123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- /**************************************************************************/
- /* vector3.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef VECTOR3_H
- #define VECTOR3_H
- #include "core/error/error_macros.h"
- #include "core/math/math_funcs.h"
- class String;
- struct Basis;
- struct Vector2;
- struct Vector3i;
- struct _NO_DISCARD_ Vector3 {
- static const int AXIS_COUNT = 3;
- enum Axis {
- AXIS_X,
- AXIS_Y,
- AXIS_Z,
- };
- union {
- struct {
- real_t x;
- real_t y;
- real_t z;
- };
- real_t coord[3] = { 0 };
- };
- _FORCE_INLINE_ const real_t &operator[](const int p_axis) const {
- DEV_ASSERT((unsigned int)p_axis < 3);
- return coord[p_axis];
- }
- _FORCE_INLINE_ real_t &operator[](const int p_axis) {
- DEV_ASSERT((unsigned int)p_axis < 3);
- return coord[p_axis];
- }
- _FORCE_INLINE_ Vector3::Axis min_axis_index() const {
- return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
- }
- _FORCE_INLINE_ Vector3::Axis max_axis_index() const {
- return x < y ? (y < z ? Vector3::AXIS_Z : Vector3::AXIS_Y) : (x < z ? Vector3::AXIS_Z : Vector3::AXIS_X);
- }
- Vector3 min(const Vector3 &p_vector3) const {
- return Vector3(MIN(x, p_vector3.x), MIN(y, p_vector3.y), MIN(z, p_vector3.z));
- }
- Vector3 max(const Vector3 &p_vector3) const {
- return Vector3(MAX(x, p_vector3.x), MAX(y, p_vector3.y), MAX(z, p_vector3.z));
- }
- _FORCE_INLINE_ real_t length() const;
- _FORCE_INLINE_ real_t length_squared() const;
- _FORCE_INLINE_ void normalize();
- _FORCE_INLINE_ Vector3 normalized() const;
- _FORCE_INLINE_ bool is_normalized() const;
- _FORCE_INLINE_ Vector3 inverse() const;
- Vector3 limit_length(const real_t p_len = 1.0) const;
- _FORCE_INLINE_ void zero();
- void snap(const Vector3 p_val);
- Vector3 snapped(const Vector3 p_val) const;
- void rotate(const Vector3 &p_axis, const real_t p_angle);
- Vector3 rotated(const Vector3 &p_axis, const real_t p_angle) const;
- /* Static Methods between 2 vector3s */
- _FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
- _FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
- _FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
- _FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
- _FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
- _FORCE_INLINE_ Vector3 bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
- Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
- Vector2 octahedron_encode() const;
- static Vector3 octahedron_decode(const Vector2 &p_oct);
- Vector2 octahedron_tangent_encode(const float sign) const;
- static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *sign);
- _FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
- _FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
- Basis outer(const Vector3 &p_with) const;
- _FORCE_INLINE_ Vector3 abs() const;
- _FORCE_INLINE_ Vector3 floor() const;
- _FORCE_INLINE_ Vector3 sign() const;
- _FORCE_INLINE_ Vector3 ceil() const;
- _FORCE_INLINE_ Vector3 round() const;
- Vector3 clamp(const Vector3 &p_min, const Vector3 &p_max) const;
- _FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
- _FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
- _FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
- _FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
- _FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
- _FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
- _FORCE_INLINE_ real_t signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const;
- _FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;
- _FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
- _FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
- _FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
- bool is_equal_approx(const Vector3 &p_v) const;
- bool is_zero_approx() const;
- bool is_finite() const;
- /* Operators */
- _FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
- _FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
- _FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
- _FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
- _FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
- _FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
- _FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
- _FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
- _FORCE_INLINE_ Vector3 &operator*=(const real_t p_scalar);
- _FORCE_INLINE_ Vector3 operator*(const real_t p_scalar) const;
- _FORCE_INLINE_ Vector3 &operator/=(const real_t p_scalar);
- _FORCE_INLINE_ Vector3 operator/(const real_t p_scalar) const;
- _FORCE_INLINE_ Vector3 operator-() const;
- _FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
- _FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
- _FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
- _FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
- _FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
- _FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
- operator String() const;
- operator Vector3i() const;
- _FORCE_INLINE_ Vector3() {}
- _FORCE_INLINE_ Vector3(const real_t p_x, const real_t p_y, const real_t p_z) {
- x = p_x;
- y = p_y;
- z = p_z;
- }
- };
- Vector3 Vector3::cross(const Vector3 &p_with) const {
- Vector3 ret(
- (y * p_with.z) - (z * p_with.y),
- (z * p_with.x) - (x * p_with.z),
- (x * p_with.y) - (y * p_with.x));
- return ret;
- }
- real_t Vector3::dot(const Vector3 &p_with) const {
- return x * p_with.x + y * p_with.y + z * p_with.z;
- }
- Vector3 Vector3::abs() const {
- return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
- }
- Vector3 Vector3::sign() const {
- return Vector3(SIGN(x), SIGN(y), SIGN(z));
- }
- Vector3 Vector3::floor() const {
- return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
- }
- Vector3 Vector3::ceil() const {
- return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
- }
- Vector3 Vector3::round() const {
- return Vector3(Math::round(x), Math::round(y), Math::round(z));
- }
- Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
- Vector3 res = *this;
- res.x = Math::lerp(res.x, p_to.x, p_weight);
- res.y = Math::lerp(res.y, p_to.y, p_weight);
- res.z = Math::lerp(res.z, p_to.z, p_weight);
- return res;
- }
- Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
- // This method seems more complicated than it really is, since we write out
- // the internals of some methods for efficiency (mainly, checking length).
- real_t start_length_sq = length_squared();
- real_t end_length_sq = p_to.length_squared();
- if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
- // Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
- return lerp(p_to, p_weight);
- }
- Vector3 axis = cross(p_to);
- real_t axis_length_sq = axis.length_squared();
- if (unlikely(axis_length_sq == 0.0f)) {
- // Colinear vectors have no rotation axis or angle between them, so the best we can do is lerp.
- return lerp(p_to, p_weight);
- }
- axis /= Math::sqrt(axis_length_sq);
- real_t start_length = Math::sqrt(start_length_sq);
- real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
- real_t angle = angle_to(p_to);
- return rotated(axis, angle * p_weight) * (result_length / start_length);
- }
- Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
- Vector3 res = *this;
- res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
- res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
- res.z = Math::cubic_interpolate(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight);
- return res;
- }
- Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
- Vector3 res = *this;
- res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- res.z = Math::cubic_interpolate_in_time(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- return res;
- }
- Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
- Vector3 res = *this;
- res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
- res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
- res.z = Math::bezier_interpolate(res.z, p_control_1.z, p_control_2.z, p_end.z, p_t);
- return res;
- }
- Vector3 Vector3::bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
- Vector3 res = *this;
- res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
- res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
- res.z = Math::bezier_derivative(res.z, p_control_1.z, p_control_2.z, p_end.z, p_t);
- return res;
- }
- real_t Vector3::distance_to(const Vector3 &p_to) const {
- return (p_to - *this).length();
- }
- real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
- return (p_to - *this).length_squared();
- }
- Vector3 Vector3::posmod(const real_t p_mod) const {
- return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
- }
- Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
- return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
- }
- Vector3 Vector3::project(const Vector3 &p_to) const {
- return p_to * (dot(p_to) / p_to.length_squared());
- }
- real_t Vector3::angle_to(const Vector3 &p_to) const {
- return Math::atan2(cross(p_to).length(), dot(p_to));
- }
- real_t Vector3::signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const {
- Vector3 cross_to = cross(p_to);
- real_t unsigned_angle = Math::atan2(cross_to.length(), dot(p_to));
- real_t sign = cross_to.dot(p_axis);
- return (sign < 0) ? -unsigned_angle : unsigned_angle;
- }
- Vector3 Vector3::direction_to(const Vector3 &p_to) const {
- Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
- ret.normalize();
- return ret;
- }
- /* Operators */
- Vector3 &Vector3::operator+=(const Vector3 &p_v) {
- x += p_v.x;
- y += p_v.y;
- z += p_v.z;
- return *this;
- }
- Vector3 Vector3::operator+(const Vector3 &p_v) const {
- return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
- }
- Vector3 &Vector3::operator-=(const Vector3 &p_v) {
- x -= p_v.x;
- y -= p_v.y;
- z -= p_v.z;
- return *this;
- }
- Vector3 Vector3::operator-(const Vector3 &p_v) const {
- return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
- }
- Vector3 &Vector3::operator*=(const Vector3 &p_v) {
- x *= p_v.x;
- y *= p_v.y;
- z *= p_v.z;
- return *this;
- }
- Vector3 Vector3::operator*(const Vector3 &p_v) const {
- return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
- }
- Vector3 &Vector3::operator/=(const Vector3 &p_v) {
- x /= p_v.x;
- y /= p_v.y;
- z /= p_v.z;
- return *this;
- }
- Vector3 Vector3::operator/(const Vector3 &p_v) const {
- return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
- }
- Vector3 &Vector3::operator*=(const real_t p_scalar) {
- x *= p_scalar;
- y *= p_scalar;
- z *= p_scalar;
- return *this;
- }
- // Multiplication operators required to workaround issues with LLVM using implicit conversion
- // to Vector3i instead for integers where it should not.
- _FORCE_INLINE_ Vector3 operator*(const float p_scalar, const Vector3 &p_vec) {
- return p_vec * p_scalar;
- }
- _FORCE_INLINE_ Vector3 operator*(const double p_scalar, const Vector3 &p_vec) {
- return p_vec * p_scalar;
- }
- _FORCE_INLINE_ Vector3 operator*(const int32_t p_scalar, const Vector3 &p_vec) {
- return p_vec * p_scalar;
- }
- _FORCE_INLINE_ Vector3 operator*(const int64_t p_scalar, const Vector3 &p_vec) {
- return p_vec * p_scalar;
- }
- Vector3 Vector3::operator*(const real_t p_scalar) const {
- return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
- }
- Vector3 &Vector3::operator/=(const real_t p_scalar) {
- x /= p_scalar;
- y /= p_scalar;
- z /= p_scalar;
- return *this;
- }
- Vector3 Vector3::operator/(const real_t p_scalar) const {
- return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
- }
- Vector3 Vector3::operator-() const {
- return Vector3(-x, -y, -z);
- }
- bool Vector3::operator==(const Vector3 &p_v) const {
- return x == p_v.x && y == p_v.y && z == p_v.z;
- }
- bool Vector3::operator!=(const Vector3 &p_v) const {
- return x != p_v.x || y != p_v.y || z != p_v.z;
- }
- bool Vector3::operator<(const Vector3 &p_v) const {
- if (x == p_v.x) {
- if (y == p_v.y) {
- return z < p_v.z;
- }
- return y < p_v.y;
- }
- return x < p_v.x;
- }
- bool Vector3::operator>(const Vector3 &p_v) const {
- if (x == p_v.x) {
- if (y == p_v.y) {
- return z > p_v.z;
- }
- return y > p_v.y;
- }
- return x > p_v.x;
- }
- bool Vector3::operator<=(const Vector3 &p_v) const {
- if (x == p_v.x) {
- if (y == p_v.y) {
- return z <= p_v.z;
- }
- return y < p_v.y;
- }
- return x < p_v.x;
- }
- bool Vector3::operator>=(const Vector3 &p_v) const {
- if (x == p_v.x) {
- if (y == p_v.y) {
- return z >= p_v.z;
- }
- return y > p_v.y;
- }
- return x > p_v.x;
- }
- _FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
- return p_a.cross(p_b);
- }
- _FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
- return p_a.dot(p_b);
- }
- real_t Vector3::length() const {
- real_t x2 = x * x;
- real_t y2 = y * y;
- real_t z2 = z * z;
- return Math::sqrt(x2 + y2 + z2);
- }
- real_t Vector3::length_squared() const {
- real_t x2 = x * x;
- real_t y2 = y * y;
- real_t z2 = z * z;
- return x2 + y2 + z2;
- }
- void Vector3::normalize() {
- real_t lengthsq = length_squared();
- if (lengthsq == 0) {
- x = y = z = 0;
- } else {
- real_t length = Math::sqrt(lengthsq);
- x /= length;
- y /= length;
- z /= length;
- }
- }
- Vector3 Vector3::normalized() const {
- Vector3 v = *this;
- v.normalize();
- return v;
- }
- bool Vector3::is_normalized() const {
- // use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
- return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
- }
- Vector3 Vector3::inverse() const {
- return Vector3(1.0f / x, 1.0f / y, 1.0f / z);
- }
- void Vector3::zero() {
- x = y = z = 0;
- }
- // slide returns the component of the vector along the given plane, specified by its normal vector.
- Vector3 Vector3::slide(const Vector3 &p_normal) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
- #endif
- return *this - p_normal * this->dot(p_normal);
- }
- Vector3 Vector3::bounce(const Vector3 &p_normal) const {
- return -reflect(p_normal);
- }
- Vector3 Vector3::reflect(const Vector3 &p_normal) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
- #endif
- return 2.0f * p_normal * this->dot(p_normal) - *this;
- }
- #endif // VECTOR3_H
|