING_MOBILE_RENDERER
- mat4 read_model_matrix = instances.data[draw_call.instance_index].transform;
- #else
- mat4 read_model_matrix = instances.data[instance_index_interp].transform;
- #endif
- mat4 read_view_matrix = scene_data_block.data.view_matrix;
- #undef projection_matrix
- #define projection_matrix scene_data_block.data.projection_matrix
- #undef inv_projection_matrix
- #define inv_projection_matrix scene_data_block.data.inv_projection_matrix
- vec2 read_viewport_size = scene_data_block.data.viewport_size;
- vec3 normal = N;
- vec3 light = L;
- vec3 view = V;
- #CODE : LIGHT
- #else
- float NdotL = min(A + dot(N, L), 1.0);
- float cNdotL = max(NdotL, 0.0); // clamped NdotL
- float NdotV = dot(N, V);
- float cNdotV = max(NdotV, 1e-4);
- #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- vec3 H = normalize(V + L);
- #endif
- #if defined(SPECULAR_SCHLICK_GGX)
- float cNdotH = clamp(A + dot(N, H), 0.0, 1.0);
- #endif
- #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED)
- float cLdotH = clamp(A + dot(L, H), 0.0, 1.0);
- #endif
- if (metallic < 1.0) {
- float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
- #if defined(DIFFUSE_LAMBERT_WRAP)
- // Energy conserving lambert wrap shader.
- // https://web.archive.org/web/20210228210901/http://blog.stevemcauley.com/2011/12/03/energy-conserving-wrapped-diffuse/
- diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))) * (1.0 / M_PI);
- #elif defined(DIFFUSE_TOON)
- diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL) * (1.0 / M_PI);
- #elif defined(DIFFUSE_BURLEY)
- {
- float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
- float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
- float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
- diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
- /*
- float energyBias = mix(roughness, 0.0, 0.5);
- float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
- float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
- float f0 = 1.0;
- float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
- float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
- diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
- */
- }
- #else
- // lambert
- diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
- #endif
- diffuse_light += light_color * diffuse_brdf_NL * attenuation;
- #if defined(LIGHT_BACKLIGHT_USED)
- diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation;
- #endif
- #if defined(LIGHT_RIM_USED)
- // Epsilon min to prevent pow(0, 0) singularity which results in undefined behavior.
- float rim_light = pow(max(1e-4, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
- diffuse_light += rim_light * rim * mix(vec3(1.0), albedo, rim_tint) * light_color;
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- {
- #ifdef SSS_MODE_SKIN
- float scale = 8.25 / transmittance_depth;
- float d = scale * abs(transmittance_z);
- float dd = -d * d;
- vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
- vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
- vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
- vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
- vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
- vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
- diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
- #else
- float scale = 8.25 / transmittance_depth;
- float d = scale * abs(transmittance_z);
- float dd = -d * d;
- diffuse_light += exp(dd) * transmittance_color.rgb * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI);
- #endif
- }
- #else
- #endif //LIGHT_TRANSMITTANCE_USED
- }
- if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely
- // D
- #if defined(SPECULAR_TOON)
- vec3 R = normalize(-reflect(L, N));
- float RdotV = dot(R, V);
- float mid = 1.0 - roughness;
- mid *= mid;
- float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
- diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection
- #elif defined(SPECULAR_DISABLED)
- // none..
- #elif defined(SPECULAR_SCHLICK_GGX)
- // shlick+ggx as default
- float alpha_ggx = roughness * roughness;
- #if defined(LIGHT_ANISOTROPY_USED)
- float aspect = sqrt(1.0 - anisotropy * 0.9);
- float ax = alpha_ggx / aspect;
- float ay = alpha_ggx * aspect;
- float XdotH = dot(T, H);
- float YdotH = dot(B, H);
- float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH);
- float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
- #else // LIGHT_ANISOTROPY_USED
- float D = D_GGX(cNdotH, alpha_ggx);
- float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
- #endif // LIGHT_ANISOTROPY_USED
- // F
- float cLdotH5 = SchlickFresnel(cLdotH);
- // Calculate Fresnel using specular occlusion term from Filament:
- // https://google.github.io/filament/Filament.html#lighting/occlusion/specularocclusion
- float f90 = clamp(dot(f0, vec3(50.0 * 0.33)), metallic, 1.0);
- vec3 F = f0 + (f90 - f0) * cLdotH5;
- vec3 specular_brdf_NL = cNdotL * D * F * G;
- specular_light += specular_brdf_NL * light_color * attenuation * specular_amount;
- #endif
- #if defined(LIGHT_CLEARCOAT_USED)
- // Clearcoat ignores normal_map, use vertex normal instead
- float ccNdotL = max(min(A + dot(vertex_normal, L), 1.0), 0.0);
- float ccNdotH = clamp(A + dot(vertex_normal, H), 0.0, 1.0);
- float ccNdotV = max(dot(vertex_normal, V), 1e-4);
- #if !defined(SPECULAR_SCHLICK_GGX)
- float cLdotH5 = SchlickFresnel(cLdotH);
- #endif
- float Dr = D_GGX(ccNdotH, mix(0.001, 0.1, clearcoat_roughness));
- float Gr = 0.25 / (cLdotH * cLdotH);
- float Fr = mix(.04, 1.0, cLdotH5);
- float clearcoat_specular_brdf_NL = clearcoat * Gr * Fr * Dr * cNdotL;
- specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount;
- // TODO: Clearcoat adds light to the scene right now (it is non-energy conserving), both diffuse and specular need to be scaled by (1.0 - FR)
- // but to do so we need to rearrange this entire function
- #endif // LIGHT_CLEARCOAT_USED
- }
- #ifdef USE_SHADOW_TO_OPACITY
- alpha = min(alpha, clamp(1.0 - attenuation, 0.0, 1.0));
- #endif
- #endif //defined(LIGHT_CODE_USED)
- }
- #ifndef SHADOWS_DISABLED
- // Interleaved Gradient Noise
- // https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
- float quick_hash(vec2 pos) {
- const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
- return fract(magic.z * fract(dot(pos, magic.xy)));
- }
- float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) {
- vec2 pos = coord.xy;
- float depth = coord.z;
- //if only one sample is taken, take it from the center
- if (sc_directional_soft_shadow_samples == 0) {
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- for (uint i = 0; i < sc_directional_soft_shadow_samples; i++) {
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data_block.data.directional_soft_shadow_kernel[i].xy), depth, 1.0));
- }
- return avg * (1.0 / float(sc_directional_soft_shadow_samples));
- }
- float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec3 coord) {
- vec2 pos = coord.xy;
- float depth = coord.z;
- //if only one sample is taken, take it from the center
- if (sc_soft_shadow_samples == 0) {
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- for (uint i = 0; i < sc_soft_shadow_samples; i++) {
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data_block.data.soft_shadow_kernel[i].xy), depth, 1.0));
- }
- return avg * (1.0 / float(sc_soft_shadow_samples));
- }
- float sample_omni_pcf_shadow(texture2D shadow, float blur_scale, vec2 coord, vec4 uv_rect, vec2 flip_offset, float depth) {
- //if only one sample is taken, take it from the center
- if (sc_soft_shadow_samples == 0) {
- vec2 pos = coord * 0.5 + 0.5;
- pos = uv_rect.xy + pos * uv_rect.zw;
- return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0));
- }
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float avg = 0.0;
- vec2 offset_scale = blur_scale * 2.0 * scene_data_block.data.shadow_atlas_pixel_size / uv_rect.zw;
- for (uint i = 0; i < sc_soft_shadow_samples; i++) {
- vec2 offset = offset_scale * (disk_rotation * scene_data_block.data.soft_shadow_kernel[i].xy);
- vec2 sample_coord = coord + offset;
- float sample_coord_length_sqaured = dot(sample_coord, sample_coord);
- bool do_flip = sample_coord_length_sqaured > 1.0;
- if (do_flip) {
- float len = sqrt(sample_coord_length_sqaured);
- sample_coord = sample_coord * (2.0 / len - 1.0);
- }
- sample_coord = sample_coord * 0.5 + 0.5;
- sample_coord = uv_rect.xy + sample_coord * uv_rect.zw;
- if (do_flip) {
- sample_coord += flip_offset;
- }
- avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(sample_coord, depth, 1.0));
- }
- return avg * (1.0 / float(sc_soft_shadow_samples));
- }
- float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) {
- //find blocker
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- for (uint i = 0; i < sc_directional_penumbra_shadow_samples; i++) {
- vec2 suv = pssm_coord.xy + (disk_rotation * scene_data_block.data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
- float d = textureLod(sampler2D(shadow, SAMPLER_LINEAR_CLAMP), suv, 0.0).r;
- if (d < pssm_coord.z) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (pssm_coord.z - blocker_average) / blocker_average;
- tex_scale *= penumbra;
- float s = 0.0;
- for (uint i = 0; i < sc_directional_penumbra_shadow_samples; i++) {
- vec2 suv = pssm_coord.xy + (disk_rotation * scene_data_block.data.directional_penumbra_shadow_kernel[i].xy) * tex_scale;
- s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0));
- }
- return s / float(sc_directional_penumbra_shadow_samples);
- } else {
- //no blockers found, so no shadow
- return 1.0;
- }
- }
- #endif // SHADOWS_DISABLED
- float get_omni_attenuation(float distance, float inv_range, float decay) {
- float nd = distance * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(distance, 0.0001), -decay);
- }
- float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) {
- #ifndef SHADOWS_DISABLED
- if (omni_lights.data[idx].shadow_opacity > 0.001) {
- // there is a shadowmap
- vec2 texel_size = scene_data_block.data.shadow_atlas_pixel_size;
- vec4 base_uv_rect = omni_lights.data[idx].atlas_rect;
- base_uv_rect.xy += texel_size;
- base_uv_rect.zw -= texel_size * 2.0;
- // Omni lights use direction.xy to store to store the offset between the two paraboloid regions
- vec2 flip_offset = omni_lights.data[idx].direction.xy;
- vec3 local_vert = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- float shadow_len = length(local_vert); //need to remember shadow len from here
- vec3 shadow_dir = normalize(local_vert);
- vec3 local_normal = normalize(mat3(omni_lights.data[idx].shadow_matrix) * normal);
- vec3 normal_bias = local_normal * omni_lights.data[idx].shadow_normal_bias * (1.0 - abs(dot(local_normal, shadow_dir)));
- float shadow;
- if (sc_use_light_soft_shadows && omni_lights.data[idx].soft_shadow_size > 0.0) {
- //soft shadow
- //find blocker
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- vec3 basis_normal = shadow_dir;
- vec3 v0 = abs(basis_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, basis_normal));
- vec3 bitangent = normalize(cross(tangent, basis_normal));
- float z_norm = shadow_len * omni_lights.data[idx].inv_radius;
- tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
- bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale;
- for (uint i = 0; i < sc_penumbra_shadow_samples; i++) {
- vec2 disk = disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy;
- vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y;
- pos = normalize(pos);
- vec4 uv_rect = base_uv_rect;
- if (pos.z >= 0.0) {
- uv_rect.xy += flip_offset;
- }
- pos.z = 1.0 + abs(pos.z);
- pos.xy /= pos.z;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- float d = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), pos.xy, 0.0).r;
- if (d < z_norm) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (z_norm - blocker_average) / blocker_average;
- tangent *= penumbra;
- bitangent *= penumbra;
- z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias;
- shadow = 0.0;
- for (uint i = 0; i < sc_penumbra_shadow_samples; i++) {
- vec2 disk = disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy;
- vec3 pos = local_vert + tangent * disk.x + bitangent * disk.y;
- pos = normalize(pos);
- pos = normalize(pos + normal_bias);
- vec4 uv_rect = base_uv_rect;
- if (pos.z >= 0.0) {
- uv_rect.xy += flip_offset;
- }
- pos.z = 1.0 + abs(pos.z);
- pos.xy /= pos.z;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0));
- }
- shadow /= float(sc_penumbra_shadow_samples);
- shadow = mix(1.0, shadow, omni_lights.data[idx].shadow_opacity);
- } else {
- //no blockers found, so no shadow
- shadow = 1.0;
- }
- } else {
- vec4 uv_rect = base_uv_rect;
- vec3 shadow_sample = normalize(shadow_dir + normal_bias);
- if (shadow_sample.z >= 0.0) {
- uv_rect.xy += flip_offset;
- flip_offset *= -1.0;
- }
- shadow_sample.z = 1.0 + abs(shadow_sample.z);
- vec2 pos = shadow_sample.xy / shadow_sample.z;
- float depth = shadow_len - omni_lights.data[idx].shadow_bias;
- depth *= omni_lights.data[idx].inv_radius;
- shadow = mix(1.0, sample_omni_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale / shadow_sample.z, pos, uv_rect, flip_offset, depth), omni_lights.data[idx].shadow_opacity);
- }
- return shadow;
- }
- #endif
- return 1.0;
- }
- void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
- #endif
- inout vec3 diffuse_light, inout vec3 specular_light) {
- vec3 light_rel_vec = omni_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation);
- float light_attenuation = omni_attenuation;
- vec3 color = omni_lights.data[idx].color;
- float size_A = 0.0;
- if (sc_use_light_soft_shadows && omni_lights.data[idx].size > 0.0) {
- float t = omni_lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth; //no transmittance by default
- transmittance_color.a *= light_attenuation;
- {
- vec4 clamp_rect = omni_lights.data[idx].atlas_rect;
- //redo shadowmapping, but shrink the model a bit to avoid artifacts
- vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0));
- float shadow_len = length(splane.xyz);
- splane.xyz = normalize(splane.xyz);
- if (splane.z >= 0.0) {
- splane.z += 1.0;
- clamp_rect.y += clamp_rect.w;
- } else {
- splane.z = 1.0 - splane.z;
- }
- splane.xy /= splane.z;
- splane.xy = splane.xy * 0.5 + 0.5;
- splane.z = shadow_len * omni_lights.data[idx].inv_radius;
- splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
- // splane.xy = clamp(splane.xy,clamp_rect.xy + scene_data_block.data.shadow_atlas_pixel_size,clamp_rect.xy + clamp_rect.zw - scene_data_block.data.shadow_atlas_pixel_size );
- splane.w = 1.0; //needed? i think it should be 1 already
- float shadow_z = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), splane.xy, 0.0).r;
- transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius;
- }
- #endif
- if (sc_use_light_projector && omni_lights.data[idx].projector_rect != vec4(0.0)) {
- vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz;
- local_v = normalize(local_v);
- vec4 atlas_rect = omni_lights.data[idx].projector_rect;
- if (local_v.z >= 0.0) {
- atlas_rect.y += atlas_rect.w;
- }
- local_v.z = 1.0 + abs(local_v.z);
- local_v.xy /= local_v.z;
- local_v.xy = local_v.xy * 0.5 + 0.5;
- vec2 proj_uv = local_v.xy * atlas_rect.zw;
- if (sc_projector_use_mipmaps) {
- vec2 proj_uv_ddx;
- vec2 proj_uv_ddy;
- {
- vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz;
- local_v_ddx = normalize(local_v_ddx);
- if (local_v_ddx.z >= 0.0) {
- local_v_ddx.z += 1.0;
- } else {
- local_v_ddx.z = 1.0 - local_v_ddx.z;
- }
- local_v_ddx.xy /= local_v_ddx.z;
- local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5;
- proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv;
- vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz;
- local_v_ddy = normalize(local_v_ddy);
- if (local_v_ddy.z >= 0.0) {
- local_v_ddy.z += 1.0;
- } else {
- local_v_ddy.z = 1.0 - local_v_ddy.z;
- }
- local_v_ddy.xy /= local_v_ddy.z;
- local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5;
- proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv;
- }
- vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy);
- color *= proj.rgb * proj.a;
- } else {
- vec4 proj = textureLod(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + atlas_rect.xy, 0.0);
- color *= proj.rgb * proj.a;
- }
- }
- light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount, albedo, alpha,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim * omni_attenuation, rim_tint,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_roughness, vertex_normal,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- diffuse_light,
- specular_light);
- }
- float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) {
- #ifndef SHADOWS_DISABLED
- if (spot_lights.data[idx].shadow_opacity > 0.001) {
- vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- vec3 spot_dir = spot_lights.data[idx].direction;
- vec3 shadow_dir = light_rel_vec / light_length;
- vec3 normal_bias = normal * light_length * spot_lights.data[idx].shadow_normal_bias * (1.0 - abs(dot(normal, shadow_dir)));
- //there is a shadowmap
- vec4 v = vec4(vertex + normal_bias, 1.0);
- vec4 splane = (spot_lights.data[idx].shadow_matrix * v);
- splane.z -= spot_lights.data[idx].shadow_bias / (light_length * spot_lights.data[idx].inv_radius);
- splane /= splane.w;
- float shadow;
- if (sc_use_light_soft_shadows && spot_lights.data[idx].soft_shadow_size > 0.0) {
- //soft shadow
- //find blocker
- float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius;
- vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
- float blocker_count = 0.0;
- float blocker_average = 0.0;
- mat2 disk_rotation;
- {
- float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI;
- float sr = sin(r);
- float cr = cos(r);
- disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr));
- }
- float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale;
- vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw;
- for (uint i = 0; i < sc_penumbra_shadow_samples; i++) {
- vec2 suv = shadow_uv + (disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
- float d = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), suv, 0.0).r;
- if (d < splane.z) {
- blocker_average += d;
- blocker_count += 1.0;
- }
- }
- if (blocker_count > 0.0) {
- //blockers found, do soft shadow
- blocker_average /= blocker_count;
- float penumbra = (z_norm - blocker_average) / blocker_average;
- uv_size *= penumbra;
- shadow = 0.0;
- for (uint i = 0; i < sc_penumbra_shadow_samples; i++) {
- vec2 suv = shadow_uv + (disk_rotation * scene_data_block.data.penumbra_shadow_kernel[i].xy) * uv_size;
- suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max);
- shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, splane.z, 1.0));
- }
- shadow /= float(sc_penumbra_shadow_samples);
- shadow = mix(1.0, shadow, spot_lights.data[idx].shadow_opacity);
- } else {
- //no blockers found, so no shadow
- shadow = 1.0;
- }
- } else {
- //hard shadow
- vec3 shadow_uv = vec3(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z);
- shadow = mix(1.0, sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data_block.data.shadow_atlas_pixel_size, shadow_uv), spot_lights.data[idx].shadow_opacity);
- }
- return shadow;
- }
- #endif // SHADOWS_DISABLED
- return 1.0;
- }
- vec2 normal_to_panorama(vec3 n) {
- n = normalize(n);
- vec2 panorama_coords = vec2(atan(n.x, n.z), acos(-n.y));
- if (panorama_coords.x < 0.0) {
- panorama_coords.x += M_PI * 2.0;
- }
- panorama_coords /= vec2(M_PI * 2.0, M_PI);
- return panorama_coords;
- }
- void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, vec3 albedo, inout float alpha,
- #ifdef LIGHT_BACKLIGHT_USED
- vec3 backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- vec4 transmittance_color,
- float transmittance_depth,
- float transmittance_boost,
- #endif
- #ifdef LIGHT_RIM_USED
- float rim, float rim_tint,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- float clearcoat, float clearcoat_roughness, vec3 vertex_normal,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- vec3 binormal, vec3 tangent, float anisotropy,
- #endif
- inout vec3 diffuse_light,
- inout vec3 specular_light) {
- vec3 light_rel_vec = spot_lights.data[idx].position - vertex;
- float light_length = length(light_rel_vec);
- float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation);
- vec3 spot_dir = spot_lights.data[idx].direction;
- // This conversion to a highp float is crucial to prevent light leaking
- // due to precision errors in the following calculations (cone angle is mediump).
- highp float cone_angle = spot_lights.data[idx].cone_angle;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), cone_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cone_angle));
- spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation);
- float light_attenuation = spot_attenuation;
- vec3 color = spot_lights.data[idx].color;
- float specular_amount = spot_lights.data[idx].specular_amount;
- float size_A = 0.0;
- if (sc_use_light_soft_shadows && spot_lights.data[idx].size > 0.0) {
- float t = spot_lights.data[idx].size / max(0.001, light_length);
- size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t));
- }
- #ifdef LIGHT_TRANSMITTANCE_USED
- float transmittance_z = transmittance_depth;
- transmittance_color.a *= light_attenuation;
- {
- vec4 splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0));
- splane /= splane.w;
- splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy;
- float shadow_z = textureLod(sampler2D(shadow_atlas, SAMPLER_LINEAR_CLAMP), splane.xy, 0.0).r;
- shadow_z = shadow_z * 2.0 - 1.0;
- float z_far = 1.0 / spot_lights.data[idx].inv_radius;
- float z_near = 0.01;
- shadow_z = 2.0 * z_near * z_far / (z_far + z_near - shadow_z * (z_far - z_near));
- //distance to light plane
- float z = dot(spot_dir, -light_rel_vec);
- transmittance_z = z - shadow_z;
- }
- #endif //LIGHT_TRANSMITTANCE_USED
- if (sc_use_light_projector && spot_lights.data[idx].projector_rect != vec4(0.0)) {
- vec4 splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex, 1.0));
- splane /= splane.w;
- vec2 proj_uv = splane.xy * spot_lights.data[idx].projector_rect.zw;
- if (sc_projector_use_mipmaps) {
- //ensure we have proper mipmaps
- vec4 splane_ddx = (spot_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0));
- splane_ddx /= splane_ddx.w;
- vec2 proj_uv_ddx = splane_ddx.xy * spot_lights.data[idx].projector_rect.zw - proj_uv;
- vec4 splane_ddy = (spot_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0));
- splane_ddy /= splane_ddy.w;
- vec2 proj_uv_ddy = splane_ddy.xy * spot_lights.data[idx].projector_rect.zw - proj_uv;
- vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + spot_lights.data[idx].projector_rect.xy, proj_uv_ddx, proj_uv_ddy);
- color *= proj.rgb * proj.a;
- } else {
- vec4 proj = textureLod(sampler2D(decal_atlas_srgb, light_projector_sampler), proj_uv + spot_lights.data[idx].projector_rect.xy, 0.0);
- color *= proj.rgb * proj.a;
- }
- }
- light_attenuation *= shadow;
- light_compute(normal, normalize(light_rel_vec), eye_vec, size_A, color, false, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount, albedo, alpha,
- #ifdef LIGHT_BACKLIGHT_USED
- backlight,
- #endif
- #ifdef LIGHT_TRANSMITTANCE_USED
- transmittance_color,
- transmittance_depth,
- transmittance_boost,
- transmittance_z,
- #endif
- #ifdef LIGHT_RIM_USED
- rim * spot_attenuation, rim_tint,
- #endif
- #ifdef LIGHT_CLEARCOAT_USED
- clearcoat, clearcoat_roughness, vertex_normal,
- #endif
- #ifdef LIGHT_ANISOTROPY_USED
- binormal, tangent, anisotropy,
- #endif
- diffuse_light, specular_light);
- }
- void reflection_process(uint ref_index, vec3 vertex, vec3 ref_vec, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) {
- vec3 box_extents = reflections.data[ref_index].box_extents;
- vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz;
- if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
- return;
- }
- vec3 inner_pos = abs(local_pos / box_extents);
- float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
- //make blend more rounded
- blend = mix(length(inner_pos), blend, blend);
- blend *= blend;
- blend = max(0.0, 1.0 - blend);
- if (reflections.data[ref_index].intensity > 0.0) { // compute reflection
- vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz;
- if (reflections.data[ref_index].box_project) { //box project
- vec3 nrdir = normalize(local_ref_vec);
- vec3 rbmax = (box_extents - local_pos) / nrdir;
- vec3 rbmin = (-box_extents - local_pos) / nrdir;
- vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0)));
- float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
- vec3 posonbox = local_pos + nrdir * fa;
- local_ref_vec = posonbox - reflections.data[ref_index].box_offset;
- }
- vec4 reflection;
- reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb * sc_luminance_multiplier;
- reflection.rgb *= reflections.data[ref_index].exposure_normalization;
- if (reflections.data[ref_index].exterior) {
- reflection.rgb = mix(specular_light, reflection.rgb, blend);
- }
- reflection.rgb *= reflections.data[ref_index].intensity; //intensity
- reflection.a = blend;
- reflection.rgb *= reflection.a;
- reflection_accum += reflection;
- }
- switch (reflections.data[ref_index].ambient_mode) {
- case REFLECTION_AMBIENT_DISABLED: {
- //do nothing
- } break;
- case REFLECTION_AMBIENT_ENVIRONMENT: {
- //do nothing
- vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz;
- vec4 ambient_out;
- ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb;
- ambient_out.rgb *= reflections.data[ref_index].exposure_normalization;
- ambient_out.a = blend;
- if (reflections.data[ref_index].exterior) {
- ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } break;
- case REFLECTION_AMBIENT_COLOR: {
- vec4 ambient_out;
- ambient_out.a = blend;
- ambient_out.rgb = reflections.data[ref_index].ambient;
- if (reflections.data[ref_index].exterior) {
- ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend);
- }
- ambient_out.rgb *= ambient_out.a;
- ambient_accum += ambient_out;
- } break;
- }
- }
- float blur_shadow(float shadow) {
- return shadow;
- #if 0
- //disabling for now, will investigate later
- float interp_shadow = shadow;
- if (gl_HelperInvocation) {
- interp_shadow = -4.0; // technically anything below -4 will do but just to make sure
- }
- uvec2 fc2 = uvec2(gl_FragCoord.xy);
- interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5);
- interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5);
- if (interp_shadow >= 0.0) {
- shadow = interp_shadow;
- }
- return shadow;
- #endif
- }
|