123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- /**************************************************************************/
- /* quaternion.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef QUATERNION_H
- #define QUATERNION_H
- #include "core/math/math_funcs.h"
- #include "core/math/vector3.h"
- class String;
- struct _NO_DISCARD_ Quaternion {
- union {
- struct {
- real_t x;
- real_t y;
- real_t z;
- real_t w;
- };
- real_t components[4] = { 0, 0, 0, 1.0 };
- };
- _FORCE_INLINE_ real_t &operator[](int idx) {
- return components[idx];
- }
- _FORCE_INLINE_ const real_t &operator[](int idx) const {
- return components[idx];
- }
- _FORCE_INLINE_ real_t length_squared() const;
- bool is_equal_approx(const Quaternion &p_quaternion) const;
- bool is_finite() const;
- real_t length() const;
- void normalize();
- Quaternion normalized() const;
- bool is_normalized() const;
- Quaternion inverse() const;
- Quaternion log() const;
- Quaternion exp() const;
- _FORCE_INLINE_ real_t dot(const Quaternion &p_q) const;
- real_t angle_to(const Quaternion &p_to) const;
- Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const;
- static Quaternion from_euler(const Vector3 &p_euler);
- Quaternion slerp(const Quaternion &p_to, const real_t &p_weight) const;
- Quaternion slerpni(const Quaternion &p_to, const real_t &p_weight) const;
- Quaternion spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const;
- Quaternion spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
- Vector3 get_axis() const;
- real_t get_angle() const;
- _FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
- r_angle = 2 * Math::acos(w);
- real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
- r_axis.x = x * r;
- r_axis.y = y * r;
- r_axis.z = z * r;
- }
- void operator*=(const Quaternion &p_q);
- Quaternion operator*(const Quaternion &p_q) const;
- _FORCE_INLINE_ Vector3 xform(const Vector3 &v) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), v, "The quaternion must be normalized.");
- #endif
- Vector3 u(x, y, z);
- Vector3 uv = u.cross(v);
- return v + ((uv * w) + u.cross(uv)) * ((real_t)2);
- }
- _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &v) const {
- return inverse().xform(v);
- }
- _FORCE_INLINE_ void operator+=(const Quaternion &p_q);
- _FORCE_INLINE_ void operator-=(const Quaternion &p_q);
- _FORCE_INLINE_ void operator*=(const real_t &s);
- _FORCE_INLINE_ void operator/=(const real_t &s);
- _FORCE_INLINE_ Quaternion operator+(const Quaternion &q2) const;
- _FORCE_INLINE_ Quaternion operator-(const Quaternion &q2) const;
- _FORCE_INLINE_ Quaternion operator-() const;
- _FORCE_INLINE_ Quaternion operator*(const real_t &s) const;
- _FORCE_INLINE_ Quaternion operator/(const real_t &s) const;
- _FORCE_INLINE_ bool operator==(const Quaternion &p_quaternion) const;
- _FORCE_INLINE_ bool operator!=(const Quaternion &p_quaternion) const;
- operator String() const;
- _FORCE_INLINE_ Quaternion() {}
- _FORCE_INLINE_ Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
- x(p_x),
- y(p_y),
- z(p_z),
- w(p_w) {
- }
- Quaternion(const Vector3 &p_axis, real_t p_angle);
- Quaternion(const Quaternion &p_q) :
- x(p_q.x),
- y(p_q.y),
- z(p_q.z),
- w(p_q.w) {
- }
- void operator=(const Quaternion &p_q) {
- x = p_q.x;
- y = p_q.y;
- z = p_q.z;
- w = p_q.w;
- }
- Quaternion(const Vector3 &v0, const Vector3 &v1) { // Shortest arc.
- Vector3 c = v0.cross(v1);
- real_t d = v0.dot(v1);
- if (d < -1.0f + (real_t)CMP_EPSILON) {
- x = 0;
- y = 1;
- z = 0;
- w = 0;
- } else {
- real_t s = Math::sqrt((1.0f + d) * 2.0f);
- real_t rs = 1.0f / s;
- x = c.x * rs;
- y = c.y * rs;
- z = c.z * rs;
- w = s * 0.5f;
- }
- }
- };
- real_t Quaternion::dot(const Quaternion &p_q) const {
- return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
- }
- real_t Quaternion::length_squared() const {
- return dot(*this);
- }
- void Quaternion::operator+=(const Quaternion &p_q) {
- x += p_q.x;
- y += p_q.y;
- z += p_q.z;
- w += p_q.w;
- }
- void Quaternion::operator-=(const Quaternion &p_q) {
- x -= p_q.x;
- y -= p_q.y;
- z -= p_q.z;
- w -= p_q.w;
- }
- void Quaternion::operator*=(const real_t &s) {
- x *= s;
- y *= s;
- z *= s;
- w *= s;
- }
- void Quaternion::operator/=(const real_t &s) {
- *this *= 1.0f / s;
- }
- Quaternion Quaternion::operator+(const Quaternion &q2) const {
- const Quaternion &q1 = *this;
- return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
- }
- Quaternion Quaternion::operator-(const Quaternion &q2) const {
- const Quaternion &q1 = *this;
- return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
- }
- Quaternion Quaternion::operator-() const {
- const Quaternion &q2 = *this;
- return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w);
- }
- Quaternion Quaternion::operator*(const real_t &s) const {
- return Quaternion(x * s, y * s, z * s, w * s);
- }
- Quaternion Quaternion::operator/(const real_t &s) const {
- return *this * (1.0f / s);
- }
- bool Quaternion::operator==(const Quaternion &p_quaternion) const {
- return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w;
- }
- bool Quaternion::operator!=(const Quaternion &p_quaternion) const {
- return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w;
- }
- _FORCE_INLINE_ Quaternion operator*(const real_t &p_real, const Quaternion &p_quaternion) {
- return p_quaternion * p_real;
- }
- #endif // QUATERNION_H
|