123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- #ifndef PUTTY_MPINT_H
- #define PUTTY_MPINT_H
- /*
- * PuTTY's multiprecision integer library.
- *
- * This library is written with the aim of avoiding leaking the input
- * numbers via timing and cache side channels. This means avoiding
- * making any control flow change, or deciding the address of any
- * memory access, based on the value of potentially secret input data.
- *
- * But in a library that has to handle numbers of arbitrary size, you
- * can't avoid your control flow depending on the _size_ of the input!
- * So the rule is that an mp_int has a nominal size that need not be
- * its mathematical size: i.e. if you call (say) mp_from_bytes_be to
- * turn an array of 256 bytes into an integer, and all but the last of
- * those bytes is zero, then you get an mp_int which has space for 256
- * bytes of data but just happens to store the value 1. So the
- * _nominal_ sizes of input data - e.g. the size in bits of some
- * public-key modulus - are not considered secret, and control flow is
- * allowed to do what it likes based on those sizes. But the same
- * function, called with the same _nominally sized_ arguments
- * containing different values, should run in the same length of time.
- *
- * When a function returns an 'mp_int *', it is newly allocated to an
- * appropriate nominal size (which, again, depends only on the nominal
- * sizes of the inputs). Other functions have 'into' in their name,
- * and they instead overwrite the contents of an existing mp_int.
- *
- * Functions in this API which return values that are logically
- * boolean return them as 'unsigned' rather than the C99 bool type.
- * That's because C99 bool does an implicit test for non-zero-ness
- * when converting any other integer type to it, which compilers might
- * well implement using data-dependent control flow.
- */
- /*
- * Create and destroy mp_ints. A newly created one is initialised to
- * zero. mp_clear also resets an existing number to zero.
- */
- mp_int *mp_new(size_t maxbits);
- void mp_free(mp_int *);
- void mp_clear(mp_int *x);
- /*
- * Resize the physical size of existing mp_int, e.g. so that you have
- * room to transform it in place to a larger value. Destroys the old
- * mp_int in the process.
- */
- mp_int *mp_resize(mp_int *, size_t newmaxbits);
- /*
- * Create mp_ints from various sources: little- and big-endian binary
- * data, an ordinary C unsigned integer type, a decimal or hex string
- * (given either as a ptrlen or a C NUL-terminated string), and
- * another mp_int.
- *
- * The decimal and hex conversion functions have running time
- * dependent on the length of the input data, of course.
- */
- mp_int *mp_from_bytes_le(ptrlen bytes);
- mp_int *mp_from_bytes_be(ptrlen bytes);
- mp_int *mp_from_integer(uintmax_t n);
- mp_int *mp_from_decimal_pl(ptrlen decimal);
- mp_int *mp_from_decimal(const char *decimal);
- mp_int *mp_from_hex_pl(ptrlen hex);
- mp_int *mp_from_hex(const char *hex);
- mp_int *mp_copy(mp_int *x);
- /*
- * A macro for declaring large fixed numbers in source code (such as
- * elliptic curve parameters, or standard Diffie-Hellman moduli). The
- * idea is that you just write something like
- *
- * mp_int *value = MP_LITERAL(0x19284376283754638745693467245);
- *
- * and it newly allocates you an mp_int containing that number.
- *
- * Internally, the macro argument is stringified and passed to
- * mp_from_hex. That's not as fast as it could be if I had instead set
- * up some kind of mp_from_array_of_uint64_t() function, but I think
- * this system is valuable for the fact that the literal integers
- * appear in a very natural syntax that can be pasted directly out
- * into, say, Python if you want to cross-check a calculation.
- */
- static inline mp_int *mp__from_string_literal(const char *lit)
- {
- /* Don't call this directly; it's not equipped to deal with
- * hostile data. Use only via the MP_LITERAL macro. */
- if (lit[0] && (lit[1] == 'x' || lit[1] == 'X'))
- return mp_from_hex(lit+2);
- else
- return mp_from_decimal(lit);
- }
- #define MP_LITERAL(number) mp__from_string_literal(#number)
- /*
- * Create an mp_int with the value 2^power.
- */
- mp_int *mp_power_2(size_t power);
- /*
- * Retrieve the value of a particular bit or byte of an mp_int. The
- * byte / bit index is not considered to be secret data. Out-of-range
- * byte/bit indices are handled cleanly and return zero.
- */
- uint8_t mp_get_byte(mp_int *x, size_t byte);
- unsigned mp_get_bit(mp_int *x, size_t bit);
- /*
- * Retrieve the value of an mp_int as a uintmax_t, assuming it's small
- * enough to fit.
- */
- uintmax_t mp_get_integer(mp_int *x);
- /*
- * Set an mp_int bit. Again, the bit index is not considered secret.
- * Do not pass an out-of-range index, on pain of assertion failure.
- */
- void mp_set_bit(mp_int *x, size_t bit, unsigned val);
- /*
- * Return the nominal size of an mp_int, in terms of the maximum
- * number of bytes or bits that can fit in it.
- */
- size_t mp_max_bytes(mp_int *x);
- size_t mp_max_bits(mp_int *x);
- /*
- * Return the _mathematical_ bit count of an mp_int (not its nominal
- * size), i.e. a value n such that 2^{n-1} <= x < 2^n.
- *
- * This function is supposed to run in constant time for a given
- * nominal input size. Of course it's likely that clients of this
- * function will promptly need to use the result as the limit of some
- * loop (e.g. marshalling an mp_int into an SSH packet, which doesn't
- * permit extra prefix zero bytes). But that's up to the caller to
- * decide the safety of.
- */
- size_t mp_get_nbits(mp_int *x);
- /*
- * Return the value of an mp_int as a decimal or hex string. The
- * result is dynamically allocated, and the caller is responsible for
- * freeing it.
- *
- * These functions should run in constant time for a given nominal
- * input size, even though the exact number of digits returned is
- * variable. They always allocate enough space for the largest output
- * that might be needed, but they don't always fill it.
- */
- char *mp_get_decimal(mp_int *x);
- char *mp_get_hex(mp_int *x);
- char *mp_get_hex_uppercase(mp_int *x);
- /*
- * Compare two mp_ints, or compare one mp_int against a C integer. The
- * 'eq' functions return 1 if the two inputs are equal, or 0
- * otherwise; the 'hs' functions return 1 if the first input is >= the
- * second, and 0 otherwise.
- */
- unsigned mp_cmp_hs(mp_int *a, mp_int *b);
- unsigned mp_cmp_eq(mp_int *a, mp_int *b);
- unsigned mp_hs_integer(mp_int *x, uintmax_t n);
- unsigned mp_eq_integer(mp_int *x, uintmax_t n);
- /*
- * Take the minimum or maximum of two mp_ints, without using a
- * conditional branch.
- */
- void mp_min_into(mp_int *r, mp_int *x, mp_int *y);
- void mp_max_into(mp_int *r, mp_int *x, mp_int *y);
- mp_int *mp_min(mp_int *x, mp_int *y);
- mp_int *mp_max(mp_int *x, mp_int *y);
- /*
- * Diagnostic function. Writes out x in hex to the supplied stdio
- * stream, preceded by the string 'prefix' and followed by 'suffix'.
- *
- * This is useful to put temporarily into code, but it's also
- * potentially useful to call from a debugger.
- */
- void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix);
- /*
- * Overwrite one mp_int with another, or with a plain integer.
- */
- void mp_copy_into(mp_int *dest, mp_int *src);
- void mp_copy_integer_into(mp_int *dest, uintmax_t n);
- /*
- * Conditional selection. Overwrites dest with either src0 or src1,
- * according to the value of 'choose_src1'. choose_src1 should be 0 or
- * 1; if it's 1, then dest is set to src1, otherwise src0.
- *
- * The value of choose_src1 is considered to be secret data, so
- * control flow and memory access should not depend on it.
- */
- void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
- unsigned choose_src1);
- /*
- * Addition, subtraction and multiplication, either targeting an
- * existing mp_int or making a new one large enough to hold whatever
- * the output might be..
- */
- void mp_add_into(mp_int *r, mp_int *a, mp_int *b);
- void mp_sub_into(mp_int *r, mp_int *a, mp_int *b);
- void mp_mul_into(mp_int *r, mp_int *a, mp_int *b);
- mp_int *mp_add(mp_int *x, mp_int *y);
- mp_int *mp_sub(mp_int *x, mp_int *y);
- mp_int *mp_mul(mp_int *x, mp_int *y);
- /*
- * Bitwise operations.
- */
- void mp_and_into(mp_int *r, mp_int *a, mp_int *b);
- void mp_or_into(mp_int *r, mp_int *a, mp_int *b);
- void mp_xor_into(mp_int *r, mp_int *a, mp_int *b);
- void mp_bic_into(mp_int *r, mp_int *a, mp_int *b);
- /*
- * Addition, subtraction and multiplication with one argument small
- * enough to fit in a C integer. For mp_mul_integer_into, it has to be
- * even smaller than that.
- */
- void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n);
- void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n);
- void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n);
- /*
- * Conditional addition/subtraction. If yes == 1, sets r to a+b or a-b
- * (respectively). If yes == 0, sets r to just a. 'yes' is considered
- * secret data.
- */
- void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes);
- void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes);
- /*
- * Swap x0 and x1 if swap == 1, and not if swap == 0. 'swap' is
- * considered secret.
- */
- void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap);
- /*
- * Set x to 0 if clear == 1, and otherwise leave it unchanged. 'clear'
- * is considered secret.
- */
- void mp_cond_clear(mp_int *x, unsigned clear);
- /*
- * Division. mp_divmod_into divides n by d, and writes the quotient
- * into q and the remainder into r. You can pass either of q and r as
- * NULL if you don't need one of the outputs.
- *
- * mp_div and mp_mod are wrappers that return one or other of those
- * outputs as a freshly allocated mp_int of the appropriate size.
- *
- * Division by zero gives no error, and returns a quotient of 0 and a
- * remainder of n (so as to still satisfy the division identity that
- * n=qd+r).
- */
- void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q, mp_int *r);
- mp_int *mp_div(mp_int *n, mp_int *d);
- mp_int *mp_mod(mp_int *x, mp_int *modulus);
- /*
- * Compute the residue of x mod m, where m is a small integer. x is
- * kept secret, but m is not.
- */
- uint32_t mp_mod_known_integer(mp_int *x, uint32_t m);
- /*
- * Integer nth root. mp_nthroot returns the largest integer x such
- * that x^n <= y, and if 'remainder' is non-NULL then it fills it with
- * the residue (y - x^n).
- *
- * Currently, n has to be small enough that the largest binomial
- * coefficient (n choose k) fits in 16 bits, which works out to at
- * most 18.
- */
- mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder);
- /*
- * Trivially easy special case of mp_mod: reduce a number mod a power
- * of two.
- */
- void mp_reduce_mod_2to(mp_int *x, size_t p);
- /*
- * Modular inverses. mp_invert computes the inverse of x mod modulus
- * (and will expect the two to be coprime). mp_invert_mod_2to computes
- * the inverse of x mod 2^p, and is a great deal faster.
- */
- mp_int *mp_invert_mod_2to(mp_int *x, size_t p);
- mp_int *mp_invert(mp_int *x, mp_int *modulus);
- /*
- * Greatest common divisor.
- *
- * mp_gcd_into also returns a pair of Bezout coefficients, namely A,B
- * such that a*A - b*B = gcd. (The minus sign is so that both returned
- * coefficients can be positive.)
- *
- * You can pass any of mp_gcd_into's output pointers as NULL if you
- * don't need that output value.
- *
- * mp_gcd is a wrapper with a less cumbersome API, for the case where
- * the only output value you need is the gcd itself. mp_coprime is
- * even easier, if all you care about is whether or not that gcd is 1.
- */
- mp_int *mp_gcd(mp_int *a, mp_int *b);
- void mp_gcd_into(mp_int *a, mp_int *b,
- mp_int *gcd_out, mp_int *A_out, mp_int *B_out);
- unsigned mp_coprime(mp_int *a, mp_int *b);
- /*
- * System for taking square roots modulo an odd prime.
- *
- * In order to do this efficiently, you need to provide an extra piece
- * of information at setup time, namely a number which is not
- * congruent mod p to any square. Given p and that non-square, you can
- * use modsqrt_new to make a context containing all the necessary
- * equipment for actually calculating the square roots, and then you
- * can call mp_modsqrt as many times as you like on that context
- * before freeing it.
- *
- * The output parameter '*success' will be filled in with 1 if the
- * operation was successful, or 0 if the input number doesn't have a
- * square root mod p at all. In the latter case, the returned mp_int
- * will be nonsense and you shouldn't depend on it.
- *
- * ==== WARNING ====
- *
- * This function DOES NOT TREAT THE PRIME MODULUS AS SECRET DATA! It
- * will protect the number you're taking the square root _of_, but not
- * the number you're taking the root of it _mod_.
- *
- * (This is because the algorithm requires a number of loop iterations
- * equal to the number of factors of 2 in p-1. And the expected use of
- * this function is for elliptic-curve point decompression, in which
- * the modulus is always a well-known one written down in standards
- * documents.)
- */
- typedef struct ModsqrtContext ModsqrtContext;
- ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p);
- void modsqrt_free(ModsqrtContext *);
- mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success);
- /*
- * Functions for Montgomery multiplication, a fast technique for doing
- * a long series of modular multiplications all with the same modulus
- * (which has to be odd).
- *
- * You start by calling monty_new to set up a context structure
- * containing all the precomputed bits and pieces needed by the
- * algorithm. Then, any numbers you want to work with must first be
- * transformed into the internal Montgomery representation using
- * monty_import; having done that, you can use monty_mul and monty_pow
- * to operate on them efficiently; and finally, monty_export will
- * convert numbers back out of Montgomery representation to give their
- * ordinary values.
- *
- * Addition and subtraction are not optimised by the Montgomery trick,
- * but monty_add and monty_sub are provided anyway for convenience.
- *
- * There are also monty_invert and monty_modsqrt, which are analogues
- * of mp_invert and mp_modsqrt which take their inputs in Montgomery
- * representation. For mp_modsqrt, the prime modulus of the
- * ModsqrtContext must be the same as the modulus of the MontyContext.
- *
- * The query functions monty_modulus and monty_identity return numbers
- * stored inside the MontyContext, without copying them. The returned
- * pointers are still owned by the MontyContext, so don't free them!
- */
- MontyContext *monty_new(mp_int *modulus);
- void monty_free(MontyContext *mc);
- mp_int *monty_modulus(MontyContext *mc); /* doesn't transfer ownership */
- mp_int *monty_identity(MontyContext *mc); /* doesn't transfer ownership */
- void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x);
- mp_int *monty_import(MontyContext *mc, mp_int *x);
- void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x);
- mp_int *monty_export(MontyContext *mc, mp_int *x);
- void monty_mul_into(MontyContext *, mp_int *r, mp_int *, mp_int *);
- mp_int *monty_add(MontyContext *, mp_int *, mp_int *);
- mp_int *monty_sub(MontyContext *, mp_int *, mp_int *);
- mp_int *monty_mul(MontyContext *, mp_int *, mp_int *);
- mp_int *monty_pow(MontyContext *, mp_int *base, mp_int *exponent);
- mp_int *monty_invert(MontyContext *, mp_int *);
- mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *mx, unsigned *success);
- /*
- * Modular arithmetic functions which don't use an explicit
- * MontyContext. mp_modpow will use one internally (on the assumption
- * that the exponent is likely to be large enough to make it
- * worthwhile); the other three will just do ordinary non-Montgomery-
- * optimised modular reduction. Use mp_modmul if you only have one
- * product to compute; if you have a lot, consider using a
- * MontyContext in the client code.
- */
- mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus);
- mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus);
- mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus);
- mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus);
- /*
- * Shift an mp_int by a given number of bits. The shift count is
- * considered to be secret data, and as a result, the algorithm takes
- * O(n log n) time instead of the obvious O(n).
- *
- * There's no mp_lshift_safe, because the size of mp_int to allocate
- * would not be able to avoid depending on the shift count. So if you
- * need to behave independently of the size of a left shift, you have
- * to know a bound on the space you'll need by some other means.
- */
- void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t shift);
- void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t shift);
- mp_int *mp_rshift_safe(mp_int *x, size_t shift);
- /*
- * Shift an mp_int left or right by a fixed number of bits. The shift
- * count is NOT considered to be secret data! Use this if you're
- * always dividing by 2, for example, but don't use it to shift by a
- * variable amount derived from another secret number.
- *
- * The upside is that these functions run in sensible linear time.
- */
- void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t shift);
- void mp_rshift_fixed_into(mp_int *r, mp_int *x, size_t shift);
- mp_int *mp_lshift_fixed(mp_int *x, size_t shift);
- mp_int *mp_rshift_fixed(mp_int *x, size_t shift);
- /*
- * Generate a random mp_int.
- *
- * The _function_ definitions here will expect to be given a gen_data
- * function that provides random data. Normally you'd use this using
- * random_read() from sshrand.c, and the macro wrappers automate that.
- *
- * (This is a bit of a dodge to avoid mpint.c having a link-time
- * dependency on sshrand.c, so that programs can link against one but
- * not the other: if a client of this header uses one of these macros
- * then _they_ have link-time dependencies on both modules.)
- *
- * mp_random_bits[_fn] returns an integer 0 <= n < 2^bits.
- * mp_random_upto[_fn](limit) returns an integer 0 <= n < limit.
- * mp_random_in_range[_fn](lo,hi) returns an integer lo <= n < hi.
- */
- typedef void (*random_read_fn_t)(void *, size_t);
- mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t randfn);
- mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t randfn);
- mp_int *mp_random_in_range_fn(
- mp_int *lo_inclusive, mp_int *hi_exclusive, random_read_fn_t randfn);
- #define mp_random_bits(bits) mp_random_bits_fn(bits, random_read)
- #define mp_random_upto(limit) mp_random_upto_fn(limit, random_read)
- #define mp_random_in_range(lo, hi) mp_random_in_range_fn(lo, hi, random_read)
- #endif /* PUTTY_MPINT_H */
|