123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710 |
- #include <assert.h>
- #include "ssh.h"
- /* des.c - implementation of DES
- */
- /*
- * Description of DES
- * ------------------
- *
- * Unlike the description in FIPS 46, I'm going to use _sensible_ indices:
- * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB.
- * And S-boxes are indexed by six consecutive bits, not by the outer two
- * followed by the middle four.
- *
- * The DES encryption routine requires a 64-bit input, and a key schedule K
- * containing 16 48-bit elements.
- *
- * First the input is permuted by the initial permutation IP.
- * Then the input is split into 32-bit words L and R. (L is the MSW.)
- * Next, 16 rounds. In each round:
- * (L, R) <- (R, L xor f(R, K[i]))
- * Then the pre-output words L and R are swapped.
- * Then L and R are glued back together into a 64-bit word. (L is the MSW,
- * again, but since we just swapped them, the MSW is the R that came out
- * of the last round.)
- * The 64-bit output block is permuted by the inverse of IP and returned.
- *
- * Decryption is identical except that the elements of K are used in the
- * opposite order. (This wouldn't work if that word swap didn't happen.)
- *
- * The function f, used in each round, accepts a 32-bit word R and a
- * 48-bit key block K. It produces a 32-bit output.
- *
- * First R is expanded to 48 bits using the bit-selection function E.
- * The resulting 48-bit block is XORed with the key block K to produce
- * a 48-bit block X.
- * This block X is split into eight groups of 6 bits. Each group of 6
- * bits is then looked up in one of the eight S-boxes to convert
- * it to 4 bits. These eight groups of 4 bits are glued back
- * together to produce a 32-bit preoutput block.
- * The preoutput block is permuted using the permutation P and returned.
- *
- * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although
- * the approved input format for the key is a 64-bit word, eight of the
- * bits are discarded, so the actual quantity of key used is 56 bits.
- *
- * First the input key is converted to two 28-bit words C and D using
- * the bit-selection function PC1.
- * Then 16 rounds of key setup occur. In each round, C and D are each
- * rotated left by either 1 or 2 bits (depending on which round), and
- * then converted into a key schedule element using the bit-selection
- * function PC2.
- *
- * That's the actual algorithm. Now for the tedious details: all those
- * painful permutations and lookup tables.
- *
- * IP is a 64-to-64 bit permutation. Its output contains the following
- * bits of its input (listed in order MSB to LSB of output).
- *
- * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60
- * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56
- * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61
- * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57
- *
- * E is a 32-to-48 bit selection function. Its output contains the following
- * bits of its input (listed in order MSB to LSB of output).
- *
- * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15
- * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31
- *
- * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a
- * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers.
- * The S-boxes are listed below. The first S-box listed is applied to the
- * most significant six bits of the block X; the last one is applied to the
- * least significant.
- *
- * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1
- * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8
- * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7
- * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13
- *
- * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14
- * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5
- * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2
- * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9
- *
- * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10
- * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1
- * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7
- * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12
- *
- * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3
- * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9
- * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8
- * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14
- *
- * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1
- * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6
- * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13
- * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3
- *
- * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5
- * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8
- * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10
- * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13
- *
- * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10
- * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6
- * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7
- * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12
- *
- * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4
- * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2
- * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13
- * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11
- *
- * P is a 32-to-32 bit permutation. Its output contains the following
- * bits of its input (listed in order MSB to LSB of output).
- *
- * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22
- * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7
- *
- * PC1 is a 64-to-56 bit selection function. Its output is in two words,
- * C and D. The word C contains the following bits of its input (listed
- * in order MSB to LSB of output).
- *
- * 7 15 23 31 39 47 55 63 6 14 22 30 38 46
- * 54 62 5 13 21 29 37 45 53 61 4 12 20 28
- *
- * And the word D contains these bits.
- *
- * 1 9 17 25 33 41 49 57 2 10 18 26 34 42
- * 50 58 3 11 19 27 35 43 51 59 36 44 52 60
- *
- * PC2 is a 56-to-48 bit selection function. Its input is in two words,
- * C and D. These are treated as one 56-bit word (with C more significant,
- * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to
- * 0 of the word are bits 27 to 0 of D). The output contains the following
- * bits of this 56-bit input word (listed in order MSB to LSB of output).
- *
- * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54
- * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24
- */
- /*
- * Implementation details
- * ----------------------
- *
- * If you look at the code in this module, you'll find it looks
- * nothing _like_ the above algorithm. Here I explain the
- * differences...
- *
- * Key setup has not been heavily optimised here. We are not
- * concerned with key agility: we aren't codebreakers. We don't
- * mind a little delay (and it really is a little one; it may be a
- * factor of five or so slower than it could be but it's still not
- * an appreciable length of time) while setting up. The only tweaks
- * in the key setup are ones which change the format of the key
- * schedule to speed up the actual encryption. I'll describe those
- * below.
- *
- * The first and most obvious optimisation is the S-boxes. Since
- * each S-box always targets the same four bits in the final 32-bit
- * word, so the output from (for example) S-box 0 must always be
- * shifted left 28 bits, we can store the already-shifted outputs
- * in the lookup tables. This reduces lookup-and-shift to lookup,
- * so the S-box step is now just a question of ORing together eight
- * table lookups.
- *
- * The permutation P is just a bit order change; it's invariant
- * with respect to OR, in that P(x)|P(y) = P(x|y). Therefore, we
- * can apply P to every entry of the S-box tables and then we don't
- * have to do it in the code of f(). This yields a set of tables
- * which might be called SP-boxes.
- *
- * The bit-selection function E is our next target. Note that E is
- * immediately followed by the operation of splitting into 6-bit
- * chunks. Examining the 6-bit chunks coming out of E we notice
- * they're all contiguous within the word (speaking cyclically -
- * the end two wrap round); so we can extract those bit strings
- * individually rather than explicitly running E. This would yield
- * code such as
- *
- * y |= SPboxes[0][ (rotl(R, 5) ^ top6bitsofK) & 0x3F ];
- * t |= SPboxes[1][ (rotl(R,11) ^ next6bitsofK) & 0x3F ];
- *
- * and so on; and the key schedule preparation would have to
- * provide each 6-bit chunk separately.
- *
- * Really we'd like to XOR in the key schedule element before
- * looking up bit strings in R. This we can't do, naively, because
- * the 6-bit strings we want overlap. But look at the strings:
- *
- * 3322222222221111111111
- * bit 10987654321098765432109876543210
- *
- * box0 XXXXX X
- * box1 XXXXXX
- * box2 XXXXXX
- * box3 XXXXXX
- * box4 XXXXXX
- * box5 XXXXXX
- * box6 XXXXXX
- * box7 X XXXXX
- *
- * The bit strings we need to XOR in for boxes 0, 2, 4 and 6 don't
- * overlap with each other. Neither do the ones for boxes 1, 3, 5
- * and 7. So we could provide the key schedule in the form of two
- * words that we can separately XOR into R, and then every S-box
- * index is available as a (cyclically) contiguous 6-bit substring
- * of one or the other of the results.
- *
- * The comments in Eric Young's libdes implementation point out
- * that two of these bit strings require a rotation (rather than a
- * simple shift) to extract. It's unavoidable that at least _one_
- * must do; but we can actually run the whole inner algorithm (all
- * 16 rounds) rotated one bit to the left, so that what the `real'
- * DES description sees as L=0x80000001 we see as L=0x00000003.
- * This requires rotating all our SP-box entries one bit to the
- * left, and rotating each word of the key schedule elements one to
- * the left, and rotating L and R one bit left just after IP and
- * one bit right again just before FP. And in each round we convert
- * a rotate into a shift, so we've saved a few per cent.
- *
- * That's about it for the inner loop; the SP-box tables as listed
- * below are what I've described here (the original S value,
- * shifted to its final place in the input to P, run through P, and
- * then rotated one bit left). All that remains is to optimise the
- * initial permutation IP.
- *
- * IP is not an arbitrary permutation. It has the nice property
- * that if you take any bit number, write it in binary (6 bits),
- * permute those 6 bits and invert some of them, you get the final
- * position of that bit. Specifically, the bit whose initial
- * position is given (in binary) as fedcba ends up in position
- * AcbFED (where a capital letter denotes the inverse of a bit).
- *
- * We have the 64-bit data in two 32-bit words L and R, where bits
- * in L are those with f=1 and bits in R are those with f=0. We
- * note that we can do a simple transformation: suppose we exchange
- * the bits with f=1,c=0 and the bits with f=0,c=1. This will cause
- * the bit fedcba to be in position cedfba - we've `swapped' bits c
- * and f in the position of each bit!
- *
- * Better still, this transformation is easy. In the example above,
- * bits in L with c=0 are bits 0x0F0F0F0F, and those in R with c=1
- * are 0xF0F0F0F0. So we can do
- *
- * difference = ((R >> 4) ^ L) & 0x0F0F0F0F
- * R ^= (difference << 4)
- * L ^= difference
- *
- * to perform the swap. Let's denote this by bitswap(4,0x0F0F0F0F).
- * Also, we can invert the bit at the top just by exchanging L and
- * R. So in a few swaps and a few of these bit operations we can
- * do:
- *
- * Initially the position of bit fedcba is fedcba
- * Swap L with R to make it Fedcba
- * Perform bitswap( 4,0x0F0F0F0F) to make it cedFba
- * Perform bitswap(16,0x0000FFFF) to make it ecdFba
- * Swap L with R to make it EcdFba
- * Perform bitswap( 2,0x33333333) to make it bcdFEa
- * Perform bitswap( 8,0x00FF00FF) to make it dcbFEa
- * Swap L with R to make it DcbFEa
- * Perform bitswap( 1,0x55555555) to make it acbFED
- * Swap L with R to make it AcbFED
- *
- * (In the actual code the four swaps are implicit: R and L are
- * simply used the other way round in the first, second and last
- * bitswap operations.)
- *
- * The final permutation is just the inverse of IP, so it can be
- * performed by a similar set of operations.
- */
- typedef struct {
- word32 k0246[16], k1357[16];
- word32 eiv0, eiv1;
- word32 div0, div1;
- } DESContext;
- #define rotl(x, c) ( (x << c) | (x >> (32-c)) )
- #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF)
- static word32 bitsel(word32 *input, const int *bitnums, int size) {
- word32 ret = 0;
- while (size--) {
- int bitpos = *bitnums++;
- ret <<= 1;
- if (bitpos >= 0)
- ret |= 1 & (input[bitpos / 32] >> (bitpos % 32));
- }
- return ret;
- }
- void des_key_setup(word32 key_msw, word32 key_lsw, DESContext *sched) {
- static const int PC1_Cbits[] = {
- 7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46,
- 54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28
- };
- static const int PC1_Dbits[] = {
- 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42,
- 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60
- };
- /*
- * The bit numbers in the two lists below don't correspond to
- * the ones in the above description of PC2, because in the
- * above description C and D are concatenated so `bit 28' means
- * bit 0 of C. In this implementation we're using the standard
- * `bitsel' function above and C is in the second word, so bit
- * 0 of C is addressed by writing `32' here.
- */
- static const int PC2_0246[] = {
- 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4,
- 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43
- };
- static const int PC2_1357[] = {
- -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58,
- -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24
- };
- static const int leftshifts[] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};
- word32 C, D;
- word32 buf[2];
- int i;
- buf[0] = key_lsw;
- buf[1] = key_msw;
- C = bitsel(buf, PC1_Cbits, 28);
- D = bitsel(buf, PC1_Dbits, 28);
- for (i = 0; i < 16; i++) {
- C = rotl28(C, leftshifts[i]);
- D = rotl28(D, leftshifts[i]);
- buf[0] = D;
- buf[1] = C;
- sched->k0246[i] = bitsel(buf, PC2_0246, 32);
- sched->k1357[i] = bitsel(buf, PC2_1357, 32);
- }
- sched->eiv0 = sched->eiv1 = 0;
- sched->div0 = sched->div1 = 0; /* for good measure */
- }
- static const word32 SPboxes[8][64] = {
- {0x01010400, 0x00000000, 0x00010000, 0x01010404,
- 0x01010004, 0x00010404, 0x00000004, 0x00010000,
- 0x00000400, 0x01010400, 0x01010404, 0x00000400,
- 0x01000404, 0x01010004, 0x01000000, 0x00000004,
- 0x00000404, 0x01000400, 0x01000400, 0x00010400,
- 0x00010400, 0x01010000, 0x01010000, 0x01000404,
- 0x00010004, 0x01000004, 0x01000004, 0x00010004,
- 0x00000000, 0x00000404, 0x00010404, 0x01000000,
- 0x00010000, 0x01010404, 0x00000004, 0x01010000,
- 0x01010400, 0x01000000, 0x01000000, 0x00000400,
- 0x01010004, 0x00010000, 0x00010400, 0x01000004,
- 0x00000400, 0x00000004, 0x01000404, 0x00010404,
- 0x01010404, 0x00010004, 0x01010000, 0x01000404,
- 0x01000004, 0x00000404, 0x00010404, 0x01010400,
- 0x00000404, 0x01000400, 0x01000400, 0x00000000,
- 0x00010004, 0x00010400, 0x00000000, 0x01010004L},
- {0x80108020, 0x80008000, 0x00008000, 0x00108020,
- 0x00100000, 0x00000020, 0x80100020, 0x80008020,
- 0x80000020, 0x80108020, 0x80108000, 0x80000000,
- 0x80008000, 0x00100000, 0x00000020, 0x80100020,
- 0x00108000, 0x00100020, 0x80008020, 0x00000000,
- 0x80000000, 0x00008000, 0x00108020, 0x80100000,
- 0x00100020, 0x80000020, 0x00000000, 0x00108000,
- 0x00008020, 0x80108000, 0x80100000, 0x00008020,
- 0x00000000, 0x00108020, 0x80100020, 0x00100000,
- 0x80008020, 0x80100000, 0x80108000, 0x00008000,
- 0x80100000, 0x80008000, 0x00000020, 0x80108020,
- 0x00108020, 0x00000020, 0x00008000, 0x80000000,
- 0x00008020, 0x80108000, 0x00100000, 0x80000020,
- 0x00100020, 0x80008020, 0x80000020, 0x00100020,
- 0x00108000, 0x00000000, 0x80008000, 0x00008020,
- 0x80000000, 0x80100020, 0x80108020, 0x00108000L},
- {0x00000208, 0x08020200, 0x00000000, 0x08020008,
- 0x08000200, 0x00000000, 0x00020208, 0x08000200,
- 0x00020008, 0x08000008, 0x08000008, 0x00020000,
- 0x08020208, 0x00020008, 0x08020000, 0x00000208,
- 0x08000000, 0x00000008, 0x08020200, 0x00000200,
- 0x00020200, 0x08020000, 0x08020008, 0x00020208,
- 0x08000208, 0x00020200, 0x00020000, 0x08000208,
- 0x00000008, 0x08020208, 0x00000200, 0x08000000,
- 0x08020200, 0x08000000, 0x00020008, 0x00000208,
- 0x00020000, 0x08020200, 0x08000200, 0x00000000,
- 0x00000200, 0x00020008, 0x08020208, 0x08000200,
- 0x08000008, 0x00000200, 0x00000000, 0x08020008,
- 0x08000208, 0x00020000, 0x08000000, 0x08020208,
- 0x00000008, 0x00020208, 0x00020200, 0x08000008,
- 0x08020000, 0x08000208, 0x00000208, 0x08020000,
- 0x00020208, 0x00000008, 0x08020008, 0x00020200L},
- {0x00802001, 0x00002081, 0x00002081, 0x00000080,
- 0x00802080, 0x00800081, 0x00800001, 0x00002001,
- 0x00000000, 0x00802000, 0x00802000, 0x00802081,
- 0x00000081, 0x00000000, 0x00800080, 0x00800001,
- 0x00000001, 0x00002000, 0x00800000, 0x00802001,
- 0x00000080, 0x00800000, 0x00002001, 0x00002080,
- 0x00800081, 0x00000001, 0x00002080, 0x00800080,
- 0x00002000, 0x00802080, 0x00802081, 0x00000081,
- 0x00800080, 0x00800001, 0x00802000, 0x00802081,
- 0x00000081, 0x00000000, 0x00000000, 0x00802000,
- 0x00002080, 0x00800080, 0x00800081, 0x00000001,
- 0x00802001, 0x00002081, 0x00002081, 0x00000080,
- 0x00802081, 0x00000081, 0x00000001, 0x00002000,
- 0x00800001, 0x00002001, 0x00802080, 0x00800081,
- 0x00002001, 0x00002080, 0x00800000, 0x00802001,
- 0x00000080, 0x00800000, 0x00002000, 0x00802080L},
- {0x00000100, 0x02080100, 0x02080000, 0x42000100,
- 0x00080000, 0x00000100, 0x40000000, 0x02080000,
- 0x40080100, 0x00080000, 0x02000100, 0x40080100,
- 0x42000100, 0x42080000, 0x00080100, 0x40000000,
- 0x02000000, 0x40080000, 0x40080000, 0x00000000,
- 0x40000100, 0x42080100, 0x42080100, 0x02000100,
- 0x42080000, 0x40000100, 0x00000000, 0x42000000,
- 0x02080100, 0x02000000, 0x42000000, 0x00080100,
- 0x00080000, 0x42000100, 0x00000100, 0x02000000,
- 0x40000000, 0x02080000, 0x42000100, 0x40080100,
- 0x02000100, 0x40000000, 0x42080000, 0x02080100,
- 0x40080100, 0x00000100, 0x02000000, 0x42080000,
- 0x42080100, 0x00080100, 0x42000000, 0x42080100,
- 0x02080000, 0x00000000, 0x40080000, 0x42000000,
- 0x00080100, 0x02000100, 0x40000100, 0x00080000,
- 0x00000000, 0x40080000, 0x02080100, 0x40000100L},
- {0x20000010, 0x20400000, 0x00004000, 0x20404010,
- 0x20400000, 0x00000010, 0x20404010, 0x00400000,
- 0x20004000, 0x00404010, 0x00400000, 0x20000010,
- 0x00400010, 0x20004000, 0x20000000, 0x00004010,
- 0x00000000, 0x00400010, 0x20004010, 0x00004000,
- 0x00404000, 0x20004010, 0x00000010, 0x20400010,
- 0x20400010, 0x00000000, 0x00404010, 0x20404000,
- 0x00004010, 0x00404000, 0x20404000, 0x20000000,
- 0x20004000, 0x00000010, 0x20400010, 0x00404000,
- 0x20404010, 0x00400000, 0x00004010, 0x20000010,
- 0x00400000, 0x20004000, 0x20000000, 0x00004010,
- 0x20000010, 0x20404010, 0x00404000, 0x20400000,
- 0x00404010, 0x20404000, 0x00000000, 0x20400010,
- 0x00000010, 0x00004000, 0x20400000, 0x00404010,
- 0x00004000, 0x00400010, 0x20004010, 0x00000000,
- 0x20404000, 0x20000000, 0x00400010, 0x20004010L},
- {0x00200000, 0x04200002, 0x04000802, 0x00000000,
- 0x00000800, 0x04000802, 0x00200802, 0x04200800,
- 0x04200802, 0x00200000, 0x00000000, 0x04000002,
- 0x00000002, 0x04000000, 0x04200002, 0x00000802,
- 0x04000800, 0x00200802, 0x00200002, 0x04000800,
- 0x04000002, 0x04200000, 0x04200800, 0x00200002,
- 0x04200000, 0x00000800, 0x00000802, 0x04200802,
- 0x00200800, 0x00000002, 0x04000000, 0x00200800,
- 0x04000000, 0x00200800, 0x00200000, 0x04000802,
- 0x04000802, 0x04200002, 0x04200002, 0x00000002,
- 0x00200002, 0x04000000, 0x04000800, 0x00200000,
- 0x04200800, 0x00000802, 0x00200802, 0x04200800,
- 0x00000802, 0x04000002, 0x04200802, 0x04200000,
- 0x00200800, 0x00000000, 0x00000002, 0x04200802,
- 0x00000000, 0x00200802, 0x04200000, 0x00000800,
- 0x04000002, 0x04000800, 0x00000800, 0x00200002L},
- {0x10001040, 0x00001000, 0x00040000, 0x10041040,
- 0x10000000, 0x10001040, 0x00000040, 0x10000000,
- 0x00040040, 0x10040000, 0x10041040, 0x00041000,
- 0x10041000, 0x00041040, 0x00001000, 0x00000040,
- 0x10040000, 0x10000040, 0x10001000, 0x00001040,
- 0x00041000, 0x00040040, 0x10040040, 0x10041000,
- 0x00001040, 0x00000000, 0x00000000, 0x10040040,
- 0x10000040, 0x10001000, 0x00041040, 0x00040000,
- 0x00041040, 0x00040000, 0x10041000, 0x00001000,
- 0x00000040, 0x10040040, 0x00001000, 0x00041040,
- 0x10001000, 0x00000040, 0x10000040, 0x10040000,
- 0x10040040, 0x10000000, 0x00040000, 0x10001040,
- 0x00000000, 0x10041040, 0x00040040, 0x10000040,
- 0x10040000, 0x10001000, 0x10001040, 0x00000000,
- 0x10041040, 0x00041000, 0x00041000, 0x00001040,
- 0x00001040, 0x00040040, 0x10000000, 0x10041000L}
- };
- #define f(R, K0246, K1357) (\
- s0246 = R ^ K0246, \
- s1357 = R ^ K1357, \
- s0246 = rotl(s0246, 28), \
- SPboxes[0] [(s0246 >> 24) & 0x3F] | \
- SPboxes[1] [(s1357 >> 24) & 0x3F] | \
- SPboxes[2] [(s0246 >> 16) & 0x3F] | \
- SPboxes[3] [(s1357 >> 16) & 0x3F] | \
- SPboxes[4] [(s0246 >> 8) & 0x3F] | \
- SPboxes[5] [(s1357 >> 8) & 0x3F] | \
- SPboxes[6] [(s0246 ) & 0x3F] | \
- SPboxes[7] [(s1357 ) & 0x3F])
- #define bitswap(L, R, n, mask) (\
- swap = mask & ( (R >> n) ^ L ), \
- R ^= swap << n, \
- L ^= swap)
- /* Initial permutation */
- #define IP(L, R) (\
- bitswap(R, L, 4, 0x0F0F0F0F), \
- bitswap(R, L, 16, 0x0000FFFF), \
- bitswap(L, R, 2, 0x33333333), \
- bitswap(L, R, 8, 0x00FF00FF), \
- bitswap(R, L, 1, 0x55555555))
- /* Final permutation */
- #define FP(L, R) (\
- bitswap(R, L, 1, 0x55555555), \
- bitswap(L, R, 8, 0x00FF00FF), \
- bitswap(L, R, 2, 0x33333333), \
- bitswap(R, L, 16, 0x0000FFFF), \
- bitswap(R, L, 4, 0x0F0F0F0F))
- void des_encipher(word32 *output, word32 L, word32 R, DESContext *sched) {
- word32 swap, s0246, s1357;
- IP(L, R);
- L = rotl(L, 1);
- R = rotl(R, 1);
- L ^= f(R, sched->k0246[ 0], sched->k1357[ 0]);
- R ^= f(L, sched->k0246[ 1], sched->k1357[ 1]);
- L ^= f(R, sched->k0246[ 2], sched->k1357[ 2]);
- R ^= f(L, sched->k0246[ 3], sched->k1357[ 3]);
- L ^= f(R, sched->k0246[ 4], sched->k1357[ 4]);
- R ^= f(L, sched->k0246[ 5], sched->k1357[ 5]);
- L ^= f(R, sched->k0246[ 6], sched->k1357[ 6]);
- R ^= f(L, sched->k0246[ 7], sched->k1357[ 7]);
- L ^= f(R, sched->k0246[ 8], sched->k1357[ 8]);
- R ^= f(L, sched->k0246[ 9], sched->k1357[ 9]);
- L ^= f(R, sched->k0246[10], sched->k1357[10]);
- R ^= f(L, sched->k0246[11], sched->k1357[11]);
- L ^= f(R, sched->k0246[12], sched->k1357[12]);
- R ^= f(L, sched->k0246[13], sched->k1357[13]);
- L ^= f(R, sched->k0246[14], sched->k1357[14]);
- R ^= f(L, sched->k0246[15], sched->k1357[15]);
- L = rotl(L, 31);
- R = rotl(R, 31);
- swap = L; L = R; R = swap;
- FP(L, R);
- output[0] = L;
- output[1] = R;
- }
- void des_decipher(word32 *output, word32 L, word32 R, DESContext *sched) {
- word32 swap, s0246, s1357;
- IP(L, R);
- L = rotl(L, 1);
- R = rotl(R, 1);
- L ^= f(R, sched->k0246[15], sched->k1357[15]);
- R ^= f(L, sched->k0246[14], sched->k1357[14]);
- L ^= f(R, sched->k0246[13], sched->k1357[13]);
- R ^= f(L, sched->k0246[12], sched->k1357[12]);
- L ^= f(R, sched->k0246[11], sched->k1357[11]);
- R ^= f(L, sched->k0246[10], sched->k1357[10]);
- L ^= f(R, sched->k0246[ 9], sched->k1357[ 9]);
- R ^= f(L, sched->k0246[ 8], sched->k1357[ 8]);
- L ^= f(R, sched->k0246[ 7], sched->k1357[ 7]);
- R ^= f(L, sched->k0246[ 6], sched->k1357[ 6]);
- L ^= f(R, sched->k0246[ 5], sched->k1357[ 5]);
- R ^= f(L, sched->k0246[ 4], sched->k1357[ 4]);
- L ^= f(R, sched->k0246[ 3], sched->k1357[ 3]);
- R ^= f(L, sched->k0246[ 2], sched->k1357[ 2]);
- L ^= f(R, sched->k0246[ 1], sched->k1357[ 1]);
- R ^= f(L, sched->k0246[ 0], sched->k1357[ 0]);
- L = rotl(L, 31);
- R = rotl(R, 31);
- swap = L; L = R; R = swap;
- FP(L, R);
- output[0] = L;
- output[1] = R;
- }
- #define GET_32BIT_MSB_FIRST(cp) \
- (((unsigned long)(unsigned char)(cp)[3]) | \
- ((unsigned long)(unsigned char)(cp)[2] << 8) | \
- ((unsigned long)(unsigned char)(cp)[1] << 16) | \
- ((unsigned long)(unsigned char)(cp)[0] << 24))
- #define PUT_32BIT_MSB_FIRST(cp, value) do { \
- (cp)[3] = (value); \
- (cp)[2] = (value) >> 8; \
- (cp)[1] = (value) >> 16; \
- (cp)[0] = (value) >> 24; } while (0)
- static void des_cbc_encrypt(unsigned char *dest, const unsigned char *src,
- unsigned int len, DESContext *sched) {
- word32 out[2], iv0, iv1;
- unsigned int i;
- assert((len & 7) == 0);
- iv0 = sched->eiv0;
- iv1 = sched->eiv1;
- for (i = 0; i < len; i += 8) {
- iv0 ^= GET_32BIT_MSB_FIRST(src); src += 4;
- iv1 ^= GET_32BIT_MSB_FIRST(src); src += 4;
- des_encipher(out, iv0, iv1, sched);
- iv0 = out[0];
- iv1 = out[1];
- PUT_32BIT_MSB_FIRST(dest, iv0); dest += 4;
- PUT_32BIT_MSB_FIRST(dest, iv1); dest += 4;
- }
- sched->eiv0 = iv0;
- sched->eiv1 = iv1;
- }
- static void des_cbc_decrypt(unsigned char *dest, const unsigned char *src,
- unsigned int len, DESContext *sched) {
- word32 out[2], iv0, iv1, xL, xR;
- unsigned int i;
- assert((len & 7) == 0);
- iv0 = sched->div0;
- iv1 = sched->div1;
- for (i = 0; i < len; i += 8) {
- xL = GET_32BIT_MSB_FIRST(src); src += 4;
- xR = GET_32BIT_MSB_FIRST(src); src += 4;
- des_decipher(out, xL, xR, sched);
- iv0 ^= out[0];
- iv1 ^= out[1];
- PUT_32BIT_MSB_FIRST(dest, iv0); dest += 4;
- PUT_32BIT_MSB_FIRST(dest, iv1); dest += 4;
- iv0 = xL;
- iv1 = xR;
- }
- sched->div0 = iv0;
- sched->div1 = iv1;
- }
- static void des_3cbc_encrypt(unsigned char *dest, const unsigned char *src,
- unsigned int len, DESContext *scheds) {
- des_cbc_encrypt(dest, src, len, &scheds[0]);
- des_cbc_decrypt(dest, src, len, &scheds[1]);
- des_cbc_encrypt(dest, src, len, &scheds[2]);
- }
- static void des_3cbc_decrypt(unsigned char *dest, const unsigned char *src,
- unsigned int len, DESContext *scheds) {
- des_cbc_decrypt(dest, src, len, &scheds[2]);
- des_cbc_encrypt(dest, src, len, &scheds[1]);
- des_cbc_decrypt(dest, src, len, &scheds[0]);
- }
- static DESContext keys[3];
- static void des3_sesskey(unsigned char *key) {
- des_key_setup(GET_32BIT_MSB_FIRST(key),
- GET_32BIT_MSB_FIRST(key+4), &keys[0]);
- des_key_setup(GET_32BIT_MSB_FIRST(key+8),
- GET_32BIT_MSB_FIRST(key+12), &keys[1]);
- des_key_setup(GET_32BIT_MSB_FIRST(key+16),
- GET_32BIT_MSB_FIRST(key+20), &keys[2]);
- logevent("Initialised triple-DES encryption");
- }
- static void des3_encrypt_blk(unsigned char *blk, int len) {
- des_3cbc_encrypt(blk, blk, len, keys);
- }
- static void des3_decrypt_blk(unsigned char *blk, int len) {
- des_3cbc_decrypt(blk, blk, len, keys);
- }
- struct ssh_cipher ssh_3des = {
- des3_sesskey,
- des3_encrypt_blk,
- des3_decrypt_blk
- };
- static void des_sesskey(unsigned char *key) {
- des_key_setup(GET_32BIT_MSB_FIRST(key),
- GET_32BIT_MSB_FIRST(key+4), &keys[0]);
- logevent("Initialised single-DES encryption");
- }
- static void des_encrypt_blk(unsigned char *blk, int len) {
- des_cbc_encrypt(blk, blk, len, keys);
- }
- static void des_decrypt_blk(unsigned char *blk, int len) {
- des_cbc_decrypt(blk, blk, len, keys);
- }
- struct ssh_cipher ssh_des = {
- des_sesskey,
- des_encrypt_blk,
- des_decrypt_blk
- };
|