mpint.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. #ifndef PUTTY_MPINT_H
  2. #define PUTTY_MPINT_H
  3. /*
  4. * PuTTY's multiprecision integer library.
  5. *
  6. * This library is written with the aim of avoiding leaking the input
  7. * numbers via timing and cache side channels. This means avoiding
  8. * making any control flow change, or deciding the address of any
  9. * memory access, based on the value of potentially secret input data.
  10. *
  11. * But in a library that has to handle numbers of arbitrary size, you
  12. * can't avoid your control flow depending on the _size_ of the input!
  13. * So the rule is that an mp_int has a nominal size that need not be
  14. * its mathematical size: i.e. if you call (say) mp_from_bytes_be to
  15. * turn an array of 256 bytes into an integer, and all but the last of
  16. * those bytes is zero, then you get an mp_int which has space for 256
  17. * bytes of data but just happens to store the value 1. So the
  18. * _nominal_ sizes of input data - e.g. the size in bits of some
  19. * public-key modulus - are not considered secret, and control flow is
  20. * allowed to do what it likes based on those sizes. But the same
  21. * function, called with the same _nominally sized_ arguments
  22. * containing different values, should run in the same length of time.
  23. *
  24. * When a function returns an 'mp_int *', it is newly allocated to an
  25. * appropriate nominal size (which, again, depends only on the nominal
  26. * sizes of the inputs). Other functions have 'into' in their name,
  27. * and they instead overwrite the contents of an existing mp_int.
  28. *
  29. * Functions in this API which return values that are logically
  30. * boolean return them as 'unsigned' rather than the C99 bool type.
  31. * That's because C99 bool does an implicit test for non-zero-ness
  32. * when converting any other integer type to it, which compilers might
  33. * well implement using data-dependent control flow.
  34. */
  35. /*
  36. * Create and destroy mp_ints. A newly created one is initialised to
  37. * zero. mp_clear also resets an existing number to zero.
  38. */
  39. mp_int *mp_new(size_t maxbits);
  40. void mp_free(mp_int *);
  41. void mp_clear(mp_int *x);
  42. /*
  43. * Resize the physical size of existing mp_int, e.g. so that you have
  44. * room to transform it in place to a larger value. Destroys the old
  45. * mp_int in the process.
  46. */
  47. mp_int *mp_resize(mp_int *, size_t newmaxbits);
  48. /*
  49. * Create mp_ints from various sources: little- and big-endian binary
  50. * data, an ordinary C unsigned integer type, a decimal or hex string
  51. * (given either as a ptrlen or a C NUL-terminated string), and
  52. * another mp_int.
  53. *
  54. * The decimal and hex conversion functions have running time
  55. * dependent on the length of the input data, of course.
  56. */
  57. mp_int *mp_from_bytes_le(ptrlen bytes);
  58. mp_int *mp_from_bytes_be(ptrlen bytes);
  59. mp_int *mp_from_integer(uintmax_t n);
  60. mp_int *mp_from_decimal_pl(ptrlen decimal);
  61. mp_int *mp_from_decimal(const char *decimal);
  62. mp_int *mp_from_hex_pl(ptrlen hex);
  63. mp_int *mp_from_hex(const char *hex);
  64. mp_int *mp_copy(mp_int *x);
  65. /*
  66. * A macro for declaring large fixed numbers in source code (such as
  67. * elliptic curve parameters, or standard Diffie-Hellman moduli). The
  68. * idea is that you just write something like
  69. *
  70. * mp_int *value = MP_LITERAL(0x19284376283754638745693467245);
  71. *
  72. * and it newly allocates you an mp_int containing that number.
  73. *
  74. * Internally, the macro argument is stringified and passed to
  75. * mp_from_hex. That's not as fast as it could be if I had instead set
  76. * up some kind of mp_from_array_of_uint64_t() function, but I think
  77. * this system is valuable for the fact that the literal integers
  78. * appear in a very natural syntax that can be pasted directly out
  79. * into, say, Python if you want to cross-check a calculation.
  80. */
  81. static inline mp_int *mp__from_string_literal(const char *lit)
  82. {
  83. /* Don't call this directly; it's not equipped to deal with
  84. * hostile data. Use only via the MP_LITERAL macro. */
  85. if (lit[0] && (lit[1] == 'x' || lit[1] == 'X'))
  86. return mp_from_hex(lit+2);
  87. else
  88. return mp_from_decimal(lit);
  89. }
  90. #define MP_LITERAL(number) mp__from_string_literal(#number)
  91. /*
  92. * Create an mp_int with the value 2^power.
  93. */
  94. mp_int *mp_power_2(size_t power);
  95. /*
  96. * Retrieve the value of a particular bit or byte of an mp_int. The
  97. * byte / bit index is not considered to be secret data. Out-of-range
  98. * byte/bit indices are handled cleanly and return zero.
  99. */
  100. uint8_t mp_get_byte(mp_int *x, size_t byte);
  101. unsigned mp_get_bit(mp_int *x, size_t bit);
  102. /*
  103. * Retrieve the value of an mp_int as a uintmax_t, assuming it's small
  104. * enough to fit.
  105. */
  106. uintmax_t mp_get_integer(mp_int *x);
  107. /*
  108. * Set an mp_int bit. Again, the bit index is not considered secret.
  109. * Do not pass an out-of-range index, on pain of assertion failure.
  110. */
  111. void mp_set_bit(mp_int *x, size_t bit, unsigned val);
  112. /*
  113. * Return the nominal size of an mp_int, in terms of the maximum
  114. * number of bytes or bits that can fit in it.
  115. */
  116. size_t mp_max_bytes(mp_int *x);
  117. size_t mp_max_bits(mp_int *x);
  118. /*
  119. * Return the _mathematical_ bit count of an mp_int (not its nominal
  120. * size), i.e. a value n such that 2^{n-1} <= x < 2^n.
  121. *
  122. * This function is supposed to run in constant time for a given
  123. * nominal input size. Of course it's likely that clients of this
  124. * function will promptly need to use the result as the limit of some
  125. * loop (e.g. marshalling an mp_int into an SSH packet, which doesn't
  126. * permit extra prefix zero bytes). But that's up to the caller to
  127. * decide the safety of.
  128. */
  129. size_t mp_get_nbits(mp_int *x);
  130. /*
  131. * Return the value of an mp_int as a decimal or hex string. The
  132. * result is dynamically allocated, and the caller is responsible for
  133. * freeing it.
  134. *
  135. * These functions should run in constant time for a given nominal
  136. * input size, even though the exact number of digits returned is
  137. * variable. They always allocate enough space for the largest output
  138. * that might be needed, but they don't always fill it.
  139. */
  140. char *mp_get_decimal(mp_int *x);
  141. char *mp_get_hex(mp_int *x);
  142. char *mp_get_hex_uppercase(mp_int *x);
  143. /*
  144. * Compare two mp_ints, or compare one mp_int against a C integer. The
  145. * 'eq' functions return 1 if the two inputs are equal, or 0
  146. * otherwise; the 'hs' functions return 1 if the first input is >= the
  147. * second, and 0 otherwise.
  148. */
  149. unsigned mp_cmp_hs(mp_int *a, mp_int *b);
  150. unsigned mp_cmp_eq(mp_int *a, mp_int *b);
  151. unsigned mp_hs_integer(mp_int *x, uintmax_t n);
  152. unsigned mp_eq_integer(mp_int *x, uintmax_t n);
  153. /*
  154. * Take the minimum or maximum of two mp_ints, without using a
  155. * conditional branch.
  156. */
  157. void mp_min_into(mp_int *r, mp_int *x, mp_int *y);
  158. void mp_max_into(mp_int *r, mp_int *x, mp_int *y);
  159. mp_int *mp_min(mp_int *x, mp_int *y);
  160. mp_int *mp_max(mp_int *x, mp_int *y);
  161. /*
  162. * Diagnostic function. Writes out x in hex to the supplied stdio
  163. * stream, preceded by the string 'prefix' and followed by 'suffix'.
  164. *
  165. * This is useful to put temporarily into code, but it's also
  166. * potentially useful to call from a debugger.
  167. */
  168. void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix);
  169. /*
  170. * Overwrite one mp_int with another, or with a plain integer.
  171. */
  172. void mp_copy_into(mp_int *dest, mp_int *src);
  173. void mp_copy_integer_into(mp_int *dest, uintmax_t n);
  174. /*
  175. * Conditional selection. Overwrites dest with either src0 or src1,
  176. * according to the value of 'choose_src1'. choose_src1 should be 0 or
  177. * 1; if it's 1, then dest is set to src1, otherwise src0.
  178. *
  179. * The value of choose_src1 is considered to be secret data, so
  180. * control flow and memory access should not depend on it.
  181. */
  182. void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
  183. unsigned choose_src1);
  184. /*
  185. * Addition, subtraction and multiplication, either targeting an
  186. * existing mp_int or making a new one large enough to hold whatever
  187. * the output might be..
  188. */
  189. void mp_add_into(mp_int *r, mp_int *a, mp_int *b);
  190. void mp_sub_into(mp_int *r, mp_int *a, mp_int *b);
  191. void mp_mul_into(mp_int *r, mp_int *a, mp_int *b);
  192. mp_int *mp_add(mp_int *x, mp_int *y);
  193. mp_int *mp_sub(mp_int *x, mp_int *y);
  194. mp_int *mp_mul(mp_int *x, mp_int *y);
  195. /*
  196. * Bitwise operations.
  197. */
  198. void mp_and_into(mp_int *r, mp_int *a, mp_int *b);
  199. void mp_or_into(mp_int *r, mp_int *a, mp_int *b);
  200. void mp_xor_into(mp_int *r, mp_int *a, mp_int *b);
  201. void mp_bic_into(mp_int *r, mp_int *a, mp_int *b);
  202. /*
  203. * Addition, subtraction and multiplication with one argument small
  204. * enough to fit in a C integer. For mp_mul_integer_into, it has to be
  205. * even smaller than that.
  206. */
  207. void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n);
  208. void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n);
  209. void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n);
  210. /*
  211. * Conditional addition/subtraction. If yes == 1, sets r to a+b or a-b
  212. * (respectively). If yes == 0, sets r to just a. 'yes' is considered
  213. * secret data.
  214. */
  215. void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes);
  216. void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes);
  217. /*
  218. * Swap x0 and x1 if swap == 1, and not if swap == 0. 'swap' is
  219. * considered secret.
  220. */
  221. void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap);
  222. /*
  223. * Set x to 0 if clear == 1, and otherwise leave it unchanged. 'clear'
  224. * is considered secret.
  225. */
  226. void mp_cond_clear(mp_int *x, unsigned clear);
  227. /*
  228. * Division. mp_divmod_into divides n by d, and writes the quotient
  229. * into q and the remainder into r. You can pass either of q and r as
  230. * NULL if you don't need one of the outputs.
  231. *
  232. * mp_div and mp_mod are wrappers that return one or other of those
  233. * outputs as a freshly allocated mp_int of the appropriate size.
  234. *
  235. * Division by zero gives no error, and returns a quotient of 0 and a
  236. * remainder of n (so as to still satisfy the division identity that
  237. * n=qd+r).
  238. */
  239. void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q, mp_int *r);
  240. mp_int *mp_div(mp_int *n, mp_int *d);
  241. mp_int *mp_mod(mp_int *x, mp_int *modulus);
  242. /*
  243. * Compute the residue of x mod m, where m is a small integer. x is
  244. * kept secret, but m is not.
  245. */
  246. uint32_t mp_mod_known_integer(mp_int *x, uint32_t m);
  247. /*
  248. * Integer nth root. mp_nthroot returns the largest integer x such
  249. * that x^n <= y, and if 'remainder' is non-NULL then it fills it with
  250. * the residue (y - x^n).
  251. *
  252. * Currently, n has to be small enough that the largest binomial
  253. * coefficient (n choose k) fits in 16 bits, which works out to at
  254. * most 18.
  255. */
  256. mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder);
  257. /*
  258. * Trivially easy special case of mp_mod: reduce a number mod a power
  259. * of two.
  260. */
  261. void mp_reduce_mod_2to(mp_int *x, size_t p);
  262. /*
  263. * Modular inverses. mp_invert computes the inverse of x mod modulus
  264. * (and will expect the two to be coprime). mp_invert_mod_2to computes
  265. * the inverse of x mod 2^p, and is a great deal faster.
  266. */
  267. mp_int *mp_invert_mod_2to(mp_int *x, size_t p);
  268. mp_int *mp_invert(mp_int *x, mp_int *modulus);
  269. /*
  270. * Greatest common divisor.
  271. *
  272. * mp_gcd_into also returns a pair of Bezout coefficients, namely A,B
  273. * such that a*A - b*B = gcd. (The minus sign is so that both returned
  274. * coefficients can be positive.)
  275. *
  276. * You can pass any of mp_gcd_into's output pointers as NULL if you
  277. * don't need that output value.
  278. *
  279. * mp_gcd is a wrapper with a less cumbersome API, for the case where
  280. * the only output value you need is the gcd itself. mp_coprime is
  281. * even easier, if all you care about is whether or not that gcd is 1.
  282. */
  283. mp_int *mp_gcd(mp_int *a, mp_int *b);
  284. void mp_gcd_into(mp_int *a, mp_int *b,
  285. mp_int *gcd_out, mp_int *A_out, mp_int *B_out);
  286. unsigned mp_coprime(mp_int *a, mp_int *b);
  287. /*
  288. * System for taking square roots modulo an odd prime.
  289. *
  290. * In order to do this efficiently, you need to provide an extra piece
  291. * of information at setup time, namely a number which is not
  292. * congruent mod p to any square. Given p and that non-square, you can
  293. * use modsqrt_new to make a context containing all the necessary
  294. * equipment for actually calculating the square roots, and then you
  295. * can call mp_modsqrt as many times as you like on that context
  296. * before freeing it.
  297. *
  298. * The output parameter '*success' will be filled in with 1 if the
  299. * operation was successful, or 0 if the input number doesn't have a
  300. * square root mod p at all. In the latter case, the returned mp_int
  301. * will be nonsense and you shouldn't depend on it.
  302. *
  303. * ==== WARNING ====
  304. *
  305. * This function DOES NOT TREAT THE PRIME MODULUS AS SECRET DATA! It
  306. * will protect the number you're taking the square root _of_, but not
  307. * the number you're taking the root of it _mod_.
  308. *
  309. * (This is because the algorithm requires a number of loop iterations
  310. * equal to the number of factors of 2 in p-1. And the expected use of
  311. * this function is for elliptic-curve point decompression, in which
  312. * the modulus is always a well-known one written down in standards
  313. * documents.)
  314. */
  315. typedef struct ModsqrtContext ModsqrtContext;
  316. ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p);
  317. void modsqrt_free(ModsqrtContext *);
  318. mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success);
  319. /*
  320. * Functions for Montgomery multiplication, a fast technique for doing
  321. * a long series of modular multiplications all with the same modulus
  322. * (which has to be odd).
  323. *
  324. * You start by calling monty_new to set up a context structure
  325. * containing all the precomputed bits and pieces needed by the
  326. * algorithm. Then, any numbers you want to work with must first be
  327. * transformed into the internal Montgomery representation using
  328. * monty_import; having done that, you can use monty_mul and monty_pow
  329. * to operate on them efficiently; and finally, monty_export will
  330. * convert numbers back out of Montgomery representation to give their
  331. * ordinary values.
  332. *
  333. * Addition and subtraction are not optimised by the Montgomery trick,
  334. * but monty_add and monty_sub are provided anyway for convenience.
  335. *
  336. * There are also monty_invert and monty_modsqrt, which are analogues
  337. * of mp_invert and mp_modsqrt which take their inputs in Montgomery
  338. * representation. For mp_modsqrt, the prime modulus of the
  339. * ModsqrtContext must be the same as the modulus of the MontyContext.
  340. *
  341. * The query functions monty_modulus and monty_identity return numbers
  342. * stored inside the MontyContext, without copying them. The returned
  343. * pointers are still owned by the MontyContext, so don't free them!
  344. */
  345. MontyContext *monty_new(mp_int *modulus);
  346. void monty_free(MontyContext *mc);
  347. mp_int *monty_modulus(MontyContext *mc); /* doesn't transfer ownership */
  348. mp_int *monty_identity(MontyContext *mc); /* doesn't transfer ownership */
  349. void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x);
  350. mp_int *monty_import(MontyContext *mc, mp_int *x);
  351. void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x);
  352. mp_int *monty_export(MontyContext *mc, mp_int *x);
  353. void monty_mul_into(MontyContext *, mp_int *r, mp_int *, mp_int *);
  354. mp_int *monty_add(MontyContext *, mp_int *, mp_int *);
  355. mp_int *monty_sub(MontyContext *, mp_int *, mp_int *);
  356. mp_int *monty_mul(MontyContext *, mp_int *, mp_int *);
  357. mp_int *monty_pow(MontyContext *, mp_int *base, mp_int *exponent);
  358. mp_int *monty_invert(MontyContext *, mp_int *);
  359. mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *mx, unsigned *success);
  360. /*
  361. * Modular arithmetic functions which don't use an explicit
  362. * MontyContext. mp_modpow will use one internally (on the assumption
  363. * that the exponent is likely to be large enough to make it
  364. * worthwhile); the other three will just do ordinary non-Montgomery-
  365. * optimised modular reduction. Use mp_modmul if you only have one
  366. * product to compute; if you have a lot, consider using a
  367. * MontyContext in the client code.
  368. */
  369. mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus);
  370. mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus);
  371. mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus);
  372. mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus);
  373. /*
  374. * Shift an mp_int by a given number of bits. The shift count is
  375. * considered to be secret data, and as a result, the algorithm takes
  376. * O(n log n) time instead of the obvious O(n).
  377. *
  378. * There's no mp_lshift_safe, because the size of mp_int to allocate
  379. * would not be able to avoid depending on the shift count. So if you
  380. * need to behave independently of the size of a left shift, you have
  381. * to know a bound on the space you'll need by some other means.
  382. */
  383. void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t shift);
  384. void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t shift);
  385. mp_int *mp_rshift_safe(mp_int *x, size_t shift);
  386. /*
  387. * Shift an mp_int left or right by a fixed number of bits. The shift
  388. * count is NOT considered to be secret data! Use this if you're
  389. * always dividing by 2, for example, but don't use it to shift by a
  390. * variable amount derived from another secret number.
  391. *
  392. * The upside is that these functions run in sensible linear time.
  393. */
  394. void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t shift);
  395. void mp_rshift_fixed_into(mp_int *r, mp_int *x, size_t shift);
  396. mp_int *mp_lshift_fixed(mp_int *x, size_t shift);
  397. mp_int *mp_rshift_fixed(mp_int *x, size_t shift);
  398. /*
  399. * Generate a random mp_int.
  400. *
  401. * The _function_ definitions here will expect to be given a gen_data
  402. * function that provides random data. Normally you'd use this using
  403. * random_read() from sshrand.c, and the macro wrappers automate that.
  404. *
  405. * (This is a bit of a dodge to avoid mpint.c having a link-time
  406. * dependency on sshrand.c, so that programs can link against one but
  407. * not the other: if a client of this header uses one of these macros
  408. * then _they_ have link-time dependencies on both modules.)
  409. *
  410. * mp_random_bits[_fn] returns an integer 0 <= n < 2^bits.
  411. * mp_random_upto[_fn](limit) returns an integer 0 <= n < limit.
  412. * mp_random_in_range[_fn](lo,hi) returns an integer lo <= n < hi.
  413. */
  414. typedef void (*random_read_fn_t)(void *, size_t);
  415. mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t randfn);
  416. mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t randfn);
  417. mp_int *mp_random_in_range_fn(
  418. mp_int *lo_inclusive, mp_int *hi_exclusive, random_read_fn_t randfn);
  419. #define mp_random_bits(bits) mp_random_bits_fn(bits, random_read)
  420. #define mp_random_upto(limit) mp_random_upto_fn(limit, random_read)
  421. #define mp_random_in_range(lo, hi) mp_random_in_range_fn(lo, hi, random_read)
  422. #endif /* PUTTY_MPINT_H */