123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- /**************************************************************************/
- /* quaternion.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #include "quaternion.h"
- #include "core/math/basis.h"
- #include "core/string/ustring.h"
- real_t Quaternion::angle_to(const Quaternion &p_to) const {
- real_t d = dot(p_to);
- // acos does clamping.
- return Math::acos(d * d * 2 - 1);
- }
- Vector3 Quaternion::get_euler(EulerOrder p_order) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
- #endif
- return Basis(*this).get_euler(p_order);
- }
- void Quaternion::operator*=(const Quaternion &p_q) {
- real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;
- real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;
- real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;
- w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;
- x = xx;
- y = yy;
- z = zz;
- }
- Quaternion Quaternion::operator*(const Quaternion &p_q) const {
- Quaternion r = *this;
- r *= p_q;
- return r;
- }
- bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {
- return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);
- }
- bool Quaternion::is_finite() const {
- return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z) && Math::is_finite(w);
- }
- real_t Quaternion::length() const {
- return Math::sqrt(length_squared());
- }
- void Quaternion::normalize() {
- *this /= length();
- }
- Quaternion Quaternion::normalized() const {
- return *this / length();
- }
- bool Quaternion::is_normalized() const {
- return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
- }
- Quaternion Quaternion::inverse() const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");
- #endif
- return Quaternion(-x, -y, -z, w);
- }
- Quaternion Quaternion::log() const {
- Quaternion src = *this;
- Vector3 src_v = src.get_axis() * src.get_angle();
- return Quaternion(src_v.x, src_v.y, src_v.z, 0);
- }
- Quaternion Quaternion::exp() const {
- Quaternion src = *this;
- Vector3 src_v = Vector3(src.x, src.y, src.z);
- real_t theta = src_v.length();
- src_v = src_v.normalized();
- if (theta < CMP_EPSILON || !src_v.is_normalized()) {
- return Quaternion(0, 0, 0, 1);
- }
- return Quaternion(src_v, theta);
- }
- Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
- #endif
- Quaternion to1;
- real_t omega, cosom, sinom, scale0, scale1;
- // calc cosine
- cosom = dot(p_to);
- // adjust signs (if necessary)
- if (cosom < 0.0f) {
- cosom = -cosom;
- to1 = -p_to;
- } else {
- to1 = p_to;
- }
- // calculate coefficients
- if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
- // standard case (slerp)
- omega = Math::acos(cosom);
- sinom = Math::sin(omega);
- scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
- scale1 = Math::sin(p_weight * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0f - p_weight;
- scale1 = p_weight;
- }
- // calculate final values
- return Quaternion(
- scale0 * x + scale1 * to1.x,
- scale0 * y + scale1 * to1.y,
- scale0 * z + scale1 * to1.z,
- scale0 * w + scale1 * to1.w);
- }
- Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
- #endif
- const Quaternion &from = *this;
- real_t dot = from.dot(p_to);
- if (Math::absf(dot) > 0.9999f) {
- return from;
- }
- real_t theta = Math::acos(dot),
- sinT = 1.0f / Math::sin(theta),
- newFactor = Math::sin(p_weight * theta) * sinT,
- invFactor = Math::sin((1.0f - p_weight) * theta) * sinT;
- return Quaternion(invFactor * from.x + newFactor * p_to.x,
- invFactor * from.y + newFactor * p_to.y,
- invFactor * from.z + newFactor * p_to.z,
- invFactor * from.w + newFactor * p_to.w);
- }
- Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
- #endif
- Quaternion from_q = *this;
- Quaternion pre_q = p_pre_a;
- Quaternion to_q = p_b;
- Quaternion post_q = p_post_b;
- // Align flip phases.
- from_q = Basis(from_q).get_rotation_quaternion();
- pre_q = Basis(pre_q).get_rotation_quaternion();
- to_q = Basis(to_q).get_rotation_quaternion();
- post_q = Basis(post_q).get_rotation_quaternion();
- // Flip quaternions to shortest path if necessary.
- bool flip1 = signbit(from_q.dot(pre_q));
- pre_q = flip1 ? -pre_q : pre_q;
- bool flip2 = signbit(from_q.dot(to_q));
- to_q = flip2 ? -to_q : to_q;
- bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
- post_q = flip3 ? -post_q : post_q;
- // Calc by Expmap in from_q space.
- Quaternion ln_from = Quaternion(0, 0, 0, 0);
- Quaternion ln_to = (from_q.inverse() * to_q).log();
- Quaternion ln_pre = (from_q.inverse() * pre_q).log();
- Quaternion ln_post = (from_q.inverse() * post_q).log();
- Quaternion ln = Quaternion(0, 0, 0, 0);
- ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
- ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
- ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
- Quaternion q1 = from_q * ln.exp();
- // Calc by Expmap in to_q space.
- ln_from = (to_q.inverse() * from_q).log();
- ln_to = Quaternion(0, 0, 0, 0);
- ln_pre = (to_q.inverse() * pre_q).log();
- ln_post = (to_q.inverse() * post_q).log();
- ln = Quaternion(0, 0, 0, 0);
- ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);
- ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);
- ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);
- Quaternion q2 = to_q * ln.exp();
- // To cancel error made by Expmap ambiguity, do blending.
- return q1.slerp(q2, p_weight);
- }
- Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight,
- const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");
- ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
- #endif
- Quaternion from_q = *this;
- Quaternion pre_q = p_pre_a;
- Quaternion to_q = p_b;
- Quaternion post_q = p_post_b;
- // Align flip phases.
- from_q = Basis(from_q).get_rotation_quaternion();
- pre_q = Basis(pre_q).get_rotation_quaternion();
- to_q = Basis(to_q).get_rotation_quaternion();
- post_q = Basis(post_q).get_rotation_quaternion();
- // Flip quaternions to shortest path if necessary.
- bool flip1 = signbit(from_q.dot(pre_q));
- pre_q = flip1 ? -pre_q : pre_q;
- bool flip2 = signbit(from_q.dot(to_q));
- to_q = flip2 ? -to_q : to_q;
- bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));
- post_q = flip3 ? -post_q : post_q;
- // Calc by Expmap in from_q space.
- Quaternion ln_from = Quaternion(0, 0, 0, 0);
- Quaternion ln_to = (from_q.inverse() * to_q).log();
- Quaternion ln_pre = (from_q.inverse() * pre_q).log();
- Quaternion ln_post = (from_q.inverse() * post_q).log();
- Quaternion ln = Quaternion(0, 0, 0, 0);
- ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- Quaternion q1 = from_q * ln.exp();
- // Calc by Expmap in to_q space.
- ln_from = (to_q.inverse() * from_q).log();
- ln_to = Quaternion(0, 0, 0, 0);
- ln_pre = (to_q.inverse() * pre_q).log();
- ln_post = (to_q.inverse() * post_q).log();
- ln = Quaternion(0, 0, 0, 0);
- ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
- Quaternion q2 = to_q * ln.exp();
- // To cancel error made by Expmap ambiguity, do blending.
- return q1.slerp(q2, p_weight);
- }
- Quaternion::operator String() const {
- return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";
- }
- Vector3 Quaternion::get_axis() const {
- if (Math::abs(w) > 1 - CMP_EPSILON) {
- return Vector3(x, y, z);
- }
- real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
- return Vector3(x * r, y * r, z * r);
- }
- real_t Quaternion::get_angle() const {
- return 2 * Math::acos(w);
- }
- Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
- #endif
- real_t d = p_axis.length();
- if (d == 0) {
- x = 0;
- y = 0;
- z = 0;
- w = 0;
- } else {
- real_t sin_angle = Math::sin(p_angle * 0.5f);
- real_t cos_angle = Math::cos(p_angle * 0.5f);
- real_t s = sin_angle / d;
- x = p_axis.x * s;
- y = p_axis.y * s;
- z = p_axis.z * s;
- w = cos_angle;
- }
- }
- // Euler constructor expects a vector containing the Euler angles in the format
- // (ax, ay, az), where ax is the angle of rotation around x axis,
- // and similar for other axes.
- // This implementation uses YXZ convention (Z is the first rotation).
- Quaternion Quaternion::from_euler(const Vector3 &p_euler) {
- real_t half_a1 = p_euler.y * 0.5f;
- real_t half_a2 = p_euler.x * 0.5f;
- real_t half_a3 = p_euler.z * 0.5f;
- // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
- // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
- // a3 is the angle of the first rotation, following the notation in this reference.
- real_t cos_a1 = Math::cos(half_a1);
- real_t sin_a1 = Math::sin(half_a1);
- real_t cos_a2 = Math::cos(half_a2);
- real_t sin_a2 = Math::sin(half_a2);
- real_t cos_a3 = Math::cos(half_a3);
- real_t sin_a3 = Math::sin(half_a3);
- return Quaternion(
- sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
- sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
- -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
- sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
- }
|