sshdes.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. #include <assert.h>
  2. #include "ssh.h"
  3. /* des.c - implementation of DES
  4. */
  5. /*
  6. * Description of DES
  7. * ------------------
  8. *
  9. * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
  10. * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
  11. * And S-boxes are indexed by six consecutive bits, not by the outer two
  12. * followed by the middle four.
  13. *
  14. * The DES encryption routine requires a 64-bit input, and a key schedule K
  15. * containing 16 48-bit elements.
  16. *
  17. * First the input is permuted by the initial permutation IP.
  18. * Then the input is split into 32-bit words L and R. (L is the MSW.)
  19. * Next, 16 rounds. In each round:
  20. * (L, R) <- (R, L xor f(R, K[i]))
  21. * Then the pre-output words L and R are swapped.
  22. * Then L and R are glued back together into a 64-bit word. (L is the MSW,
  23. * again, but since we just swapped them, the MSW is the R that came out
  24. * of the last round.)
  25. * The 64-bit output block is permuted by the inverse of IP and returned.
  26. *
  27. * Decryption is identical except that the elements of K are used in the
  28. * opposite order. (This wouldn't work if that word swap didn't happen.)
  29. *
  30. * The function f, used in each round, accepts a 32-bit word R and a
  31. * 48-bit key block K. It produces a 32-bit output.
  32. *
  33. * First R is expanded to 48 bits using the bit-selection function E.
  34. * The resulting 48-bit block is XORed with the key block K to produce
  35. * a 48-bit block X.
  36. * This block X is split into eight groups of 6 bits. Each group of 6
  37. * bits is then looked up in one of the eight S-boxes to convert
  38. * it to 4 bits. These eight groups of 4 bits are glued back
  39. * together to produce a 32-bit preoutput block.
  40. * The preoutput block is permuted using the permutation P and returned.
  41. *
  42. * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
  43. * the approved input format for the key is a 64-bit word, eight of the
  44. * bits are discarded, so the actual quantity of key used is 56 bits.
  45. *
  46. * First the input key is converted to two 28-bit words C and D using
  47. * the bit-selection function PC1.
  48. * Then 16 rounds of key setup occur. In each round, C and D are each
  49. * rotated left by either 1 or 2 bits (depending on which round), and
  50. * then converted into a key schedule element using the bit-selection
  51. * function PC2.
  52. *
  53. * That's the actual algorithm. Now for the tedious details: all those
  54. * painful permutations and lookup tables.
  55. *
  56. * IP is a 64-to-64 bit permutation. Its output contains the following
  57. * bits of its input (listed in order MSB to LSB of output).
  58. *
  59. * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
  60. * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
  61. * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
  62. * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
  63. *
  64. * E is a 32-to-48 bit selection function. Its output contains the following
  65. * bits of its input (listed in order MSB to LSB of output).
  66. *
  67. * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
  68. * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
  69. *
  70. * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
  71. * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
  72. * The S-boxes are listed below. The first S-box listed is applied to the
  73. * most significant six bits of the block X; the last one is applied to the
  74. * least significant.
  75. *
  76. * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
  77. * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
  78. * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
  79. * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
  80. *
  81. * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
  82. * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
  83. * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
  84. * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
  85. *
  86. * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
  87. * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
  88. * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
  89. * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
  90. *
  91. * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
  92. * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
  93. * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
  94. * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
  95. *
  96. * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
  97. * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
  98. * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
  99. * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
  100. *
  101. * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
  102. * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
  103. * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
  104. * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
  105. *
  106. * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
  107. * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
  108. * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
  109. * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
  110. *
  111. * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
  112. * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
  113. * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
  114. * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
  115. *
  116. * P is a 32-to-32 bit permutation. Its output contains the following
  117. * bits of its input (listed in order MSB to LSB of output).
  118. *
  119. * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
  120. * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
  121. *
  122. * PC1 is a 64-to-56 bit selection function. Its output is in two words,
  123. * C and D. The word C contains the following bits of its input (listed
  124. * in order MSB to LSB of output).
  125. *
  126. * 7 15 23 31 39 47 55 63 6 14 22 30 38 46
  127. * 54 62 5 13 21 29 37 45 53 61 4 12 20 28
  128. *
  129. * And the word D contains these bits.
  130. *
  131. * 1 9 17 25 33 41 49 57 2 10 18 26 34 42
  132. * 50 58 3 11 19 27 35 43 51 59 36 44 52 60
  133. *
  134. * PC2 is a 56-to-48 bit selection function. Its input is in two words,
  135. * C and D. These are treated as one 56-bit word (with C more significant,
  136. * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
  137. * 0 of the word are bits 27 to 0 of D). The output contains the following
  138. * bits of this 56-bit input word (listed in order MSB to LSB of output).
  139. *
  140. * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
  141. * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
  142. */
  143. /*
  144. * Implementation details
  145. * ----------------------
  146. *
  147. * If you look at the code in this module, you'll find it looks
  148. * nothing _like_ the above algorithm. Here I explain the
  149. * differences...
  150. *
  151. * Key setup has not been heavily optimised here. We are not
  152. * concerned with key agility: we aren't codebreakers. We don't
  153. * mind a little delay (and it really is a little one; it may be a
  154. * factor of five or so slower than it could be but it's still not
  155. * an appreciable length of time) while setting up. The only tweaks
  156. * in the key setup are ones which change the format of the key
  157. * schedule to speed up the actual encryption. I'll describe those
  158. * below.
  159. *
  160. * The first and most obvious optimisation is the S-boxes. Since
  161. * each S-box always targets the same four bits in the final 32-bit
  162. * word, so the output from (for example) S-box 0 must always be
  163. * shifted left 28 bits, we can store the already-shifted outputs
  164. * in the lookup tables. This reduces lookup-and-shift to lookup,
  165. * so the S-box step is now just a question of ORing together eight
  166. * table lookups.
  167. *
  168. * The permutation P is just a bit order change; it's invariant
  169. * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
  170. * can apply P to every entry of the S-box tables and then we don't
  171. * have to do it in the code of f(). This yields a set of tables
  172. * which might be called SP-boxes.
  173. *
  174. * The bit-selection function E is our next target. Note that E is
  175. * immediately followed by the operation of splitting into 6-bit
  176. * chunks. Examining the 6-bit chunks coming out of E we notice
  177. * they're all contiguous within the word (speaking cyclically -
  178. * the end two wrap round); so we can extract those bit strings
  179. * individually rather than explicitly running E. This would yield
  180. * code such as
  181. *
  182. * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
  183. * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
  184. *
  185. * and so on; and the key schedule preparation would have to
  186. * provide each 6-bit chunk separately.
  187. *
  188. * Really we'd like to XOR in the key schedule element before
  189. * looking up bit strings in R. This we can't do, naively, because
  190. * the 6-bit strings we want overlap. But look at the strings:
  191. *
  192. * 3322222222221111111111
  193. * bit 10987654321098765432109876543210
  194. *
  195. * box0 XXXXX X
  196. * box1 XXXXXX
  197. * box2 XXXXXX
  198. * box3 XXXXXX
  199. * box4 XXXXXX
  200. * box5 XXXXXX
  201. * box6 XXXXXX
  202. * box7 X XXXXX
  203. *
  204. * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
  205. * overlap with each other. Neither do the ones for boxes 1, 3, 5
  206. * and 7. So we could provide the key schedule in the form of two
  207. * words that we can separately XOR into R, and then every S-box
  208. * index is available as a (cyclically) contiguous 6-bit substring
  209. * of one or the other of the results.
  210. *
  211. * The comments in Eric Young's libdes implementation point out
  212. * that two of these bit strings require a rotation (rather than a
  213. * simple shift) to extract. It's unavoidable that at least _one_
  214. * must do; but we can actually run the whole inner algorithm (all
  215. * 16 rounds) rotated one bit to the left, so that what the `real'
  216. * DES description sees as L=0x80000001 we see as L=0x00000003.
  217. * This requires rotating all our SP-box entries one bit to the
  218. * left, and rotating each word of the key schedule elements one to
  219. * the left, and rotating L and R one bit left just after IP and
  220. * one bit right again just before FP. And in each round we convert
  221. * a rotate into a shift, so we've saved a few per cent.
  222. *
  223. * That's about it for the inner loop; the SP-box tables as listed
  224. * below are what I've described here (the original S value,
  225. * shifted to its final place in the input to P, run through P, and
  226. * then rotated one bit left). All that remains is to optimise the
  227. * initial permutation IP.
  228. *
  229. * IP is not an arbitrary permutation. It has the nice property
  230. * that if you take any bit number, write it in binary (6 bits),
  231. * permute those 6 bits and invert some of them, you get the final
  232. * position of that bit. Specifically, the bit whose initial
  233. * position is given (in binary) as fedcba ends up in position
  234. * AcbFED (where a capital letter denotes the inverse of a bit).
  235. *
  236. * We have the 64-bit data in two 32-bit words L and R, where bits
  237. * in L are those with f=1 and bits in R are those with f=0. We
  238. * note that we can do a simple transformation: suppose we exchange
  239. * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
  240. * the bit fedcba to be in position cedfba - we've `swapped' bits c
  241. * and f in the position of each bit!
  242. *
  243. * Better still, this transformation is easy. In the example above,
  244. * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
  245. * are 0xF0F0F0F0. So we can do
  246. *
  247. * difference = ((R >> 4) ^ L) & 0x0F0F0F0F
  248. * R ^= (difference << 4)
  249. * L ^= difference
  250. *
  251. * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
  252. * Also, we can invert the bit at the top just by exchanging L and
  253. * R. So in a few swaps and a few of these bit operations we can
  254. * do:
  255. *
  256. * Initially the position of bit fedcba is fedcba
  257. * Swap L with R to make it Fedcba
  258. * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
  259. * Perform bitswap(16,0x0000FFFF) to make it ecdFba
  260. * Swap L with R to make it EcdFba
  261. * Perform bitswap( 2,0x33333333) to make it bcdFEa
  262. * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
  263. * Swap L with R to make it DcbFEa
  264. * Perform bitswap( 1,0x55555555) to make it acbFED
  265. * Swap L with R to make it AcbFED
  266. *
  267. * (In the actual code the four swaps are implicit: R and L are
  268. * simply used the other way round in the first, second and last
  269. * bitswap operations.)
  270. *
  271. * The final permutation is just the inverse of IP, so it can be
  272. * performed by a similar set of operations.
  273. */
  274. typedef struct {
  275. word32 k0246[16], k1357[16];
  276. word32 eiv0, eiv1;
  277. word32 div0, div1;
  278. } DESContext;
  279. #define rotl(x, c) ( (x << c) | (x >> (32-c)) )
  280. #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
  281. static word32 bitsel(word32 *input, const int *bitnums, int size) {
  282. word32 ret = 0;
  283. while (size--) {
  284. int bitpos = *bitnums++;
  285. ret <<= 1;
  286. if (bitpos >= 0)
  287. ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
  288. }
  289. return ret;
  290. }
  291. void des_key_setup(word32 key_msw, word32 key_lsw, DESContext *sched) {
  292. static const int PC1_Cbits[] = {
  293. 7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
  294. 54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
  295. };
  296. static const int PC1_Dbits[] = {
  297. 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
  298. 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
  299. };
  300. /*
  301. * The bit numbers in the two lists below don't correspond to
  302. * the ones in the above description of PC2, because in the
  303. * above description C and D are concatenated so `bit 28' means
  304. * bit 0 of C. In this implementation we're using the standard
  305. * `bitsel' function above and C is in the second word, so bit
  306. * 0 of C is addressed by writing `32' here.
  307. */
  308. static const int PC2_0246[] = {
  309. 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
  310. 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
  311. };
  312. static const int PC2_1357[] = {
  313. -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
  314. -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
  315. };
  316. static const int leftshifts[] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};
  317. word32 C, D;
  318. word32 buf[2];
  319. int i;
  320. buf[0] = key_lsw;
  321. buf[1] = key_msw;
  322. C = bitsel(buf, PC1_Cbits, 28);
  323. D = bitsel(buf, PC1_Dbits, 28);
  324. for (i = 0; i < 16; i++) {
  325. C = rotl28(C, leftshifts[i]);
  326. D = rotl28(D, leftshifts[i]);
  327. buf[0] = D;
  328. buf[1] = C;
  329. sched->k0246[i] = bitsel(buf, PC2_0246, 32);
  330. sched->k1357[i] = bitsel(buf, PC2_1357, 32);
  331. }
  332. sched->eiv0 = sched->eiv1 = 0;
  333. sched->div0 = sched->div1 = 0; /* for good measure */
  334. }
  335. static const word32 SPboxes[8][64] = {
  336. {0x01010400, 0x00000000, 0x00010000, 0x01010404,
  337. 0x01010004, 0x00010404, 0x00000004, 0x00010000,
  338. 0x00000400, 0x01010400, 0x01010404, 0x00000400,
  339. 0x01000404, 0x01010004, 0x01000000, 0x00000004,
  340. 0x00000404, 0x01000400, 0x01000400, 0x00010400,
  341. 0x00010400, 0x01010000, 0x01010000, 0x01000404,
  342. 0x00010004, 0x01000004, 0x01000004, 0x00010004,
  343. 0x00000000, 0x00000404, 0x00010404, 0x01000000,
  344. 0x00010000, 0x01010404, 0x00000004, 0x01010000,
  345. 0x01010400, 0x01000000, 0x01000000, 0x00000400,
  346. 0x01010004, 0x00010000, 0x00010400, 0x01000004,
  347. 0x00000400, 0x00000004, 0x01000404, 0x00010404,
  348. 0x01010404, 0x00010004, 0x01010000, 0x01000404,
  349. 0x01000004, 0x00000404, 0x00010404, 0x01010400,
  350. 0x00000404, 0x01000400, 0x01000400, 0x00000000,
  351. 0x00010004, 0x00010400, 0x00000000, 0x01010004L},
  352. {0x80108020, 0x80008000, 0x00008000, 0x00108020,
  353. 0x00100000, 0x00000020, 0x80100020, 0x80008020,
  354. 0x80000020, 0x80108020, 0x80108000, 0x80000000,
  355. 0x80008000, 0x00100000, 0x00000020, 0x80100020,
  356. 0x00108000, 0x00100020, 0x80008020, 0x00000000,
  357. 0x80000000, 0x00008000, 0x00108020, 0x80100000,
  358. 0x00100020, 0x80000020, 0x00000000, 0x00108000,
  359. 0x00008020, 0x80108000, 0x80100000, 0x00008020,
  360. 0x00000000, 0x00108020, 0x80100020, 0x00100000,
  361. 0x80008020, 0x80100000, 0x80108000, 0x00008000,
  362. 0x80100000, 0x80008000, 0x00000020, 0x80108020,
  363. 0x00108020, 0x00000020, 0x00008000, 0x80000000,
  364. 0x00008020, 0x80108000, 0x00100000, 0x80000020,
  365. 0x00100020, 0x80008020, 0x80000020, 0x00100020,
  366. 0x00108000, 0x00000000, 0x80008000, 0x00008020,
  367. 0x80000000, 0x80100020, 0x80108020, 0x00108000L},
  368. {0x00000208, 0x08020200, 0x00000000, 0x08020008,
  369. 0x08000200, 0x00000000, 0x00020208, 0x08000200,
  370. 0x00020008, 0x08000008, 0x08000008, 0x00020000,
  371. 0x08020208, 0x00020008, 0x08020000, 0x00000208,
  372. 0x08000000, 0x00000008, 0x08020200, 0x00000200,
  373. 0x00020200, 0x08020000, 0x08020008, 0x00020208,
  374. 0x08000208, 0x00020200, 0x00020000, 0x08000208,
  375. 0x00000008, 0x08020208, 0x00000200, 0x08000000,
  376. 0x08020200, 0x08000000, 0x00020008, 0x00000208,
  377. 0x00020000, 0x08020200, 0x08000200, 0x00000000,
  378. 0x00000200, 0x00020008, 0x08020208, 0x08000200,
  379. 0x08000008, 0x00000200, 0x00000000, 0x08020008,
  380. 0x08000208, 0x00020000, 0x08000000, 0x08020208,
  381. 0x00000008, 0x00020208, 0x00020200, 0x08000008,
  382. 0x08020000, 0x08000208, 0x00000208, 0x08020000,
  383. 0x00020208, 0x00000008, 0x08020008, 0x00020200L},
  384. {0x00802001, 0x00002081, 0x00002081, 0x00000080,
  385. 0x00802080, 0x00800081, 0x00800001, 0x00002001,
  386. 0x00000000, 0x00802000, 0x00802000, 0x00802081,
  387. 0x00000081, 0x00000000, 0x00800080, 0x00800001,
  388. 0x00000001, 0x00002000, 0x00800000, 0x00802001,
  389. 0x00000080, 0x00800000, 0x00002001, 0x00002080,
  390. 0x00800081, 0x00000001, 0x00002080, 0x00800080,
  391. 0x00002000, 0x00802080, 0x00802081, 0x00000081,
  392. 0x00800080, 0x00800001, 0x00802000, 0x00802081,
  393. 0x00000081, 0x00000000, 0x00000000, 0x00802000,
  394. 0x00002080, 0x00800080, 0x00800081, 0x00000001,
  395. 0x00802001, 0x00002081, 0x00002081, 0x00000080,
  396. 0x00802081, 0x00000081, 0x00000001, 0x00002000,
  397. 0x00800001, 0x00002001, 0x00802080, 0x00800081,
  398. 0x00002001, 0x00002080, 0x00800000, 0x00802001,
  399. 0x00000080, 0x00800000, 0x00002000, 0x00802080L},
  400. {0x00000100, 0x02080100, 0x02080000, 0x42000100,
  401. 0x00080000, 0x00000100, 0x40000000, 0x02080000,
  402. 0x40080100, 0x00080000, 0x02000100, 0x40080100,
  403. 0x42000100, 0x42080000, 0x00080100, 0x40000000,
  404. 0x02000000, 0x40080000, 0x40080000, 0x00000000,
  405. 0x40000100, 0x42080100, 0x42080100, 0x02000100,
  406. 0x42080000, 0x40000100, 0x00000000, 0x42000000,
  407. 0x02080100, 0x02000000, 0x42000000, 0x00080100,
  408. 0x00080000, 0x42000100, 0x00000100, 0x02000000,
  409. 0x40000000, 0x02080000, 0x42000100, 0x40080100,
  410. 0x02000100, 0x40000000, 0x42080000, 0x02080100,
  411. 0x40080100, 0x00000100, 0x02000000, 0x42080000,
  412. 0x42080100, 0x00080100, 0x42000000, 0x42080100,
  413. 0x02080000, 0x00000000, 0x40080000, 0x42000000,
  414. 0x00080100, 0x02000100, 0x40000100, 0x00080000,
  415. 0x00000000, 0x40080000, 0x02080100, 0x40000100L},
  416. {0x20000010, 0x20400000, 0x00004000, 0x20404010,
  417. 0x20400000, 0x00000010, 0x20404010, 0x00400000,
  418. 0x20004000, 0x00404010, 0x00400000, 0x20000010,
  419. 0x00400010, 0x20004000, 0x20000000, 0x00004010,
  420. 0x00000000, 0x00400010, 0x20004010, 0x00004000,
  421. 0x00404000, 0x20004010, 0x00000010, 0x20400010,
  422. 0x20400010, 0x00000000, 0x00404010, 0x20404000,
  423. 0x00004010, 0x00404000, 0x20404000, 0x20000000,
  424. 0x20004000, 0x00000010, 0x20400010, 0x00404000,
  425. 0x20404010, 0x00400000, 0x00004010, 0x20000010,
  426. 0x00400000, 0x20004000, 0x20000000, 0x00004010,
  427. 0x20000010, 0x20404010, 0x00404000, 0x20400000,
  428. 0x00404010, 0x20404000, 0x00000000, 0x20400010,
  429. 0x00000010, 0x00004000, 0x20400000, 0x00404010,
  430. 0x00004000, 0x00400010, 0x20004010, 0x00000000,
  431. 0x20404000, 0x20000000, 0x00400010, 0x20004010L},
  432. {0x00200000, 0x04200002, 0x04000802, 0x00000000,
  433. 0x00000800, 0x04000802, 0x00200802, 0x04200800,
  434. 0x04200802, 0x00200000, 0x00000000, 0x04000002,
  435. 0x00000002, 0x04000000, 0x04200002, 0x00000802,
  436. 0x04000800, 0x00200802, 0x00200002, 0x04000800,
  437. 0x04000002, 0x04200000, 0x04200800, 0x00200002,
  438. 0x04200000, 0x00000800, 0x00000802, 0x04200802,
  439. 0x00200800, 0x00000002, 0x04000000, 0x00200800,
  440. 0x04000000, 0x00200800, 0x00200000, 0x04000802,
  441. 0x04000802, 0x04200002, 0x04200002, 0x00000002,
  442. 0x00200002, 0x04000000, 0x04000800, 0x00200000,
  443. 0x04200800, 0x00000802, 0x00200802, 0x04200800,
  444. 0x00000802, 0x04000002, 0x04200802, 0x04200000,
  445. 0x00200800, 0x00000000, 0x00000002, 0x04200802,
  446. 0x00000000, 0x00200802, 0x04200000, 0x00000800,
  447. 0x04000002, 0x04000800, 0x00000800, 0x00200002L},
  448. {0x10001040, 0x00001000, 0x00040000, 0x10041040,
  449. 0x10000000, 0x10001040, 0x00000040, 0x10000000,
  450. 0x00040040, 0x10040000, 0x10041040, 0x00041000,
  451. 0x10041000, 0x00041040, 0x00001000, 0x00000040,
  452. 0x10040000, 0x10000040, 0x10001000, 0x00001040,
  453. 0x00041000, 0x00040040, 0x10040040, 0x10041000,
  454. 0x00001040, 0x00000000, 0x00000000, 0x10040040,
  455. 0x10000040, 0x10001000, 0x00041040, 0x00040000,
  456. 0x00041040, 0x00040000, 0x10041000, 0x00001000,
  457. 0x00000040, 0x10040040, 0x00001000, 0x00041040,
  458. 0x10001000, 0x00000040, 0x10000040, 0x10040000,
  459. 0x10040040, 0x10000000, 0x00040000, 0x10001040,
  460. 0x00000000, 0x10041040, 0x00040040, 0x10000040,
  461. 0x10040000, 0x10001000, 0x10001040, 0x00000000,
  462. 0x10041040, 0x00041000, 0x00041000, 0x00001040,
  463. 0x00001040, 0x00040040, 0x10000000, 0x10041000L}
  464. };
  465. #define f(R, K0246, K1357) (\
  466. s0246 = R ^ K0246, \
  467. s1357 = R ^ K1357, \
  468. s0246 = rotl(s0246, 28), \
  469. SPboxes[0] [(s0246 >> 24) & 0x3F] | \
  470. SPboxes[1] [(s1357 >> 24) & 0x3F] | \
  471. SPboxes[2] [(s0246 >> 16) & 0x3F] | \
  472. SPboxes[3] [(s1357 >> 16) & 0x3F] | \
  473. SPboxes[4] [(s0246 >> 8) & 0x3F] | \
  474. SPboxes[5] [(s1357 >> 8) & 0x3F] | \
  475. SPboxes[6] [(s0246 ) & 0x3F] | \
  476. SPboxes[7] [(s1357 ) & 0x3F])
  477. #define bitswap(L, R, n, mask) (\
  478. swap = mask & ( (R >> n) ^ L ), \
  479. R ^= swap << n, \
  480. L ^= swap)
  481. /* Initial permutation */
  482. #define IP(L, R) (\
  483. bitswap(R, L, 4, 0x0F0F0F0F), \
  484. bitswap(R, L, 16, 0x0000FFFF), \
  485. bitswap(L, R, 2, 0x33333333), \
  486. bitswap(L, R, 8, 0x00FF00FF), \
  487. bitswap(R, L, 1, 0x55555555))
  488. /* Final permutation */
  489. #define FP(L, R) (\
  490. bitswap(R, L, 1, 0x55555555), \
  491. bitswap(L, R, 8, 0x00FF00FF), \
  492. bitswap(L, R, 2, 0x33333333), \
  493. bitswap(R, L, 16, 0x0000FFFF), \
  494. bitswap(R, L, 4, 0x0F0F0F0F))
  495. void des_encipher(word32 *output, word32 L, word32 R, DESContext *sched) {
  496. word32 swap, s0246, s1357;
  497. IP(L, R);
  498. L = rotl(L, 1);
  499. R = rotl(R, 1);
  500. L ^= f(R, sched->k0246[ 0], sched->k1357[ 0]);
  501. R ^= f(L, sched->k0246[ 1], sched->k1357[ 1]);
  502. L ^= f(R, sched->k0246[ 2], sched->k1357[ 2]);
  503. R ^= f(L, sched->k0246[ 3], sched->k1357[ 3]);
  504. L ^= f(R, sched->k0246[ 4], sched->k1357[ 4]);
  505. R ^= f(L, sched->k0246[ 5], sched->k1357[ 5]);
  506. L ^= f(R, sched->k0246[ 6], sched->k1357[ 6]);
  507. R ^= f(L, sched->k0246[ 7], sched->k1357[ 7]);
  508. L ^= f(R, sched->k0246[ 8], sched->k1357[ 8]);
  509. R ^= f(L, sched->k0246[ 9], sched->k1357[ 9]);
  510. L ^= f(R, sched->k0246[10], sched->k1357[10]);
  511. R ^= f(L, sched->k0246[11], sched->k1357[11]);
  512. L ^= f(R, sched->k0246[12], sched->k1357[12]);
  513. R ^= f(L, sched->k0246[13], sched->k1357[13]);
  514. L ^= f(R, sched->k0246[14], sched->k1357[14]);
  515. R ^= f(L, sched->k0246[15], sched->k1357[15]);
  516. L = rotl(L, 31);
  517. R = rotl(R, 31);
  518. swap = L; L = R; R = swap;
  519. FP(L, R);
  520. output[0] = L;
  521. output[1] = R;
  522. }
  523. void des_decipher(word32 *output, word32 L, word32 R, DESContext *sched) {
  524. word32 swap, s0246, s1357;
  525. IP(L, R);
  526. L = rotl(L, 1);
  527. R = rotl(R, 1);
  528. L ^= f(R, sched->k0246[15], sched->k1357[15]);
  529. R ^= f(L, sched->k0246[14], sched->k1357[14]);
  530. L ^= f(R, sched->k0246[13], sched->k1357[13]);
  531. R ^= f(L, sched->k0246[12], sched->k1357[12]);
  532. L ^= f(R, sched->k0246[11], sched->k1357[11]);
  533. R ^= f(L, sched->k0246[10], sched->k1357[10]);
  534. L ^= f(R, sched->k0246[ 9], sched->k1357[ 9]);
  535. R ^= f(L, sched->k0246[ 8], sched->k1357[ 8]);
  536. L ^= f(R, sched->k0246[ 7], sched->k1357[ 7]);
  537. R ^= f(L, sched->k0246[ 6], sched->k1357[ 6]);
  538. L ^= f(R, sched->k0246[ 5], sched->k1357[ 5]);
  539. R ^= f(L, sched->k0246[ 4], sched->k1357[ 4]);
  540. L ^= f(R, sched->k0246[ 3], sched->k1357[ 3]);
  541. R ^= f(L, sched->k0246[ 2], sched->k1357[ 2]);
  542. L ^= f(R, sched->k0246[ 1], sched->k1357[ 1]);
  543. R ^= f(L, sched->k0246[ 0], sched->k1357[ 0]);
  544. L = rotl(L, 31);
  545. R = rotl(R, 31);
  546. swap = L; L = R; R = swap;
  547. FP(L, R);
  548. output[0] = L;
  549. output[1] = R;
  550. }
  551. #define GET_32BIT_MSB_FIRST(cp) \
  552. (((unsigned long)(unsigned char)(cp)[3]) | \
  553. ((unsigned long)(unsigned char)(cp)[2] << 8) | \
  554. ((unsigned long)(unsigned char)(cp)[1] << 16) | \
  555. ((unsigned long)(unsigned char)(cp)[0] << 24))
  556. #define PUT_32BIT_MSB_FIRST(cp, value) do { \
  557. (cp)[3] = (value); \
  558. (cp)[2] = (value) >> 8; \
  559. (cp)[1] = (value) >> 16; \
  560. (cp)[0] = (value) >> 24; } while (0)
  561. static void des_cbc_encrypt(unsigned char *dest, const unsigned char *src,
  562. unsigned int len, DESContext *sched) {
  563. word32 out[2], iv0, iv1;
  564. unsigned int i;
  565. assert((len & 7) == 0);
  566. iv0 = sched->eiv0;
  567. iv1 = sched->eiv1;
  568. for (i = 0; i < len; i += 8) {
  569. iv0 ^= GET_32BIT_MSB_FIRST(src); src += 4;
  570. iv1 ^= GET_32BIT_MSB_FIRST(src); src += 4;
  571. des_encipher(out, iv0, iv1, sched);
  572. iv0 = out[0];
  573. iv1 = out[1];
  574. PUT_32BIT_MSB_FIRST(dest, iv0); dest += 4;
  575. PUT_32BIT_MSB_FIRST(dest, iv1); dest += 4;
  576. }
  577. sched->eiv0 = iv0;
  578. sched->eiv1 = iv1;
  579. }
  580. static void des_cbc_decrypt(unsigned char *dest, const unsigned char *src,
  581. unsigned int len, DESContext *sched) {
  582. word32 out[2], iv0, iv1, xL, xR;
  583. unsigned int i;
  584. assert((len & 7) == 0);
  585. iv0 = sched->div0;
  586. iv1 = sched->div1;
  587. for (i = 0; i < len; i += 8) {
  588. xL = GET_32BIT_MSB_FIRST(src); src += 4;
  589. xR = GET_32BIT_MSB_FIRST(src); src += 4;
  590. des_decipher(out, xL, xR, sched);
  591. iv0 ^= out[0];
  592. iv1 ^= out[1];
  593. PUT_32BIT_MSB_FIRST(dest, iv0); dest += 4;
  594. PUT_32BIT_MSB_FIRST(dest, iv1); dest += 4;
  595. iv0 = xL;
  596. iv1 = xR;
  597. }
  598. sched->div0 = iv0;
  599. sched->div1 = iv1;
  600. }
  601. static void des_3cbc_encrypt(unsigned char *dest, const unsigned char *src,
  602. unsigned int len, DESContext *scheds) {
  603. des_cbc_encrypt(dest, src, len, &scheds[0]);
  604. des_cbc_decrypt(dest, src, len, &scheds[1]);
  605. des_cbc_encrypt(dest, src, len, &scheds[2]);
  606. }
  607. static void des_3cbc_decrypt(unsigned char *dest, const unsigned char *src,
  608. unsigned int len, DESContext *scheds) {
  609. des_cbc_decrypt(dest, src, len, &scheds[2]);
  610. des_cbc_encrypt(dest, src, len, &scheds[1]);
  611. des_cbc_decrypt(dest, src, len, &scheds[0]);
  612. }
  613. static DESContext keys[3];
  614. static void des3_sesskey(unsigned char *key) {
  615. des_key_setup(GET_32BIT_MSB_FIRST(key),
  616. GET_32BIT_MSB_FIRST(key+4), &keys[0]);
  617. des_key_setup(GET_32BIT_MSB_FIRST(key+8),
  618. GET_32BIT_MSB_FIRST(key+12), &keys[1]);
  619. des_key_setup(GET_32BIT_MSB_FIRST(key+16),
  620. GET_32BIT_MSB_FIRST(key+20), &keys[2]);
  621. logevent("Initialised triple-DES encryption");
  622. }
  623. static void des3_encrypt_blk(unsigned char *blk, int len) {
  624. des_3cbc_encrypt(blk, blk, len, keys);
  625. }
  626. static void des3_decrypt_blk(unsigned char *blk, int len) {
  627. des_3cbc_decrypt(blk, blk, len, keys);
  628. }
  629. struct ssh_cipher ssh_3des = {
  630. des3_sesskey,
  631. des3_encrypt_blk,
  632. des3_decrypt_blk
  633. };
  634. static void des_sesskey(unsigned char *key) {
  635. des_key_setup(GET_32BIT_MSB_FIRST(key),
  636. GET_32BIT_MSB_FIRST(key+4), &keys[0]);
  637. logevent("Initialised single-DES encryption");
  638. }
  639. static void des_encrypt_blk(unsigned char *blk, int len) {
  640. des_cbc_encrypt(blk, blk, len, keys);
  641. }
  642. static void des_decrypt_blk(unsigned char *blk, int len) {
  643. des_cbc_decrypt(blk, blk, len, keys);
  644. }
  645. struct ssh_cipher ssh_des = {
  646. des_sesskey,
  647. des_encrypt_blk,
  648. des_decrypt_blk
  649. };