1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- /**************************************************************************/
- /* basis.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #include "basis.h"
- #include "core/math/math_funcs.h"
- #include "core/string/ustring.h"
- #define cofac(row1, col1, row2, col2) \
- (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])
- void Basis::invert() {
- real_t co[3] = {
- cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
- };
- real_t det = rows[0][0] * co[0] +
- rows[0][1] * co[1] +
- rows[0][2] * co[2];
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(det == 0);
- #endif
- real_t s = 1.0f / det;
- set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
- }
- void Basis::orthonormalize() {
- // Gram-Schmidt Process
- Vector3 x = get_column(0);
- Vector3 y = get_column(1);
- Vector3 z = get_column(2);
- x.normalize();
- y = (y - x * (x.dot(y)));
- y.normalize();
- z = (z - x * (x.dot(z)) - y * (y.dot(z)));
- z.normalize();
- set_column(0, x);
- set_column(1, y);
- set_column(2, z);
- }
- Basis Basis::orthonormalized() const {
- Basis c = *this;
- c.orthonormalize();
- return c;
- }
- void Basis::orthogonalize() {
- Vector3 scl = get_scale();
- orthonormalize();
- scale_local(scl);
- }
- Basis Basis::orthogonalized() const {
- Basis c = *this;
- c.orthogonalize();
- return c;
- }
- bool Basis::is_orthogonal() const {
- Basis identity;
- Basis m = (*this) * transposed();
- return m.is_equal_approx(identity);
- }
- bool Basis::is_diagonal() const {
- return (
- Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
- Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) &&
- Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
- }
- bool Basis::is_rotation() const {
- return Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON) && is_orthogonal();
- }
- #ifdef MATH_CHECKS
- // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
- bool Basis::is_symmetric() const {
- if (!Math::is_equal_approx(rows[0][1], rows[1][0])) {
- return false;
- }
- if (!Math::is_equal_approx(rows[0][2], rows[2][0])) {
- return false;
- }
- if (!Math::is_equal_approx(rows[1][2], rows[2][1])) {
- return false;
- }
- return true;
- }
- #endif
- Basis Basis::diagonalize() {
- // NOTE: only implemented for symmetric matrices
- // with the Jacobi iterative method
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!is_symmetric(), Basis());
- #endif
- const int ite_max = 1024;
- real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2];
- int ite = 0;
- Basis acc_rot;
- while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
- real_t el01_2 = rows[0][1] * rows[0][1];
- real_t el02_2 = rows[0][2] * rows[0][2];
- real_t el12_2 = rows[1][2] * rows[1][2];
- // Find the pivot element
- int i, j;
- if (el01_2 > el02_2) {
- if (el12_2 > el01_2) {
- i = 1;
- j = 2;
- } else {
- i = 0;
- j = 1;
- }
- } else {
- if (el12_2 > el02_2) {
- i = 1;
- j = 2;
- } else {
- i = 0;
- j = 2;
- }
- }
- // Compute the rotation angle
- real_t angle;
- if (Math::is_equal_approx(rows[j][j], rows[i][i])) {
- angle = Math_PI / 4;
- } else {
- angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i]));
- }
- // Compute the rotation matrix
- Basis rot;
- rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle);
- rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle));
- // Update the off matrix norm
- off_matrix_norm_2 -= rows[i][j] * rows[i][j];
- // Apply the rotation
- *this = rot * *this * rot.transposed();
- acc_rot = rot * acc_rot;
- }
- return acc_rot;
- }
- Basis Basis::inverse() const {
- Basis inv = *this;
- inv.invert();
- return inv;
- }
- void Basis::transpose() {
- SWAP(rows[0][1], rows[1][0]);
- SWAP(rows[0][2], rows[2][0]);
- SWAP(rows[1][2], rows[2][1]);
- }
- Basis Basis::transposed() const {
- Basis tr = *this;
- tr.transpose();
- return tr;
- }
- Basis Basis::from_scale(const Vector3 &p_scale) {
- return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z);
- }
- // Multiplies the matrix from left by the scaling matrix: M -> S.M
- // See the comment for Basis::rotated for further explanation.
- void Basis::scale(const Vector3 &p_scale) {
- rows[0][0] *= p_scale.x;
- rows[0][1] *= p_scale.x;
- rows[0][2] *= p_scale.x;
- rows[1][0] *= p_scale.y;
- rows[1][1] *= p_scale.y;
- rows[1][2] *= p_scale.y;
- rows[2][0] *= p_scale.z;
- rows[2][1] *= p_scale.z;
- rows[2][2] *= p_scale.z;
- }
- Basis Basis::scaled(const Vector3 &p_scale) const {
- Basis m = *this;
- m.scale(p_scale);
- return m;
- }
- void Basis::scale_local(const Vector3 &p_scale) {
- // performs a scaling in object-local coordinate system:
- // M -> (M.S.Minv).M = M.S.
- *this = scaled_local(p_scale);
- }
- void Basis::scale_orthogonal(const Vector3 &p_scale) {
- *this = scaled_orthogonal(p_scale);
- }
- Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
- Basis m = *this;
- Vector3 s = Vector3(-1, -1, -1) + p_scale;
- bool sign = signbit(s.x + s.y + s.z);
- Basis b = m.orthonormalized();
- s = b.xform_inv(s);
- Vector3 dots;
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- dots[j] += s[i] * abs(m.get_column(i).normalized().dot(b.get_column(j)));
- }
- }
- if (sign != signbit(dots.x + dots.y + dots.z)) {
- dots = -dots;
- }
- m.scale_local(Vector3(1, 1, 1) + dots);
- return m;
- }
- float Basis::get_uniform_scale() const {
- return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
- }
- Basis Basis::scaled_local(const Vector3 &p_scale) const {
- return (*this) * Basis::from_scale(p_scale);
- }
- Vector3 Basis::get_scale_abs() const {
- return Vector3(
- Vector3(rows[0][0], rows[1][0], rows[2][0]).length(),
- Vector3(rows[0][1], rows[1][1], rows[2][1]).length(),
- Vector3(rows[0][2], rows[1][2], rows[2][2]).length());
- }
- Vector3 Basis::get_scale_local() const {
- real_t det_sign = SIGN(determinant());
- return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length());
- }
- // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
- Vector3 Basis::get_scale() const {
- // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
- // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
- // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
- //
- // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
- // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
- // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
- // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
- // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
- // Therefore, we are going to do this decomposition by sticking to a particular convention.
- // This may lead to confusion for some users though.
- //
- // The convention we use here is to absorb the sign flip into the scaling matrix.
- // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
- //
- // A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
- // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
- // matrix elements.
- //
- // The rotation part of this decomposition is returned by get_rotation* functions.
- real_t det_sign = SIGN(determinant());
- return det_sign * get_scale_abs();
- }
- // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
- // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
- // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
- Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(determinant() == 0, Vector3());
- Basis m = transposed() * (*this);
- ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
- #endif
- Vector3 scale = get_scale();
- Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
- rotref = (*this) * inv_scale;
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
- #endif
- return scale.abs();
- }
- // Multiplies the matrix from left by the rotation matrix: M -> R.M
- // Note that this does *not* rotate the matrix itself.
- //
- // The main use of Basis is as Transform.basis, which is used by the transformation matrix
- // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
- // not the matrix itself (which is R * (*this) * R.transposed()).
- Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const {
- return Basis(p_axis, p_angle) * (*this);
- }
- void Basis::rotate(const Vector3 &p_axis, real_t p_angle) {
- *this = rotated(p_axis, p_angle);
- }
- void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) {
- // performs a rotation in object-local coordinate system:
- // M -> (M.R.Minv).M = M.R.
- *this = rotated_local(p_axis, p_angle);
- }
- Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
- return (*this) * Basis(p_axis, p_angle);
- }
- Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const {
- return Basis::from_euler(p_euler, p_order) * (*this);
- }
- void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) {
- *this = rotated(p_euler, p_order);
- }
- Basis Basis::rotated(const Quaternion &p_quaternion) const {
- return Basis(p_quaternion) * (*this);
- }
- void Basis::rotate(const Quaternion &p_quaternion) {
- *this = rotated(p_quaternion);
- }
- Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
- // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
- // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
- // See the comment in get_scale() for further information.
- Basis m = orthonormalized();
- real_t det = m.determinant();
- if (det < 0) {
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- m.scale(Vector3(-1, -1, -1));
- }
- return m.get_euler(p_order);
- }
- Quaternion Basis::get_rotation_quaternion() const {
- // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
- // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
- // See the comment in get_scale() for further information.
- Basis m = orthonormalized();
- real_t det = m.determinant();
- if (det < 0) {
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- m.scale(Vector3(-1, -1, -1));
- }
- return m.get_quaternion();
- }
- void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) {
- // Takes two vectors and rotates the basis from the first vector to the second vector.
- // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
- const Vector3 axis = p_start_direction.cross(p_end_direction).normalized();
- if (axis.length_squared() != 0) {
- real_t dot = p_start_direction.dot(p_end_direction);
- dot = CLAMP(dot, -1.0f, 1.0f);
- const real_t angle_rads = Math::acos(dot);
- *this = Basis(axis, angle_rads) * (*this);
- }
- }
- void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
- // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
- // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
- // See the comment in get_scale() for further information.
- Basis m = orthonormalized();
- real_t det = m.determinant();
- if (det < 0) {
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- m.scale(Vector3(-1, -1, -1));
- }
- m.get_axis_angle(p_axis, p_angle);
- }
- void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
- // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
- // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
- // See the comment in get_scale() for further information.
- Basis m = transposed();
- m.orthonormalize();
- real_t det = m.determinant();
- if (det < 0) {
- // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
- m.scale(Vector3(-1, -1, -1));
- }
- m.get_axis_angle(p_axis, p_angle);
- p_angle = -p_angle;
- }
- Vector3 Basis::get_euler(EulerOrder p_order) const {
- switch (p_order) {
- case EulerOrder::XYZ: {
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
- Vector3 euler;
- real_t sy = rows[0][2];
- if (sy < (1.0f - (real_t)CMP_EPSILON)) {
- if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
- // is this a pure Y rotation?
- if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = 0;
- euler.y = atan2(rows[0][2], rows[0][0]);
- euler.z = 0;
- } else {
- euler.x = Math::atan2(-rows[1][2], rows[2][2]);
- euler.y = Math::asin(sy);
- euler.z = Math::atan2(-rows[0][1], rows[0][0]);
- }
- } else {
- euler.x = Math::atan2(rows[2][1], rows[1][1]);
- euler.y = -Math_PI / 2.0f;
- euler.z = 0.0f;
- }
- } else {
- euler.x = Math::atan2(rows[2][1], rows[1][1]);
- euler.y = Math_PI / 2.0f;
- euler.z = 0.0f;
- }
- return euler;
- }
- case EulerOrder::XZY: {
- // Euler angles in XZY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy -sz cz*sy
- // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
- // cy*sx*sz cz*sx cx*cy+sx*sz*sy
- Vector3 euler;
- real_t sz = rows[0][1];
- if (sz < (1.0f - (real_t)CMP_EPSILON)) {
- if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
- euler.x = Math::atan2(rows[2][1], rows[1][1]);
- euler.y = Math::atan2(rows[0][2], rows[0][0]);
- euler.z = Math::asin(-sz);
- } else {
- // It's -1
- euler.x = -Math::atan2(rows[1][2], rows[2][2]);
- euler.y = 0.0f;
- euler.z = Math_PI / 2.0f;
- }
- } else {
- // It's 1
- euler.x = -Math::atan2(rows[1][2], rows[2][2]);
- euler.y = 0.0f;
- euler.z = -Math_PI / 2.0f;
- }
- return euler;
- }
- case EulerOrder::YXZ: {
- // Euler angles in YXZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
- // cx*sz cx*cz -sx
- // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
- Vector3 euler;
- real_t m12 = rows[1][2];
- if (m12 < (1 - (real_t)CMP_EPSILON)) {
- if (m12 > -(1 - (real_t)CMP_EPSILON)) {
- // is this a pure X rotation?
- if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) {
- // return the simplest form (human friendlier in editor and scripts)
- euler.x = atan2(-m12, rows[1][1]);
- euler.y = 0;
- euler.z = 0;
- } else {
- euler.x = asin(-m12);
- euler.y = atan2(rows[0][2], rows[2][2]);
- euler.z = atan2(rows[1][0], rows[1][1]);
- }
- } else { // m12 == -1
- euler.x = Math_PI * 0.5f;
- euler.y = atan2(rows[0][1], rows[0][0]);
- euler.z = 0;
- }
- } else { // m12 == 1
- euler.x = -Math_PI * 0.5f;
- euler.y = -atan2(rows[0][1], rows[0][0]);
- euler.z = 0;
- }
- return euler;
- }
- case EulerOrder::YZX: {
- // Euler angles in YZX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
- // sz cz*cx -cz*sx
- // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
- Vector3 euler;
- real_t sz = rows[1][0];
- if (sz < (1.0f - (real_t)CMP_EPSILON)) {
- if (sz > -(1.0f - (real_t)CMP_EPSILON)) {
- euler.x = Math::atan2(-rows[1][2], rows[1][1]);
- euler.y = Math::atan2(-rows[2][0], rows[0][0]);
- euler.z = Math::asin(sz);
- } else {
- // It's -1
- euler.x = Math::atan2(rows[2][1], rows[2][2]);
- euler.y = 0.0f;
- euler.z = -Math_PI / 2.0f;
- }
- } else {
- // It's 1
- euler.x = Math::atan2(rows[2][1], rows[2][2]);
- euler.y = 0.0f;
- euler.z = Math_PI / 2.0f;
- }
- return euler;
- } break;
- case EulerOrder::ZXY: {
- // Euler angles in ZXY convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
- // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
- // -cx*sy sx cx*cy
- Vector3 euler;
- real_t sx = rows[2][1];
- if (sx < (1.0f - (real_t)CMP_EPSILON)) {
- if (sx > -(1.0f - (real_t)CMP_EPSILON)) {
- euler.x = Math::asin(sx);
- euler.y = Math::atan2(-rows[2][0], rows[2][2]);
- euler.z = Math::atan2(-rows[0][1], rows[1][1]);
- } else {
- // It's -1
- euler.x = -Math_PI / 2.0f;
- euler.y = Math::atan2(rows[0][2], rows[0][0]);
- euler.z = 0;
- }
- } else {
- // It's 1
- euler.x = Math_PI / 2.0f;
- euler.y = Math::atan2(rows[0][2], rows[0][0]);
- euler.z = 0;
- }
- return euler;
- } break;
- case EulerOrder::ZYX: {
- // Euler angles in ZYX convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
- // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
- // -sy cy*sx cy*cx
- Vector3 euler;
- real_t sy = rows[2][0];
- if (sy < (1.0f - (real_t)CMP_EPSILON)) {
- if (sy > -(1.0f - (real_t)CMP_EPSILON)) {
- euler.x = Math::atan2(rows[2][1], rows[2][2]);
- euler.y = Math::asin(-sy);
- euler.z = Math::atan2(rows[1][0], rows[0][0]);
- } else {
- // It's -1
- euler.x = 0;
- euler.y = Math_PI / 2.0f;
- euler.z = -Math::atan2(rows[0][1], rows[1][1]);
- }
- } else {
- // It's 1
- euler.x = 0;
- euler.y = -Math_PI / 2.0f;
- euler.z = -Math::atan2(rows[0][1], rows[1][1]);
- }
- return euler;
- }
- default: {
- ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
- }
- }
- return Vector3();
- }
- void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
- real_t c, s;
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Basis xmat(1, 0, 0, 0, c, -s, 0, s, c);
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c);
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1);
- switch (p_order) {
- case EulerOrder::XYZ: {
- *this = xmat * (ymat * zmat);
- } break;
- case EulerOrder::XZY: {
- *this = xmat * zmat * ymat;
- } break;
- case EulerOrder::YXZ: {
- *this = ymat * xmat * zmat;
- } break;
- case EulerOrder::YZX: {
- *this = ymat * zmat * xmat;
- } break;
- case EulerOrder::ZXY: {
- *this = zmat * xmat * ymat;
- } break;
- case EulerOrder::ZYX: {
- *this = zmat * ymat * xmat;
- } break;
- default: {
- ERR_FAIL_MSG("Invalid order parameter for set_euler(vec3,order)");
- }
- }
- }
- bool Basis::is_equal_approx(const Basis &p_basis) const {
- return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
- }
- bool Basis::is_finite() const {
- return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite();
- }
- bool Basis::operator==(const Basis &p_matrix) const {
- for (int i = 0; i < 3; i++) {
- for (int j = 0; j < 3; j++) {
- if (rows[i][j] != p_matrix.rows[i][j]) {
- return false;
- }
- }
- }
- return true;
- }
- bool Basis::operator!=(const Basis &p_matrix) const {
- return (!(*this == p_matrix));
- }
- Basis::operator String() const {
- return "[X: " + get_column(0).operator String() +
- ", Y: " + get_column(1).operator String() +
- ", Z: " + get_column(2).operator String() + "]";
- }
- Quaternion Basis::get_quaternion() const {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors.");
- #endif
- /* Allow getting a quaternion from an unnormalized transform */
- Basis m = *this;
- real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
- real_t temp[4];
- if (trace > 0.0f) {
- real_t s = Math::sqrt(trace + 1.0f);
- temp[3] = (s * 0.5f);
- s = 0.5f / s;
- temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
- temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
- temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
- } else {
- int i = m.rows[0][0] < m.rows[1][1]
- ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
- : (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
- real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
- temp[i] = s * 0.5f;
- s = 0.5f / s;
- temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
- temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
- temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
- }
- return Quaternion(temp[0], temp[1], temp[2], temp[3]);
- }
- void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
- /* checking this is a bad idea, because obtaining from scaled transform is a valid use case
- #ifdef MATH_CHECKS
- ERR_FAIL_COND(!is_rotation());
- #endif
- */
- // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
- real_t x, y, z; // Variables for result.
- if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
- // Singularity found.
- // First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
- if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
- // This singularity is identity matrix so angle = 0.
- r_axis = Vector3(0, 1, 0);
- r_angle = 0;
- return;
- }
- // Otherwise this singularity is angle = 180.
- real_t xx = (rows[0][0] + 1) / 2;
- real_t yy = (rows[1][1] + 1) / 2;
- real_t zz = (rows[2][2] + 1) / 2;
- real_t xy = (rows[0][1] + rows[1][0]) / 4;
- real_t xz = (rows[0][2] + rows[2][0]) / 4;
- real_t yz = (rows[1][2] + rows[2][1]) / 4;
- if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
- if (xx < CMP_EPSILON) {
- x = 0;
- y = Math_SQRT12;
- z = Math_SQRT12;
- } else {
- x = Math::sqrt(xx);
- y = xy / x;
- z = xz / x;
- }
- } else if (yy > zz) { // rows[1][1] is the largest diagonal term.
- if (yy < CMP_EPSILON) {
- x = Math_SQRT12;
- y = 0;
- z = Math_SQRT12;
- } else {
- y = Math::sqrt(yy);
- x = xy / y;
- z = yz / y;
- }
- } else { // rows[2][2] is the largest diagonal term so base result on this.
- if (zz < CMP_EPSILON) {
- x = Math_SQRT12;
- y = Math_SQRT12;
- z = 0;
- } else {
- z = Math::sqrt(zz);
- x = xz / z;
- y = yz / z;
- }
- }
- r_axis = Vector3(x, y, z);
- r_angle = Math_PI;
- return;
- }
- // As we have reached here there are no singularities so we can handle normally.
- double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize.
- if (Math::abs(s) < CMP_EPSILON) {
- // Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
- s = 1;
- }
- x = (rows[2][1] - rows[1][2]) / s;
- y = (rows[0][2] - rows[2][0]) / s;
- z = (rows[1][0] - rows[0][1]) / s;
- r_axis = Vector3(x, y, z);
- // acos does clamping.
- r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
- }
- void Basis::set_quaternion(const Quaternion &p_quaternion) {
- real_t d = p_quaternion.length_squared();
- real_t s = 2.0f / d;
- real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
- real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
- real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
- real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
- set(1.0f - (yy + zz), xy - wz, xz + wy,
- xy + wz, 1.0f - (xx + zz), yz - wx,
- xz - wy, yz + wx, 1.0f - (xx + yy));
- }
- void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
- // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");
- #endif
- Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
- real_t cosine = Math::cos(p_angle);
- rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
- rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
- rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);
- real_t sine = Math::sin(p_angle);
- real_t t = 1 - cosine;
- real_t xyzt = p_axis.x * p_axis.y * t;
- real_t zyxs = p_axis.z * sine;
- rows[0][1] = xyzt - zyxs;
- rows[1][0] = xyzt + zyxs;
- xyzt = p_axis.x * p_axis.z * t;
- zyxs = p_axis.y * sine;
- rows[0][2] = xyzt + zyxs;
- rows[2][0] = xyzt - zyxs;
- xyzt = p_axis.y * p_axis.z * t;
- zyxs = p_axis.x * sine;
- rows[1][2] = xyzt - zyxs;
- rows[2][1] = xyzt + zyxs;
- }
- void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) {
- _set_diagonal(p_scale);
- rotate(p_axis, p_angle);
- }
- void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) {
- _set_diagonal(p_scale);
- rotate(p_euler, p_order);
- }
- void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
- _set_diagonal(p_scale);
- rotate(p_quaternion);
- }
- // This also sets the non-diagonal elements to 0, which is misleading from the
- // name, so we want this method to be private. Use `from_scale` externally.
- void Basis::_set_diagonal(const Vector3 &p_diag) {
- rows[0][0] = p_diag.x;
- rows[0][1] = 0;
- rows[0][2] = 0;
- rows[1][0] = 0;
- rows[1][1] = p_diag.y;
- rows[1][2] = 0;
- rows[2][0] = 0;
- rows[2][1] = 0;
- rows[2][2] = p_diag.z;
- }
- Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
- Basis b;
- b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight);
- b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight);
- b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight);
- return b;
- }
- Basis Basis::slerp(const Basis &p_to, const real_t &p_weight) const {
- //consider scale
- Quaternion from(*this);
- Quaternion to(p_to);
- Basis b(from.slerp(to, p_weight));
- b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight);
- b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight);
- b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight);
- return b;
- }
- void Basis::rotate_sh(real_t *p_values) {
- // code by John Hable
- // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
- // this code is Public Domain
- const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
- const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
- const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))
- const static real_t s_c_scale = 1.0 / 0.91529123286551084;
- const static real_t s_c_scale_inv = 0.91529123286551084;
- const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
- const static real_t s_c4_div_c3 = s_c4 / s_c3;
- const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;
- const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
- const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
- const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
- real_t m00 = rows[0][0];
- real_t m01 = rows[0][1];
- real_t m02 = rows[0][2];
- real_t m10 = rows[1][0];
- real_t m11 = rows[1][1];
- real_t m12 = rows[1][2];
- real_t m20 = rows[2][0];
- real_t m21 = rows[2][1];
- real_t m22 = rows[2][2];
- p_values[0] = src[0];
- p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
- p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
- p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];
- real_t sh0 = src[7] + src[8] + src[8] - src[5];
- real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
- real_t sh2 = src[4];
- real_t sh3 = -src[7];
- real_t sh4 = -src[5];
- // Rotations. R0 and R1 just use the raw matrix columns
- real_t r2x = m00 + m01;
- real_t r2y = m10 + m11;
- real_t r2z = m20 + m21;
- real_t r3x = m00 + m02;
- real_t r3y = m10 + m12;
- real_t r3z = m20 + m22;
- real_t r4x = m01 + m02;
- real_t r4y = m11 + m12;
- real_t r4z = m21 + m22;
- // dense matrix multiplication one column at a time
- // column 0
- real_t sh0_x = sh0 * m00;
- real_t sh0_y = sh0 * m10;
- real_t d0 = sh0_x * m10;
- real_t d1 = sh0_y * m20;
- real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
- real_t d3 = sh0_x * m20;
- real_t d4 = sh0_x * m00 - sh0_y * m10;
- // column 1
- real_t sh1_x = sh1 * m02;
- real_t sh1_y = sh1 * m12;
- d0 += sh1_x * m12;
- d1 += sh1_y * m22;
- d2 += sh1 * (m22 * m22 + s_c4_div_c3);
- d3 += sh1_x * m22;
- d4 += sh1_x * m02 - sh1_y * m12;
- // column 2
- real_t sh2_x = sh2 * r2x;
- real_t sh2_y = sh2 * r2y;
- d0 += sh2_x * r2y;
- d1 += sh2_y * r2z;
- d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
- d3 += sh2_x * r2z;
- d4 += sh2_x * r2x - sh2_y * r2y;
- // column 3
- real_t sh3_x = sh3 * r3x;
- real_t sh3_y = sh3 * r3y;
- d0 += sh3_x * r3y;
- d1 += sh3_y * r3z;
- d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
- d3 += sh3_x * r3z;
- d4 += sh3_x * r3x - sh3_y * r3y;
- // column 4
- real_t sh4_x = sh4 * r4x;
- real_t sh4_y = sh4 * r4y;
- d0 += sh4_x * r4y;
- d1 += sh4_y * r4z;
- d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
- d3 += sh4_x * r4z;
- d4 += sh4_x * r4x - sh4_y * r4y;
- // extra multipliers
- p_values[4] = d0;
- p_values[5] = -d1;
- p_values[6] = d2 * s_scale_dst2;
- p_values[7] = -d3;
- p_values[8] = d4 * s_scale_dst4;
- }
- Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) {
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero.");
- ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero.");
- #endif
- Vector3 v_z = p_target.normalized();
- if (!p_use_model_front) {
- v_z = -v_z;
- }
- Vector3 v_x = p_up.cross(v_z);
- #ifdef MATH_CHECKS
- ERR_FAIL_COND_V_MSG(v_x.is_zero_approx(), Basis(), "The target vector and up vector can't be parallel to each other.");
- #endif
- v_x.normalize();
- Vector3 v_y = v_z.cross(v_x);
- Basis basis;
- basis.set_columns(v_x, v_y, v_z);
- return basis;
- }
|