123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- #[compute]
- #version 450
- #VERSION_DEFINES
- layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
- layout(rgba16f, set = 0, binding = 0) uniform restrict readonly image2D source_diffuse;
- layout(r32f, set = 0, binding = 1) uniform restrict readonly image2D source_depth;
- layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2D ssr_image;
- #ifdef MODE_ROUGH
- layout(r8, set = 1, binding = 1) uniform restrict writeonly image2D blur_radius_image;
- #endif
- layout(rgba8, set = 2, binding = 0) uniform restrict readonly image2D source_normal_roughness;
- layout(set = 3, binding = 0) uniform sampler2D source_metallic;
- layout(push_constant, std430) uniform Params {
- vec4 proj_info;
- ivec2 screen_size;
- float camera_z_near;
- float camera_z_far;
- int num_steps;
- float depth_tolerance;
- float distance_fade;
- float curve_fade_in;
- bool orthogonal;
- float filter_mipmap_levels;
- bool use_half_res;
- uint view_index;
- }
- params;
- #include "screen_space_reflection_inc.glsl"
- vec2 view_to_screen(vec3 view_pos, out float w) {
- vec4 projected = scene_data.projection[params.view_index] * vec4(view_pos, 1.0);
- projected.xyz /= projected.w;
- projected.xy = projected.xy * 0.5 + 0.5;
- w = projected.w;
- return projected.xy;
- }
- #define M_PI 3.14159265359
- void main() {
- // Pixel being shaded
- ivec2 ssC = ivec2(gl_GlobalInvocationID.xy);
- if (any(greaterThanEqual(ssC.xy, params.screen_size))) { //too large, do nothing
- return;
- }
- vec2 pixel_size = 1.0 / vec2(params.screen_size);
- vec2 uv = vec2(ssC.xy) * pixel_size;
- uv += pixel_size * 0.5;
- float base_depth = imageLoad(source_depth, ssC).r;
- // World space point being shaded
- vec3 vertex = reconstructCSPosition(uv * vec2(params.screen_size), base_depth);
- vec4 normal_roughness = imageLoad(source_normal_roughness, ssC);
- vec3 normal = normalize(normal_roughness.xyz * 2.0 - 1.0);
- float roughness = normal_roughness.w;
- if (roughness > 0.5) {
- roughness = 1.0 - roughness;
- }
- roughness /= (127.0 / 255.0);
- // The roughness cutoff of 0.6 is chosen to match the roughness fadeout from GH-69828.
- if (roughness > 0.6) {
- // Do not compute SSR for rough materials to improve performance at the cost of
- // subtle artifacting.
- #ifdef MODE_ROUGH
- imageStore(blur_radius_image, ssC, vec4(0.0));
- #endif
- imageStore(ssr_image, ssC, vec4(0.0));
- return;
- }
- normal = normalize(normal);
- normal.y = -normal.y; //because this code reads flipped
- vec3 view_dir;
- if (sc_multiview) {
- view_dir = normalize(vertex + scene_data.eye_offset[params.view_index].xyz);
- } else {
- view_dir = params.orthogonal ? vec3(0.0, 0.0, -1.0) : normalize(vertex);
- }
- vec3 ray_dir = normalize(reflect(view_dir, normal));
- if (dot(ray_dir, normal) < 0.001) {
- imageStore(ssr_image, ssC, vec4(0.0));
- return;
- }
- ////////////////
- // make ray length and clip it against the near plane (don't want to trace beyond visible)
- float ray_len = (vertex.z + ray_dir.z * params.camera_z_far) > -params.camera_z_near ? (-params.camera_z_near - vertex.z) / ray_dir.z : params.camera_z_far;
- vec3 ray_end = vertex + ray_dir * ray_len;
- float w_begin;
- vec2 vp_line_begin = view_to_screen(vertex, w_begin);
- float w_end;
- vec2 vp_line_end = view_to_screen(ray_end, w_end);
- vec2 vp_line_dir = vp_line_end - vp_line_begin;
- // we need to interpolate w along the ray, to generate perspective correct reflections
- w_begin = 1.0 / w_begin;
- w_end = 1.0 / w_end;
- float z_begin = vertex.z * w_begin;
- float z_end = ray_end.z * w_end;
- vec2 line_begin = vp_line_begin / pixel_size;
- vec2 line_dir = vp_line_dir / pixel_size;
- float z_dir = z_end - z_begin;
- float w_dir = w_end - w_begin;
- // clip the line to the viewport edges
- float scale_max_x = min(1.0, 0.99 * (1.0 - vp_line_begin.x) / max(1e-5, vp_line_dir.x));
- float scale_max_y = min(1.0, 0.99 * (1.0 - vp_line_begin.y) / max(1e-5, vp_line_dir.y));
- float scale_min_x = min(1.0, 0.99 * vp_line_begin.x / max(1e-5, -vp_line_dir.x));
- float scale_min_y = min(1.0, 0.99 * vp_line_begin.y / max(1e-5, -vp_line_dir.y));
- float line_clip = min(scale_max_x, scale_max_y) * min(scale_min_x, scale_min_y);
- line_dir *= line_clip;
- z_dir *= line_clip;
- w_dir *= line_clip;
- // clip z and w advance to line advance
- vec2 line_advance = normalize(line_dir); // down to pixel
- float step_size = 1.0 / length(line_dir);
- float z_advance = z_dir * step_size; // adapt z advance to line advance
- float w_advance = w_dir * step_size; // adapt w advance to line advance
- // make line advance faster if direction is closer to pixel edges (this avoids sampling the same pixel twice)
- float advance_angle_adj = 1.0 / max(abs(line_advance.x), abs(line_advance.y));
- line_advance *= advance_angle_adj; // adapt z advance to line advance
- z_advance *= advance_angle_adj;
- w_advance *= advance_angle_adj;
- vec2 pos = line_begin;
- float z = z_begin;
- float w = w_begin;
- float z_from = z / w;
- float z_to = z_from;
- float depth;
- vec2 prev_pos = pos;
- if (ivec2(pos + line_advance - 0.5) == ssC) {
- // It is possible for rounding to cause our first pixel to check to be the pixel we're reflecting.
- // Make sure we skip it
- pos += line_advance;
- z += z_advance;
- w += w_advance;
- }
- bool found = false;
- float steps_taken = 0.0;
- for (int i = 0; i < params.num_steps; i++) {
- pos += line_advance;
- z += z_advance;
- w += w_advance;
- // convert to linear depth
- ivec2 test_pos = ivec2(pos - 0.5);
- depth = imageLoad(source_depth, test_pos).r;
- if (sc_multiview) {
- depth = depth * 2.0 - 1.0;
- depth = 2.0 * params.camera_z_near * params.camera_z_far / (params.camera_z_far + params.camera_z_near - depth * (params.camera_z_far - params.camera_z_near));
- depth = -depth;
- }
- z_from = z_to;
- z_to = z / w;
- if (depth > z_to) {
- // Test if our ray is hitting the "right" side of the surface, if not we're likely self reflecting and should skip.
- vec4 test_normal_roughness = imageLoad(source_normal_roughness, test_pos);
- vec3 test_normal = test_normal_roughness.xyz * 2.0 - 1.0;
- test_normal = normalize(test_normal);
- test_normal.y = -test_normal.y; // Because this code reads flipped.
- if (dot(ray_dir, test_normal) < 0.001) {
- // if depth was surpassed
- if (depth <= max(z_to, z_from) + params.depth_tolerance && -depth < params.camera_z_far * 0.95) {
- // check the depth tolerance and far clip
- // check that normal is valid
- found = true;
- }
- break;
- }
- }
- steps_taken += 1.0;
- prev_pos = pos;
- }
- if (found) {
- float margin_blend = 1.0;
- vec2 final_pos = pos;
- vec2 margin = vec2((params.screen_size.x + params.screen_size.y) * 0.05); // make a uniform margin
- if (any(bvec4(lessThan(pos, vec2(0.0, 0.0)), greaterThan(pos, params.screen_size)))) {
- // clip at the screen edges
- imageStore(ssr_image, ssC, vec4(0.0));
- return;
- }
- {
- //blend fading out towards inner margin
- // 0.5 = midpoint of reflection
- vec2 margin_grad = mix(params.screen_size - pos, pos, lessThan(pos, params.screen_size * 0.5));
- margin_blend = smoothstep(0.0, margin.x * margin.y, margin_grad.x * margin_grad.y);
- //margin_blend = 1.0;
- }
- // Fade In / Fade Out
- float grad = (steps_taken + 1.0) / float(params.num_steps);
- float initial_fade = params.curve_fade_in == 0.0 ? 1.0 : pow(clamp(grad, 0.0, 1.0), params.curve_fade_in);
- float fade = pow(clamp(1.0 - grad, 0.0, 1.0), params.distance_fade) * initial_fade;
- // Ensure that precision errors do not introduce any fade. Even if it is just slightly below 1.0,
- // strong specular light can leak through the reflection.
- if (fade > 0.999) {
- fade = 1.0;
- }
- // This is an ad-hoc term to fade out the SSR as roughness increases. Values used
- // are meant to match the visual appearance of a ReflectionProbe.
- float roughness_fade = smoothstep(0.4, 0.7, 1.0 - roughness);
- // Schlick term.
- float metallic = texelFetch(source_metallic, ssC << 1, 0).w;
- // F0 is the reflectance of normally incident light (perpendicular to the surface).
- // Dielectric materials have a widely accepted default value of 0.04. We assume that metals reflect all light, so their F0 is 1.0.
- float f0 = mix(0.04, 1.0, metallic);
- float m = clamp(1.0 - dot(normal, -view_dir), 0.0, 1.0);
- float m2 = m * m;
- m = m2 * m2 * m; // pow(m,5)
- float fresnel_term = f0 + (1.0 - f0) * m; // Fresnel Schlick term.
- // The alpha value of final_color controls the blending with specular light in specular_merge.glsl.
- // Note that the Fresnel term is multiplied with the RGB color instead of being a part of the alpha value.
- // There is a key difference:
- // - multiplying a term with RGB darkens the SSR light without introducing/taking away specular light.
- // - combining a term into the Alpha value introduces specular light at the expense of the SSR light.
- vec4 final_color = vec4(imageLoad(source_diffuse, ivec2(final_pos - 0.5)).rgb * fresnel_term, fade * margin_blend * roughness_fade);
- imageStore(ssr_image, ssC, final_color);
- #ifdef MODE_ROUGH
- // if roughness is enabled, do screen space cone tracing
- float blur_radius = 0.0;
- if (roughness > 0.001) {
- float cone_angle = min(roughness, 0.999) * M_PI * 0.5;
- float cone_len = length(final_pos - line_begin);
- float op_len = 2.0 * tan(cone_angle) * cone_len; // opposite side of iso triangle
- {
- // fit to sphere inside cone (sphere ends at end of cone), something like this:
- // ___
- // \O/
- // V
- //
- // as it avoids bleeding from beyond the reflection as much as possible. As a plus
- // it also makes the rough reflection more elongated.
- float a = op_len;
- float h = cone_len;
- float a2 = a * a;
- float fh2 = 4.0f * h * h;
- blur_radius = (a * (sqrt(a2 + fh2) - a)) / (4.0f * h);
- }
- }
- imageStore(blur_radius_image, ssC, vec4(blur_radius / 255.0)); //stored in r8
- #endif // MODE_ROUGH
- } else {
- #ifdef MODE_ROUGH
- imageStore(blur_radius_image, ssC, vec4(0.0));
- #endif
- imageStore(ssr_image, ssC, vec4(0.0));
- }
- }
|