mpint.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811
  1. /*
  2. * Multiprecision integer arithmetic, implementing mpint.h.
  3. */
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdio.h>
  7. #include "defs.h"
  8. #include "misc.h"
  9. #include "puttymem.h"
  10. #include "mpint.h"
  11. #include "mpint_i.h"
  12. #define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
  13. /*
  14. * Inline helpers to take min and max of size_t values, used
  15. * throughout this code.
  16. */
  17. static inline size_t size_t_min(size_t a, size_t b)
  18. {
  19. return a < b ? a : b;
  20. }
  21. static inline size_t size_t_max(size_t a, size_t b)
  22. {
  23. return a > b ? a : b;
  24. }
  25. /*
  26. * Helper to fetch a word of data from x with array overflow checking.
  27. * If x is too short to have that word, 0 is returned.
  28. */
  29. static inline BignumInt mp_word(mp_int *x, size_t i)
  30. {
  31. return i < x->nw ? x->w[i] : 0;
  32. }
  33. /*
  34. * Shift an ordinary C integer by BIGNUM_INT_BITS, in a way that
  35. * avoids writing a shift operator whose RHS is greater or equal to
  36. * the size of the type, because that's undefined behaviour in C.
  37. *
  38. * In fact we must avoid even writing it in a definitely-untaken
  39. * branch of an if, because compilers will sometimes warn about
  40. * that. So you can't just write 'shift too big ? 0 : n >> shift',
  41. * because even if 'shift too big' is a constant-expression
  42. * evaluating to false, you can still get complaints about the
  43. * else clause of the ?:.
  44. *
  45. * So we have to re-check _inside_ that clause, so that the shift
  46. * count is reset to something nonsensical but safe in the case
  47. * where the clause wasn't going to be taken anyway.
  48. */
  49. static uintmax_t shift_right_by_one_word(uintmax_t n)
  50. {
  51. bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
  52. return shift_too_big ? 0 :
  53. n >> (shift_too_big ? 0 : BIGNUM_INT_BITS);
  54. }
  55. static uintmax_t shift_left_by_one_word(uintmax_t n)
  56. {
  57. bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
  58. return shift_too_big ? 0 :
  59. n << (shift_too_big ? 0 : BIGNUM_INT_BITS);
  60. }
  61. mp_int *mp_make_sized(size_t nw)
  62. {
  63. mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
  64. assert(nw); /* we outlaw the zero-word mp_int */
  65. x->nw = nw;
  66. x->w = snew_plus_get_aux(x);
  67. mp_clear(x);
  68. return x;
  69. }
  70. mp_int *mp_new(size_t maxbits)
  71. {
  72. size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  73. return mp_make_sized(words);
  74. }
  75. mp_int *mp_resize(mp_int *mp, size_t newmaxbits)
  76. {
  77. mp_int *copy = mp_new(newmaxbits);
  78. mp_copy_into(copy, mp);
  79. mp_free(mp);
  80. return copy;
  81. }
  82. mp_int *mp_from_integer(uintmax_t n)
  83. {
  84. mp_int *x = mp_make_sized(
  85. (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
  86. for (size_t i = 0; i < x->nw; i++)
  87. x->w[i] = n >> (i * BIGNUM_INT_BITS);
  88. return x;
  89. }
  90. size_t mp_max_bytes(mp_int *x)
  91. {
  92. return x->nw * BIGNUM_INT_BYTES;
  93. }
  94. size_t mp_max_bits(mp_int *x)
  95. {
  96. return x->nw * BIGNUM_INT_BITS;
  97. }
  98. void mp_free(mp_int *x)
  99. {
  100. mp_clear(x);
  101. smemclr(x, sizeof(*x));
  102. sfree(x);
  103. }
  104. void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
  105. {
  106. fprintf(fp, "%s0x", prefix);
  107. for (size_t i = mp_max_bytes(x); i-- > 0 ;)
  108. fprintf(fp, "%02X", mp_get_byte(x, i));
  109. fputs(suffix, fp);
  110. }
  111. void mp_copy_into(mp_int *dest, mp_int *src)
  112. {
  113. size_t copy_nw = size_t_min(dest->nw, src->nw);
  114. memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
  115. smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
  116. }
  117. void mp_copy_integer_into(mp_int *r, uintmax_t n)
  118. {
  119. for (size_t i = 0; i < r->nw; i++) {
  120. r->w[i] = n;
  121. n = shift_right_by_one_word(n);
  122. }
  123. }
  124. /*
  125. * Conditional selection is done by negating 'which', to give a mask
  126. * word which is all 1s if which==1 and all 0s if which==0. Then you
  127. * can select between two inputs a,b without data-dependent control
  128. * flow by XORing them to get their difference; ANDing with the mask
  129. * word to replace that difference with 0 if which==0; and XORing that
  130. * into a, which will either turn it into b or leave it alone.
  131. *
  132. * This trick will be used throughout this code and taken as read the
  133. * rest of the time (or else I'd be here all week typing comments),
  134. * but I felt I ought to explain it in words _once_.
  135. */
  136. void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
  137. unsigned which)
  138. {
  139. BignumInt mask = -(BignumInt)(1 & which);
  140. for (size_t i = 0; i < dest->nw; i++) {
  141. BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
  142. dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
  143. }
  144. }
  145. void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
  146. {
  147. assert(x0->nw == x1->nw);
  148. volatile BignumInt mask = -(BignumInt)(1 & swap);
  149. for (size_t i = 0; i < x0->nw; i++) {
  150. BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
  151. x0->w[i] ^= diff;
  152. x1->w[i] ^= diff;
  153. }
  154. }
  155. void mp_clear(mp_int *x)
  156. {
  157. smemclr(x->w, x->nw * sizeof(BignumInt));
  158. }
  159. void mp_cond_clear(mp_int *x, unsigned clear)
  160. {
  161. BignumInt mask = ~-(BignumInt)(1 & clear);
  162. for (size_t i = 0; i < x->nw; i++)
  163. x->w[i] &= mask;
  164. }
  165. /*
  166. * Common code between mp_from_bytes_{le,be} which reads bytes in an
  167. * arbitrary arithmetic progression.
  168. */
  169. static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
  170. {
  171. size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;
  172. nw = size_t_max(nw, 1);
  173. mp_int *n = mp_make_sized(nw);
  174. for (size_t i = 0; i < bytes.len; i++)
  175. n->w[i / BIGNUM_INT_BYTES] |=
  176. (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
  177. (8 * (i % BIGNUM_INT_BYTES));
  178. return n;
  179. }
  180. mp_int *mp_from_bytes_le(ptrlen bytes)
  181. {
  182. return mp_from_bytes_int(bytes, 1, 0);
  183. }
  184. mp_int *mp_from_bytes_be(ptrlen bytes)
  185. {
  186. return mp_from_bytes_int(bytes, -1, bytes.len - 1);
  187. }
  188. static mp_int *mp_from_words(size_t nw, const BignumInt *w)
  189. {
  190. mp_int *x = mp_make_sized(nw);
  191. memcpy(x->w, w, x->nw * sizeof(BignumInt));
  192. return x;
  193. }
  194. /*
  195. * Decimal-to-binary conversion: just go through the input string
  196. * adding on the decimal value of each digit, and then multiplying the
  197. * number so far by 10.
  198. */
  199. mp_int *mp_from_decimal_pl(ptrlen decimal)
  200. {
  201. /* 196/59 is an upper bound (and also a continued-fraction
  202. * convergent) for log2(10), so this conservatively estimates the
  203. * number of bits that will be needed to store any number that can
  204. * be written in this many decimal digits. */
  205. assert(decimal.len < (~(size_t)0) / 196);
  206. size_t bits = 196 * decimal.len / 59;
  207. /* Now round that up to words. */
  208. size_t words = bits / BIGNUM_INT_BITS + 1;
  209. mp_int *x = mp_make_sized(words);
  210. for (size_t i = 0; i < decimal.len; i++) {
  211. mp_add_integer_into(x, x, ((const char *)decimal.ptr)[i] - '0');
  212. if (i+1 == decimal.len)
  213. break;
  214. mp_mul_integer_into(x, x, 10);
  215. }
  216. return x;
  217. }
  218. mp_int *mp_from_decimal(const char *decimal)
  219. {
  220. return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
  221. }
  222. /*
  223. * Hex-to-binary conversion: _algorithmically_ simpler than decimal
  224. * (none of those multiplications by 10), but there's some fiddly
  225. * bit-twiddling needed to process each hex digit without diverging
  226. * control flow depending on whether it's a letter or a number.
  227. */
  228. mp_int *mp_from_hex_pl(ptrlen hex)
  229. {
  230. assert(hex.len <= (~(size_t)0) / 4);
  231. size_t bits = hex.len * 4;
  232. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  233. words = size_t_max(words, 1);
  234. mp_int *x = mp_make_sized(words);
  235. for (size_t nibble = 0; nibble < hex.len; nibble++) {
  236. BignumInt digit = ((const char *)hex.ptr)[hex.len-1 - nibble];
  237. BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
  238. >> (BIGNUM_INT_BITS-1));
  239. BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
  240. >> (BIGNUM_INT_BITS-1));
  241. BignumInt digitval = digit - '0';
  242. digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
  243. digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
  244. digitval &= 0xF; /* at least be _slightly_ nice about weird input */
  245. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  246. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  247. x->w[word_idx] |= digitval << (nibble_within_word * 4);
  248. }
  249. return x;
  250. }
  251. mp_int *mp_from_hex(const char *hex)
  252. {
  253. return mp_from_hex_pl(ptrlen_from_asciz(hex));
  254. }
  255. mp_int *mp_copy(mp_int *x)
  256. {
  257. return mp_from_words(x->nw, x->w);
  258. }
  259. uint8_t mp_get_byte(mp_int *x, size_t byte)
  260. {
  261. return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
  262. (8 * (byte % BIGNUM_INT_BYTES)));
  263. }
  264. unsigned mp_get_bit(mp_int *x, size_t bit)
  265. {
  266. return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
  267. (bit % BIGNUM_INT_BITS));
  268. }
  269. uintmax_t mp_get_integer(mp_int *x)
  270. {
  271. uintmax_t toret = 0;
  272. for (size_t i = x->nw; i-- > 0 ;)
  273. toret = shift_left_by_one_word(toret) | x->w[i];
  274. return toret;
  275. }
  276. void mp_set_bit(mp_int *x, size_t bit, unsigned val)
  277. {
  278. size_t word = bit / BIGNUM_INT_BITS;
  279. assert(word < x->nw);
  280. unsigned shift = (bit % BIGNUM_INT_BITS);
  281. x->w[word] &= ~((BignumInt)1 << shift);
  282. x->w[word] |= (BignumInt)(val & 1) << shift;
  283. }
  284. /*
  285. * Helper function used here and there to normalise any nonzero input
  286. * value to 1.
  287. */
  288. static inline unsigned normalise_to_1(BignumInt n)
  289. {
  290. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  291. n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
  292. return n;
  293. }
  294. static inline unsigned normalise_to_1_u64(uint64_t n)
  295. {
  296. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  297. n = (-n) >> 63; /* normalise to 0 or 1 */
  298. return n;
  299. }
  300. /*
  301. * Find the highest nonzero word in a number. Returns the index of the
  302. * word in x->w, and also a pair of output uint64_t in which that word
  303. * appears in the high one shifted left by 'shift_wanted' bits, the
  304. * words immediately below it occupy the space to the right, and the
  305. * words below _that_ fill up the low one.
  306. *
  307. * If there is no nonzero word at all, the passed-by-reference output
  308. * variables retain their original values.
  309. */
  310. static inline void mp_find_highest_nonzero_word_pair(
  311. mp_int *x, size_t shift_wanted, size_t *index,
  312. uint64_t *hi, uint64_t *lo)
  313. {
  314. uint64_t curr_hi = 0, curr_lo = 0;
  315. for (size_t curr_index = 0; curr_index < x->nw; curr_index++) {
  316. BignumInt curr_word = x->w[curr_index];
  317. unsigned indicator = normalise_to_1(curr_word);
  318. curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
  319. (curr_hi << (64 - BIGNUM_INT_BITS));
  320. curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
  321. ((uint64_t)curr_word << shift_wanted);
  322. if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
  323. if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
  324. if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
  325. }
  326. }
  327. size_t mp_get_nbits(mp_int *x)
  328. {
  329. /* Sentinel values in case there are no bits set at all: we
  330. * imagine that there's a word at position -1 (i.e. the topmost
  331. * fraction word) which is all 1s, because that way, we handle a
  332. * zero input by considering its highest set bit to be the top one
  333. * of that word, i.e. just below the units digit, i.e. at bit
  334. * index -1, i.e. so we'll return 0 on output. */
  335. size_t hiword_index = -(size_t)1;
  336. uint64_t hiword64 = ~(BignumInt)0;
  337. /*
  338. * Find the highest nonzero word and its index.
  339. */
  340. mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
  341. BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
  342. /*
  343. * Find the index of the highest set bit within hiword.
  344. */
  345. BignumInt hibit_index = 0;
  346. for (size_t i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
  347. BignumInt shifted_word = hiword >> i;
  348. BignumInt indicator =
  349. (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
  350. hiword ^= (shifted_word ^ hiword ) & -indicator;
  351. hibit_index += i & -(size_t)indicator;
  352. }
  353. /*
  354. * Put together the result.
  355. */
  356. return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
  357. }
  358. /*
  359. * Shared code between the hex and decimal output functions to get rid
  360. * of leading zeroes on the output string. The idea is that we wrote
  361. * out a fixed number of digits and a trailing \0 byte into 'buf', and
  362. * now we want to shift it all left so that the first nonzero digit
  363. * moves to buf[0] (or, if there are no nonzero digits at all, we move
  364. * up by 'maxtrim', so that we return 0 as "0" instead of "").
  365. */
  366. static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
  367. {
  368. size_t trim = maxtrim;
  369. /*
  370. * Look for the first character not equal to '0', to find the
  371. * shift count.
  372. */
  373. if (trim > 0) {
  374. for (size_t pos = trim; pos-- > 0 ;) {
  375. uint8_t diff = buf[pos] ^ '0';
  376. size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
  377. trim ^= (trim ^ pos) & ~mask;
  378. }
  379. }
  380. /*
  381. * Now do the shift, in log n passes each of which does a
  382. * conditional shift by 2^i bytes if bit i is set in the shift
  383. * count.
  384. */
  385. uint8_t *ubuf = (uint8_t *)buf;
  386. for (size_t logd = 0; bufsize >> logd; logd++) {
  387. uint8_t mask = -(uint8_t)((trim >> logd) & 1);
  388. size_t d = (size_t)1 << logd;
  389. for (size_t i = 0; i+d < bufsize; i++) {
  390. uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
  391. ubuf[i] ^= diff;
  392. ubuf[i+d] ^= diff;
  393. }
  394. }
  395. }
  396. /*
  397. * Binary to decimal conversion. Our strategy here is to extract each
  398. * decimal digit by finding the input number's residue mod 10, then
  399. * subtract that off to give an exact multiple of 10, which then means
  400. * you can safely divide by 10 by means of shifting right one bit and
  401. * then multiplying by the inverse of 5 mod 2^n.
  402. */
  403. char *mp_get_decimal(mp_int *x_orig)
  404. {
  405. mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
  406. /*
  407. * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
  408. * appropriate number of 'c's. Manually construct an integer the
  409. * right size.
  410. */
  411. mp_int *inv5 = mp_make_sized(x->nw);
  412. assert(BIGNUM_INT_BITS % 8 == 0);
  413. for (size_t i = 0; i < inv5->nw; i++)
  414. inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
  415. inv5->w[0]++;
  416. /*
  417. * 146/485 is an upper bound (and also a continued-fraction
  418. * convergent) of log10(2), so this is a conservative estimate of
  419. * the number of decimal digits needed to store a value that fits
  420. * in this many binary bits.
  421. */
  422. assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
  423. size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
  424. char *outbuf = snewn(bufsize, char);
  425. outbuf[bufsize - 1] = '\0';
  426. /*
  427. * Loop over the number generating digits from the least
  428. * significant upwards, so that we write to outbuf in reverse
  429. * order.
  430. */
  431. for (size_t pos = bufsize - 1; pos-- > 0 ;) {
  432. /*
  433. * Find the current residue mod 10. We do this by first
  434. * summing the bytes of the number, with all but the lowest
  435. * one multiplied by 6 (because 256^i == 6 mod 10 for all
  436. * i>0). That gives us a single word congruent mod 10 to the
  437. * input number, and then we reduce it further by manual
  438. * multiplication and shifting, just in case the compiler
  439. * target implements the C division operator in a way that has
  440. * input-dependent timing.
  441. */
  442. uint32_t low_digit = 0, maxval = 0, mult = 1;
  443. for (size_t i = 0; i < x->nw; i++) {
  444. for (unsigned j = 0; j < BIGNUM_INT_BYTES; j++) {
  445. low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
  446. maxval += mult * 0xFF;
  447. mult = 6;
  448. }
  449. /*
  450. * For _really_ big numbers, prevent overflow of t by
  451. * periodically folding the top half of the accumulator
  452. * into the bottom half, using the same rule 'multiply by
  453. * 6 when shifting down by one or more whole bytes'.
  454. */
  455. if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
  456. low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
  457. maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
  458. }
  459. }
  460. /*
  461. * Final reduction of low_digit. We multiply by 2^32 / 10
  462. * (that's the constant 0x19999999) to get a 64-bit value
  463. * whose top 32 bits are the approximate quotient
  464. * low_digit/10; then we subtract off 10 times that; and
  465. * finally we do one last trial subtraction of 10 by adding 6
  466. * (which sets bit 4 if the number was just over 10) and then
  467. * testing bit 4.
  468. */
  469. low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
  470. low_digit -= 10 * ((low_digit + 6) >> 4);
  471. assert(low_digit < 10); /* make sure we did reduce fully */
  472. outbuf[pos] = '0' + low_digit;
  473. /*
  474. * Now subtract off that digit, divide by 2 (using a right
  475. * shift) and by 5 (using the modular inverse), to get the
  476. * next output digit into the units position.
  477. */
  478. mp_sub_integer_into(x, x, low_digit);
  479. mp_rshift_fixed_into(y, x, 1);
  480. mp_mul_into(x, y, inv5);
  481. }
  482. mp_free(x);
  483. mp_free(y);
  484. mp_free(inv5);
  485. trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
  486. return outbuf;
  487. }
  488. /*
  489. * Binary to hex conversion. Reasonably simple (only a spot of bit
  490. * twiddling to choose whether to output a digit or a letter for each
  491. * nibble).
  492. */
  493. static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
  494. {
  495. size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
  496. size_t bufsize = nibbles + 1;
  497. char *outbuf = snewn(bufsize, char);
  498. outbuf[nibbles] = '\0';
  499. for (size_t nibble = 0; nibble < nibbles; nibble++) {
  500. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  501. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  502. uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
  503. uint8_t mask = -((digitval + 6) >> 4);
  504. char digit = digitval + '0' + (letter_offset & mask);
  505. outbuf[nibbles-1 - nibble] = digit;
  506. }
  507. trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
  508. return outbuf;
  509. }
  510. char *mp_get_hex(mp_int *x)
  511. {
  512. return mp_get_hex_internal(x, 'a' - ('0'+10));
  513. }
  514. char *mp_get_hex_uppercase(mp_int *x)
  515. {
  516. return mp_get_hex_internal(x, 'A' - ('0'+10));
  517. }
  518. /*
  519. * Routines for reading and writing the SSH-1 and SSH-2 wire formats
  520. * for multiprecision integers, declared in marshal.h.
  521. *
  522. * These can't avoid having control flow dependent on the true bit
  523. * size of the number, because the wire format requires the number of
  524. * output bytes to depend on that.
  525. */
  526. void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
  527. {
  528. size_t bits = mp_get_nbits(x);
  529. size_t bytes = (bits + 7) / 8;
  530. assert(bits < 0x10000);
  531. put_uint16(bs, bits);
  532. for (size_t i = bytes; i-- > 0 ;)
  533. put_byte(bs, mp_get_byte(x, i));
  534. }
  535. void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
  536. {
  537. size_t bytes = (mp_get_nbits(x) + 8) / 8;
  538. put_uint32(bs, bytes);
  539. for (size_t i = bytes; i-- > 0 ;)
  540. put_byte(bs, mp_get_byte(x, i));
  541. }
  542. mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
  543. {
  544. unsigned bitc = get_uint16(src);
  545. ptrlen bytes = get_data(src, (bitc + 7) / 8);
  546. if (get_err(src)) {
  547. return mp_from_integer(0);
  548. } else {
  549. mp_int *toret = mp_from_bytes_be(bytes);
  550. /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
  551. * _greater_ than the actual number of bits */
  552. if (mp_get_nbits(toret) > bitc) {
  553. src->err = BSE_INVALID;
  554. mp_free(toret);
  555. toret = mp_from_integer(0);
  556. }
  557. return toret;
  558. }
  559. }
  560. mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
  561. {
  562. ptrlen bytes = get_string(src);
  563. if (get_err(src)) {
  564. return mp_from_integer(0);
  565. } else {
  566. const unsigned char *p = bytes.ptr;
  567. if ((bytes.len > 0 &&
  568. ((p[0] & 0x80) ||
  569. (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
  570. src->err = BSE_INVALID;
  571. return mp_from_integer(0);
  572. }
  573. return mp_from_bytes_be(bytes);
  574. }
  575. }
  576. /*
  577. * Make an mp_int structure whose words array aliases a subinterval of
  578. * some other mp_int. This makes it easy to read or write just the low
  579. * or high words of a number, e.g. to add a number starting from a
  580. * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
  581. *
  582. * The convention throughout this code is that when we store an mp_int
  583. * directly by value, we always expect it to be an alias of some kind,
  584. * so its words array won't ever need freeing. Whereas an 'mp_int *'
  585. * has an owner, who knows whether it needs freeing or whether it was
  586. * created by address-taking an alias.
  587. */
  588. static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
  589. {
  590. /*
  591. * Bounds-check the offset and length so that we always return
  592. * something valid, even if it's not necessarily the length the
  593. * caller asked for.
  594. */
  595. if (offset > in->nw)
  596. offset = in->nw;
  597. if (len > in->nw - offset)
  598. len = in->nw - offset;
  599. mp_int toret;
  600. toret.nw = len;
  601. toret.w = in->w + offset;
  602. return toret;
  603. }
  604. /*
  605. * A special case of mp_make_alias: in some cases we preallocate a
  606. * large mp_int to use as scratch space (to avoid pointless
  607. * malloc/free churn in recursive or iterative work).
  608. *
  609. * mp_alloc_from_scratch creates an alias of size 'len' to part of
  610. * 'pool', and adjusts 'pool' itself so that further allocations won't
  611. * overwrite that space.
  612. *
  613. * There's no free function to go with this. Typically you just copy
  614. * the pool mp_int by value, allocate from the copy, and when you're
  615. * done with those allocations, throw the copy away and go back to the
  616. * original value of pool. (A mark/release system.)
  617. */
  618. static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
  619. {
  620. assert(len <= pool->nw);
  621. mp_int toret = mp_make_alias(pool, 0, len);
  622. *pool = mp_make_alias(pool, len, pool->nw);
  623. return toret;
  624. }
  625. /*
  626. * Internal component common to lots of assorted add/subtract code.
  627. * Reads words from a,b; writes into w_out (which might be NULL if the
  628. * output isn't even needed). Takes an input carry flag in 'carry',
  629. * and returns the output carry. Each word read from b is ANDed with
  630. * b_and and then XORed with b_xor.
  631. *
  632. * So you can implement addition by setting b_and to all 1s and b_xor
  633. * to 0; you can subtract by making b_xor all 1s too (effectively
  634. * bit-flipping b) and also passing 1 as the input carry (to turn
  635. * one's complement into two's complement). And you can do conditional
  636. * add/subtract by choosing b_and to be all 1s or all 0s based on a
  637. * condition, because the value of b will be totally ignored if b_and
  638. * == 0.
  639. */
  640. static BignumCarry mp_add_masked_into(
  641. BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
  642. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  643. {
  644. for (size_t i = 0; i < rw; i++) {
  645. BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
  646. bword = (bword & b_and) ^ b_xor;
  647. BignumADC(out, carry, aword, bword, carry);
  648. if (w_out)
  649. w_out[i] = out;
  650. }
  651. return carry;
  652. }
  653. /*
  654. * Like the public mp_add_into except that it returns the output carry.
  655. */
  656. static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
  657. {
  658. return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
  659. }
  660. void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
  661. {
  662. mp_add_into_internal(r, a, b);
  663. }
  664. void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
  665. {
  666. mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  667. }
  668. void mp_and_into(mp_int *r, mp_int *a, mp_int *b)
  669. {
  670. for (size_t i = 0; i < r->nw; i++) {
  671. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  672. r->w[i] = aword & bword;
  673. }
  674. }
  675. void mp_or_into(mp_int *r, mp_int *a, mp_int *b)
  676. {
  677. for (size_t i = 0; i < r->nw; i++) {
  678. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  679. r->w[i] = aword | bword;
  680. }
  681. }
  682. void mp_xor_into(mp_int *r, mp_int *a, mp_int *b)
  683. {
  684. for (size_t i = 0; i < r->nw; i++) {
  685. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  686. r->w[i] = aword ^ bword;
  687. }
  688. }
  689. void mp_bic_into(mp_int *r, mp_int *a, mp_int *b)
  690. {
  691. for (size_t i = 0; i < r->nw; i++) {
  692. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  693. r->w[i] = aword & ~bword;
  694. }
  695. }
  696. static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
  697. {
  698. BignumCarry carry = yes;
  699. BignumInt flip = -(BignumInt)yes;
  700. for (size_t i = 0; i < r->nw; i++) {
  701. BignumInt xword = mp_word(x, i);
  702. xword ^= flip;
  703. BignumADC(r->w[i], carry, 0, xword, carry);
  704. }
  705. }
  706. /*
  707. * Similar to mp_add_masked_into, but takes a C integer instead of an
  708. * mp_int as the masked operand.
  709. */
  710. static BignumCarry mp_add_masked_integer_into(
  711. BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
  712. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  713. {
  714. for (size_t i = 0; i < rw; i++) {
  715. BignumInt aword = mp_word(a, i);
  716. BignumInt bword = b;
  717. b = shift_right_by_one_word(b);
  718. BignumInt out;
  719. bword = (bword ^ b_xor) & b_and;
  720. BignumADC(out, carry, aword, bword, carry);
  721. if (w_out)
  722. w_out[i] = out;
  723. }
  724. return carry;
  725. }
  726. void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  727. {
  728. mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
  729. }
  730. void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  731. {
  732. mp_add_masked_integer_into(r->w, r->nw, a, n,
  733. ~(BignumInt)0, ~(BignumInt)0, 1);
  734. }
  735. /*
  736. * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
  737. * word_index as secret data.
  738. */
  739. static void mp_add_integer_into_shifted_by_words(
  740. mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
  741. {
  742. unsigned indicator = 0;
  743. BignumCarry carry = 0;
  744. for (size_t i = 0; i < r->nw; i++) {
  745. /* indicator becomes 1 when we reach the index that the least
  746. * significant bits of n want to be placed at, and it stays 1
  747. * thereafter. */
  748. indicator |= 1 ^ normalise_to_1(i ^ word_index);
  749. /* If indicator is 1, we add the low bits of n into r, and
  750. * shift n down. If it's 0, we add zero bits into r, and
  751. * leave n alone. */
  752. BignumInt bword = n & -(BignumInt)indicator;
  753. uintmax_t new_n = shift_right_by_one_word(n);
  754. n ^= (n ^ new_n) & -(uintmax_t)indicator;
  755. BignumInt aword = mp_word(a, i);
  756. BignumInt out;
  757. BignumADC(out, carry, aword, bword, carry);
  758. r->w[i] = out;
  759. }
  760. }
  761. void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
  762. {
  763. BignumInt carry = 0, mult = n;
  764. for (size_t i = 0; i < r->nw; i++) {
  765. BignumInt aword = mp_word(a, i);
  766. BignumMULADD(carry, r->w[i], aword, mult, carry);
  767. }
  768. assert(!carry);
  769. }
  770. void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  771. {
  772. BignumInt mask = -(BignumInt)(yes & 1);
  773. mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
  774. }
  775. void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  776. {
  777. BignumInt mask = -(BignumInt)(yes & 1);
  778. mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
  779. }
  780. /*
  781. * Ordered comparison between unsigned numbers is done by subtracting
  782. * one from the other and looking at the output carry.
  783. */
  784. unsigned mp_cmp_hs(mp_int *a, mp_int *b)
  785. {
  786. size_t rw = size_t_max(a->nw, b->nw);
  787. return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  788. }
  789. unsigned mp_hs_integer(mp_int *x, uintmax_t n)
  790. {
  791. BignumInt carry = 1;
  792. size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
  793. for (size_t i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
  794. BignumInt nword = n;
  795. n = shift_right_by_one_word(n);
  796. BignumInt dummy_out;
  797. BignumADC(dummy_out, carry, mp_word(x, i), ~nword, carry);
  798. (void)dummy_out;
  799. }
  800. return carry;
  801. }
  802. /*
  803. * Equality comparison is done by bitwise XOR of the input numbers,
  804. * ORing together all the output words, and normalising the result
  805. * using our careful normalise_to_1 helper function.
  806. */
  807. unsigned mp_cmp_eq(mp_int *a, mp_int *b)
  808. {
  809. BignumInt diff = 0;
  810. for (size_t i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
  811. diff |= mp_word(a, i) ^ mp_word(b, i);
  812. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  813. }
  814. unsigned mp_eq_integer(mp_int *x, uintmax_t n)
  815. {
  816. BignumInt diff = 0;
  817. size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
  818. for (size_t i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
  819. BignumInt nword = n;
  820. n = shift_right_by_one_word(n);
  821. diff |= mp_word(x, i) ^ nword;
  822. }
  823. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  824. }
  825. static void mp_neg_into(mp_int *r, mp_int *a)
  826. {
  827. mp_int zero;
  828. zero.nw = 0;
  829. mp_sub_into(r, &zero, a);
  830. }
  831. mp_int *mp_add(mp_int *x, mp_int *y)
  832. {
  833. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
  834. mp_add_into(r, x, y);
  835. return r;
  836. }
  837. mp_int *mp_sub(mp_int *x, mp_int *y)
  838. {
  839. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  840. mp_sub_into(r, x, y);
  841. return r;
  842. }
  843. /*
  844. * Internal routine: multiply and accumulate in the trivial O(N^2)
  845. * way. Sets r <- r + a*b.
  846. */
  847. static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
  848. {
  849. BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
  850. for (BignumInt *ap = a->w, *rp = r->w;
  851. ap < aend && rp < rend; ap++, rp++) {
  852. BignumInt adata = *ap, carry = 0, *rq = rp;
  853. for (BignumInt *bp = b->w; bp < bend && rq < rend; bp++, rq++) {
  854. BignumInt bdata = bp < bend ? *bp : 0;
  855. BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
  856. }
  857. for (; rq < rend; rq++)
  858. BignumADC(*rq, carry, carry, *rq, 0);
  859. }
  860. }
  861. #ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
  862. #define KARATSUBA_THRESHOLD 24
  863. #endif
  864. static inline size_t mp_mul_scratchspace_unary(size_t n)
  865. {
  866. /*
  867. * Simplistic and overcautious bound on the amount of scratch
  868. * space that the recursive multiply function will need.
  869. *
  870. * The rationale is: on the main Karatsuba branch of
  871. * mp_mul_internal, which is the most space-intensive one, we
  872. * allocate space for (a0+a1) and (b0+b1) (each just over half the
  873. * input length n) and their product (the sum of those sizes, i.e.
  874. * just over n itself). Then in order to actually compute the
  875. * product, we do a recursive multiplication of size just over n.
  876. *
  877. * If all those 'just over' weren't there, and everything was
  878. * _exactly_ half the length, you'd get the amount of space for a
  879. * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
  880. * which is satisfied by M(n) = 4n. But instead it's (2n plus a
  881. * word or two) and M(n/2 plus a word or two). On the assumption
  882. * that there's still some constant k such that M(n) <= kn, this
  883. * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
  884. * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
  885. * since we don't even _start_ needing scratch space until n is at
  886. * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
  887. *
  888. * So I claim that 6n words of scratch space will suffice, and I
  889. * check that by assertion at every stage of the recursion.
  890. */
  891. return n * 6;
  892. }
  893. static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
  894. {
  895. size_t inlen = size_t_min(rw, size_t_max(aw, bw));
  896. return mp_mul_scratchspace_unary(inlen);
  897. }
  898. static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
  899. {
  900. size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
  901. assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
  902. mp_clear(r);
  903. if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
  904. /*
  905. * The input numbers are too small to bother optimising. Go
  906. * straight to the simple primitive approach.
  907. */
  908. mp_mul_add_simple(r, a, b);
  909. return;
  910. }
  911. /*
  912. * Karatsuba divide-and-conquer algorithm. We cut each input in
  913. * half, so that it's expressed as two big 'digits' in a giant
  914. * base D:
  915. *
  916. * a = a_1 D + a_0
  917. * b = b_1 D + b_0
  918. *
  919. * Then the product is of course
  920. *
  921. * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
  922. *
  923. * and we compute the three coefficients by recursively calling
  924. * ourself to do half-length multiplications.
  925. *
  926. * The clever bit that makes this worth doing is that we only need
  927. * _one_ half-length multiplication for the central coefficient
  928. * rather than the two that it obviouly looks like, because we can
  929. * use a single multiplication to compute
  930. *
  931. * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
  932. *
  933. * and then we subtract the other two coefficients (a_1 b_1 and
  934. * a_0 b_0) which we were computing anyway.
  935. *
  936. * Hence we get to multiply two numbers of length N in about three
  937. * times as much work as it takes to multiply numbers of length
  938. * N/2, which is obviously better than the four times as much work
  939. * it would take if we just did a long conventional multiply.
  940. */
  941. /* Break up the input as botlen + toplen, with botlen >= toplen.
  942. * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
  943. size_t toplen = inlen / 2;
  944. size_t botlen = inlen - toplen;
  945. /* Alias bignums that address the two halves of a,b, and useful
  946. * pieces of r. */
  947. mp_int a0 = mp_make_alias(a, 0, botlen);
  948. mp_int b0 = mp_make_alias(b, 0, botlen);
  949. mp_int a1 = mp_make_alias(a, botlen, toplen);
  950. mp_int b1 = mp_make_alias(b, botlen, toplen);
  951. mp_int r0 = mp_make_alias(r, 0, botlen*2);
  952. mp_int r1 = mp_make_alias(r, botlen, r->nw);
  953. mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
  954. /* Recurse to compute a0*b0 and a1*b1, in their correct positions
  955. * in the output bignum. They can't overlap. */
  956. mp_mul_internal(&r0, &a0, &b0, scratch);
  957. mp_mul_internal(&r2, &a1, &b1, scratch);
  958. if (r->nw < inlen*2) {
  959. /*
  960. * The output buffer isn't large enough to require the whole
  961. * product, so some of a1*b1 won't have been stored. In that
  962. * case we won't try to do the full Karatsuba optimisation;
  963. * we'll just recurse again to compute a0*b1 and a1*b0 - or at
  964. * least as much of them as the output buffer size requires -
  965. * and add each one in.
  966. */
  967. mp_int s = mp_alloc_from_scratch(
  968. &scratch, size_t_min(botlen+toplen, r1.nw));
  969. mp_mul_internal(&s, &a0, &b1, scratch);
  970. mp_add_into(&r1, &r1, &s);
  971. mp_mul_internal(&s, &a1, &b0, scratch);
  972. mp_add_into(&r1, &r1, &s);
  973. return;
  974. }
  975. /* a0+a1 and b0+b1 */
  976. mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
  977. mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
  978. mp_add_into(&asum, &a0, &a1);
  979. mp_add_into(&bsum, &b0, &b1);
  980. /* Their product */
  981. mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
  982. mp_mul_internal(&product, &asum, &bsum, scratch);
  983. /* Subtract off the outer terms we already have */
  984. mp_sub_into(&product, &product, &r0);
  985. mp_sub_into(&product, &product, &r2);
  986. /* And add it in with the right offset. */
  987. mp_add_into(&r1, &r1, &product);
  988. }
  989. void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
  990. {
  991. mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
  992. mp_mul_internal(r, a, b, *scratch);
  993. mp_free(scratch);
  994. }
  995. mp_int *mp_mul(mp_int *x, mp_int *y)
  996. {
  997. mp_int *r = mp_make_sized(x->nw + y->nw);
  998. mp_mul_into(r, x, y);
  999. return r;
  1000. }
  1001. void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  1002. {
  1003. size_t words = bits / BIGNUM_INT_BITS;
  1004. size_t bitoff = bits % BIGNUM_INT_BITS;
  1005. for (size_t i = r->nw; i-- > 0 ;) {
  1006. if (i < words) {
  1007. r->w[i] = 0;
  1008. } else {
  1009. r->w[i] = mp_word(a, i - words);
  1010. if (bitoff != 0) {
  1011. r->w[i] <<= bitoff;
  1012. if (i > words)
  1013. r->w[i] |= mp_word(a, i - words - 1) >>
  1014. (BIGNUM_INT_BITS - bitoff);
  1015. }
  1016. }
  1017. }
  1018. }
  1019. void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  1020. {
  1021. size_t words = bits / BIGNUM_INT_BITS;
  1022. size_t bitoff = bits % BIGNUM_INT_BITS;
  1023. for (size_t i = 0; i < r->nw; i++) {
  1024. r->w[i] = mp_word(a, i + words);
  1025. if (bitoff != 0) {
  1026. r->w[i] >>= bitoff;
  1027. r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
  1028. }
  1029. }
  1030. }
  1031. mp_int *mp_lshift_fixed(mp_int *x, size_t bits)
  1032. {
  1033. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1034. mp_int *r = mp_make_sized(x->nw + words);
  1035. mp_lshift_fixed_into(r, x, bits);
  1036. return r;
  1037. }
  1038. mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
  1039. {
  1040. size_t words = bits / BIGNUM_INT_BITS;
  1041. size_t nw = x->nw - size_t_min(x->nw, words);
  1042. mp_int *r = mp_make_sized(size_t_max(nw, 1));
  1043. mp_rshift_fixed_into(r, x, bits);
  1044. return r;
  1045. }
  1046. /*
  1047. * Safe right shift is done using the same technique as
  1048. * trim_leading_zeroes above: you make an n-word left shift by
  1049. * composing an appropriate subset of power-of-2-sized shifts, so it
  1050. * takes log_2(n) loop iterations each of which does a different shift
  1051. * by a power of 2 words, using the usual bit twiddling to make the
  1052. * whole shift conditional on the appropriate bit of n.
  1053. */
  1054. static void mp_rshift_safe_in_place(mp_int *r, size_t bits)
  1055. {
  1056. size_t wordshift = bits / BIGNUM_INT_BITS;
  1057. size_t bitshift = bits % BIGNUM_INT_BITS;
  1058. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  1059. mp_cond_clear(r, clear);
  1060. for (unsigned bit = 0; r->nw >> bit; bit++) {
  1061. size_t word_offset = (size_t)1 << bit;
  1062. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  1063. for (size_t i = 0; i < r->nw; i++) {
  1064. BignumInt w = mp_word(r, i + word_offset);
  1065. r->w[i] ^= (r->w[i] ^ w) & mask;
  1066. }
  1067. }
  1068. /*
  1069. * That's done the shifting by words; now we do the shifting by
  1070. * bits.
  1071. */
  1072. for (unsigned bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) {
  1073. unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
  1074. BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
  1075. for (size_t i = 0; i < r->nw; i++) {
  1076. BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
  1077. r->w[i] ^= (r->w[i] ^ w) & mask;
  1078. }
  1079. }
  1080. }
  1081. mp_int *mp_rshift_safe(mp_int *x, size_t bits)
  1082. {
  1083. mp_int *r = mp_copy(x);
  1084. mp_rshift_safe_in_place(r, bits);
  1085. return r;
  1086. }
  1087. void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t bits)
  1088. {
  1089. mp_copy_into(r, x);
  1090. mp_rshift_safe_in_place(r, bits);
  1091. }
  1092. static void mp_lshift_safe_in_place(mp_int *r, size_t bits)
  1093. {
  1094. size_t wordshift = bits / BIGNUM_INT_BITS;
  1095. size_t bitshift = bits % BIGNUM_INT_BITS;
  1096. /*
  1097. * Same strategy as mp_rshift_safe_in_place, but of course the
  1098. * other way up.
  1099. */
  1100. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  1101. mp_cond_clear(r, clear);
  1102. for (unsigned bit = 0; r->nw >> bit; bit++) {
  1103. size_t word_offset = (size_t)1 << bit;
  1104. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  1105. for (size_t i = r->nw; i-- > 0 ;) {
  1106. BignumInt w = mp_word(r, i - word_offset);
  1107. r->w[i] ^= (r->w[i] ^ w) & mask;
  1108. }
  1109. }
  1110. size_t downshift = BIGNUM_INT_BITS - bitshift;
  1111. size_t no_shift = (downshift >> BIGNUM_INT_BITS_BITS);
  1112. downshift &= ~-(size_t)no_shift;
  1113. BignumInt downshifted_mask = ~-(BignumInt)no_shift;
  1114. for (size_t i = r->nw; i-- > 0 ;) {
  1115. r->w[i] = (r->w[i] << bitshift) |
  1116. ((mp_word(r, i-1) >> downshift) & downshifted_mask);
  1117. }
  1118. }
  1119. void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t bits)
  1120. {
  1121. mp_copy_into(r, x);
  1122. mp_lshift_safe_in_place(r, bits);
  1123. }
  1124. void mp_reduce_mod_2to(mp_int *x, size_t p)
  1125. {
  1126. size_t word = p / BIGNUM_INT_BITS;
  1127. size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
  1128. for (; word < x->nw; word++) {
  1129. x->w[word] &= mask;
  1130. mask = 0;
  1131. }
  1132. }
  1133. /*
  1134. * Inverse mod 2^n is computed by an iterative technique which doubles
  1135. * the number of bits at each step.
  1136. */
  1137. mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
  1138. {
  1139. /* Input checks: x must be coprime to the modulus, i.e. odd, and p
  1140. * can't be zero */
  1141. assert(x->nw > 0);
  1142. assert(x->w[0] & 1);
  1143. assert(p > 0);
  1144. size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1145. rw = size_t_max(rw, 1);
  1146. mp_int *r = mp_make_sized(rw);
  1147. size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
  1148. mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
  1149. mp_int scratch_per_iter = *scratch_orig;
  1150. mp_int mul_scratch = mp_alloc_from_scratch(
  1151. &scratch_per_iter, mul_scratchsize);
  1152. r->w[0] = 1;
  1153. for (size_t b = 1; b < p; b <<= 1) {
  1154. /*
  1155. * In each step of this iteration, we have the inverse of x
  1156. * mod 2^b, and we want the inverse of x mod 2^{2b}.
  1157. *
  1158. * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
  1159. * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
  1160. *
  1161. * We want to find r_0 and r_1 such that
  1162. * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
  1163. *
  1164. * To begin with, we know r_0 must be the inverse mod B of
  1165. * x_0, i.e. of x, i.e. it is the inverse we computed in the
  1166. * previous iteration. So now all we need is r_1.
  1167. *
  1168. * Multiplying out, neglecting multiples of B^2, and writing
  1169. * x_0 r_0 = K B + 1, we have
  1170. *
  1171. * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
  1172. * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
  1173. * => r_1 x_0 == - r_0 x_1 - K (mod B)
  1174. * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
  1175. *
  1176. * (the last step because we multiply through by the inverse
  1177. * of x_0, which we already know is r_0).
  1178. */
  1179. mp_int scratch_this_iter = scratch_per_iter;
  1180. size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1181. size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1182. /* Start by finding K: multiply x_0 by r_0, and shift down. */
  1183. mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1184. mp_copy_into(&x0, x);
  1185. mp_reduce_mod_2to(&x0, b);
  1186. mp_int r0 = mp_make_alias(r, 0, Bw);
  1187. mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
  1188. mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
  1189. mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1190. mp_rshift_fixed_into(&K, &Kshift, b);
  1191. /* Now compute the product r_0 x_1, reusing the space of Kshift. */
  1192. mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1193. mp_rshift_fixed_into(&x1, x, b);
  1194. mp_reduce_mod_2to(&x1, b);
  1195. mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
  1196. mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
  1197. /* Add K to that. */
  1198. mp_add_into(&r0x1, &r0x1, &K);
  1199. /* Negate it. */
  1200. mp_neg_into(&r0x1, &r0x1);
  1201. /* Multiply by r_0. */
  1202. mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1203. mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
  1204. mp_reduce_mod_2to(&r1, b);
  1205. /* That's our r_1, so add it on to r_0 to get the full inverse
  1206. * output from this iteration. */
  1207. mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
  1208. size_t Bpos = b / BIGNUM_INT_BITS;
  1209. mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
  1210. mp_add_into(&r1_position, &r1_position, &K);
  1211. }
  1212. /* Finally, reduce mod the precise desired number of bits. */
  1213. mp_reduce_mod_2to(r, p);
  1214. mp_free(scratch_orig);
  1215. return r;
  1216. }
  1217. static size_t monty_scratch_size(MontyContext *mc)
  1218. {
  1219. return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
  1220. }
  1221. MontyContext *monty_new(mp_int *modulus)
  1222. {
  1223. MontyContext *mc = snew(MontyContext);
  1224. mc->rw = modulus->nw;
  1225. mc->rbits = mc->rw * BIGNUM_INT_BITS;
  1226. mc->pw = mc->rw * 2 + 1;
  1227. mc->m = mp_copy(modulus);
  1228. mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
  1229. mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
  1230. mp_int *r = mp_make_sized(mc->rw + 1);
  1231. r->w[mc->rw] = 1;
  1232. mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
  1233. mp_free(r);
  1234. for (size_t j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
  1235. mc->powers_of_r_mod_m[j] = mp_modmul(
  1236. mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
  1237. mc->scratch = mp_make_sized(monty_scratch_size(mc));
  1238. return mc;
  1239. }
  1240. void monty_free(MontyContext *mc)
  1241. {
  1242. mp_free(mc->m);
  1243. for (size_t j = 0; j < 3; j++)
  1244. mp_free(mc->powers_of_r_mod_m[j]);
  1245. mp_free(mc->minus_minv_mod_r);
  1246. mp_free(mc->scratch);
  1247. smemclr(mc, sizeof(*mc));
  1248. sfree(mc);
  1249. }
  1250. /*
  1251. * The main Montgomery reduction step.
  1252. */
  1253. static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
  1254. {
  1255. /*
  1256. * The trick with Montgomery reduction is that on the one hand we
  1257. * want to reduce the size of the input by a factor of about r,
  1258. * and on the other hand, the two numbers we just multiplied were
  1259. * both stored with an extra factor of r multiplied in. So we
  1260. * computed ar*br = ab r^2, but we want to return abr, so we need
  1261. * to divide by r - and if we can do that by _actually dividing_
  1262. * by r then this also reduces the size of the number.
  1263. *
  1264. * But we can only do that if the number we're dividing by r is a
  1265. * multiple of r. So first we must add an adjustment to it which
  1266. * clears its bottom 'rbits' bits. That adjustment must be a
  1267. * multiple of m in order to leave the residue mod n unchanged, so
  1268. * the question is, what multiple of m can we add to x to make it
  1269. * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
  1270. */
  1271. /* x mod r */
  1272. mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
  1273. /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
  1274. mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
  1275. mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
  1276. /* m times that, i.e. the number we want to add to x */
  1277. mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
  1278. mp_mul_internal(&mk, mc->m, &k, scratch);
  1279. /* Add it to x */
  1280. mp_add_into(&mk, x, &mk);
  1281. /* Reduce mod r, by simply making an alias to the upper words of x */
  1282. mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
  1283. /*
  1284. * We'll generally be doing this after a multiplication of two
  1285. * fully reduced values. So our input could be anything up to m^2,
  1286. * and then we added up to rm to it. Hence, the maximum value is
  1287. * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
  1288. * So a single trial-subtraction will finish reducing to the
  1289. * interval [0,m).
  1290. */
  1291. mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
  1292. return toret;
  1293. }
  1294. void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
  1295. {
  1296. assert(x->nw <= mc->rw);
  1297. assert(y->nw <= mc->rw);
  1298. mp_int scratch = *mc->scratch;
  1299. mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
  1300. mp_mul_into(&tmp, x, y);
  1301. mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
  1302. mp_copy_into(r, &reduced);
  1303. mp_clear(mc->scratch);
  1304. }
  1305. mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
  1306. {
  1307. mp_int *toret = mp_make_sized(mc->rw);
  1308. monty_mul_into(mc, toret, x, y);
  1309. return toret;
  1310. }
  1311. mp_int *monty_modulus(MontyContext *mc)
  1312. {
  1313. return mc->m;
  1314. }
  1315. mp_int *monty_identity(MontyContext *mc)
  1316. {
  1317. return mc->powers_of_r_mod_m[0];
  1318. }
  1319. mp_int *monty_invert(MontyContext *mc, mp_int *x)
  1320. {
  1321. /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
  1322. * monty_reduce((xr)^{-1} r^3) */
  1323. mp_int *tmp = mp_invert(x, mc->m);
  1324. mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
  1325. mp_free(tmp);
  1326. return toret;
  1327. }
  1328. /*
  1329. * Importing a number into Montgomery representation involves
  1330. * multiplying it by r and reducing mod m. We use the general-purpose
  1331. * mp_modmul for this, in case the input number is out of range.
  1332. */
  1333. mp_int *monty_import(MontyContext *mc, mp_int *x)
  1334. {
  1335. return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);
  1336. }
  1337. void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
  1338. {
  1339. mp_int *imported = monty_import(mc, x);
  1340. mp_copy_into(r, imported);
  1341. mp_free(imported);
  1342. }
  1343. /*
  1344. * Exporting a number means multiplying it by r^{-1}, which is exactly
  1345. * what monty_reduce does anyway, so we just do that.
  1346. */
  1347. void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
  1348. {
  1349. assert(x->nw <= 2*mc->rw);
  1350. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1351. mp_copy_into(r, &reduced);
  1352. mp_clear(mc->scratch);
  1353. }
  1354. mp_int *monty_export(MontyContext *mc, mp_int *x)
  1355. {
  1356. mp_int *toret = mp_make_sized(mc->rw);
  1357. monty_export_into(mc, toret, x);
  1358. return toret;
  1359. }
  1360. #define MODPOW_LOG2_WINDOW_SIZE 5
  1361. #define MODPOW_WINDOW_SIZE (1 << MODPOW_LOG2_WINDOW_SIZE)
  1362. mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
  1363. {
  1364. /*
  1365. * Modular exponentiation is done from the top down, using a
  1366. * fixed-window technique.
  1367. *
  1368. * We have a table storing every power of the base from base^0 up
  1369. * to base^{w-1}, where w is a small power of 2, say 2^k. (k is
  1370. * defined above as MODPOW_LOG2_WINDOW_SIZE, and w = 2^k is
  1371. * defined as MODPOW_WINDOW_SIZE.)
  1372. *
  1373. * We break the exponent up into k-bit chunks, from the bottom up,
  1374. * that is
  1375. *
  1376. * exponent = c_0 + 2^k c_1 + 2^{2k} c_2 + ... + 2^{nk} c_n
  1377. *
  1378. * and we compute base^exponent by computing in turn
  1379. *
  1380. * base^{c_n}
  1381. * base^{2^k c_n + c_{n-1}}
  1382. * base^{2^{2k} c_n + 2^k c_{n-1} + c_{n-2}}
  1383. * ...
  1384. *
  1385. * where each line is obtained by raising the previous line to the
  1386. * power 2^k (i.e. squaring it k times) and then multiplying in
  1387. * a value base^{c_i}, which we can look up in our table.
  1388. *
  1389. * Side-channel considerations: the exponent is secret, so
  1390. * actually doing a single table lookup by using a chunk of
  1391. * exponent bits as an array index would be an obvious leak of
  1392. * secret information into the cache. So instead, in each
  1393. * iteration, we read _all_ the table entries, and do a sequence
  1394. * of mp_select operations to leave just the one we wanted in the
  1395. * variable that will go into the multiplication. In other
  1396. * contexts (like software AES) that technique is so prohibitively
  1397. * slow that it makes you choose a strategy that doesn't use table
  1398. * lookups at all (we do bitslicing in preference); but here, this
  1399. * iteration through 2^k table elements is replacing k-1 bignum
  1400. * _multiplications_ that you'd have to use instead if you did
  1401. * simple square-and-multiply, and that makes it still a win.
  1402. */
  1403. /* Table that holds base^0, ..., base^{w-1} */
  1404. mp_int *table[MODPOW_WINDOW_SIZE];
  1405. table[0] = mp_copy(monty_identity(mc));
  1406. for (size_t i = 1; i < MODPOW_WINDOW_SIZE; i++)
  1407. table[i] = monty_mul(mc, table[i-1], base);
  1408. /* out accumulates the output value */
  1409. mp_int *out = mp_make_sized(mc->rw);
  1410. mp_copy_into(out, monty_identity(mc));
  1411. /* table_entry will hold each value we get out of the table */
  1412. mp_int *table_entry = mp_make_sized(mc->rw);
  1413. /* Bit index of the chunk of bits we're working on. Start with the
  1414. * highest multiple of k strictly less than the size of our
  1415. * bignum, i.e. the highest-index chunk of bits that might
  1416. * conceivably contain any nonzero bit. */
  1417. size_t i = (exponent->nw * BIGNUM_INT_BITS) - 1;
  1418. i -= i % MODPOW_LOG2_WINDOW_SIZE;
  1419. bool first_iteration = true;
  1420. while (true) {
  1421. /* Construct the table index */
  1422. unsigned table_index = 0;
  1423. for (size_t j = 0; j < MODPOW_LOG2_WINDOW_SIZE; j++)
  1424. table_index |= mp_get_bit(exponent, i+j) << j;
  1425. /* Iterate through the table to do a side-channel-safe lookup,
  1426. * ending up with table_entry = table[table_index] */
  1427. mp_copy_into(table_entry, table[0]);
  1428. for (size_t j = 1; j < MODPOW_WINDOW_SIZE; j++) {
  1429. unsigned not_this_one =
  1430. ((table_index ^ j) + MODPOW_WINDOW_SIZE - 1)
  1431. >> MODPOW_LOG2_WINDOW_SIZE;
  1432. mp_select_into(table_entry, table[j], table_entry, not_this_one);
  1433. }
  1434. if (!first_iteration) {
  1435. /* Multiply into the output */
  1436. monty_mul_into(mc, out, out, table_entry);
  1437. } else {
  1438. /* On the first iteration, we can save one multiplication
  1439. * by just copying */
  1440. mp_copy_into(out, table_entry);
  1441. first_iteration = false;
  1442. }
  1443. /* If that was the bottommost chunk of bits, we're done */
  1444. if (i == 0)
  1445. break;
  1446. /* Otherwise, square k times and go round again. */
  1447. for (size_t j = 0; j < MODPOW_LOG2_WINDOW_SIZE; j++)
  1448. monty_mul_into(mc, out, out, out);
  1449. i-= MODPOW_LOG2_WINDOW_SIZE;
  1450. }
  1451. for (size_t i = 0; i < MODPOW_WINDOW_SIZE; i++)
  1452. mp_free(table[i]);
  1453. mp_free(table_entry);
  1454. mp_clear(mc->scratch);
  1455. return out;
  1456. }
  1457. mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
  1458. {
  1459. assert(modulus->nw > 0);
  1460. assert(modulus->w[0] & 1);
  1461. MontyContext *mc = monty_new(modulus);
  1462. mp_int *m_base = monty_import(mc, base);
  1463. mp_int *m_out = monty_pow(mc, m_base, exponent);
  1464. mp_int *out = monty_export(mc, m_out);
  1465. mp_free(m_base);
  1466. mp_free(m_out);
  1467. monty_free(mc);
  1468. return out;
  1469. }
  1470. /*
  1471. * Given two input integers a,b which are not both even, computes d =
  1472. * gcd(a,b) and also two integers A,B such that A*a - B*b = d. A,B
  1473. * will be the minimal non-negative pair satisfying that criterion,
  1474. * which is equivalent to saying that 0 <= A < b/d and 0 <= B < a/d.
  1475. *
  1476. * This algorithm is an adapted form of Stein's algorithm, which
  1477. * computes gcd(a,b) using only addition and bit shifts (i.e. without
  1478. * needing general division), using the following rules:
  1479. *
  1480. * - if both of a,b are even, divide off a common factor of 2
  1481. * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
  1482. * just divide a by 2
  1483. * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
  1484. * gcd(b,(a-b)/2).
  1485. *
  1486. * Sometimes this function is used for modular inversion, in which
  1487. * case we already know we expect the two inputs to be coprime, so to
  1488. * save time the 'both even' initial case is assumed not to arise (or
  1489. * to have been handled already by the caller). So this function just
  1490. * performs a sequence of reductions in the following form:
  1491. *
  1492. * - if a,b are both odd, sort them so that a > b, and replace a with
  1493. * b-a; otherwise sort them so that a is the even one
  1494. * - either way, now a is even and b is odd, so divide a by 2.
  1495. *
  1496. * The big change to Stein's algorithm is that we need the Bezout
  1497. * coefficients as output, not just the gcd. So we need to know how to
  1498. * generate those in each case, based on the coefficients from the
  1499. * reduced pair of numbers:
  1500. *
  1501. * - If a is even, and u,v are such that u*(a/2) + v*b = d:
  1502. * + if u is also even, then this is just (u/2)*a + v*b = d
  1503. * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to d, and
  1504. * since u and b are both odd, (u+b)/2 is an integer, so we have
  1505. * ((u+b)/2)*a + (v-a/2)*b = d.
  1506. *
  1507. * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = d,
  1508. * then v*a + (u-v)*b = d.
  1509. *
  1510. * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
  1511. * as having first subtracted b from a and then halved a, so both of
  1512. * these transformations must be done in sequence.
  1513. *
  1514. * The code below transforms this from a recursive to an iterative
  1515. * algorithm. We first reduce a,b to 0,1, recording at each stage
  1516. * whether we did the initial subtraction, and whether we had to swap
  1517. * the two values; then we iterate backwards over that record of what
  1518. * we did, applying the above rules for building up the Bezout
  1519. * coefficients as we go. Of course, all the case analysis is done by
  1520. * the usual bit-twiddling conditionalisation to avoid data-dependent
  1521. * control flow.
  1522. *
  1523. * Also, since these mp_ints are generally treated as unsigned, we
  1524. * store the coefficients by absolute value, with the semantics that
  1525. * they always have opposite sign, and in the unwinding loop we keep a
  1526. * bit indicating whether Aa-Bb is currently expected to be +d or -d,
  1527. * so that we can do one final conditional adjustment if it's -d.
  1528. *
  1529. * Once the reduction rules have managed to reduce the input numbers
  1530. * to (0,d), then they are stable (the next reduction will always
  1531. * divide the even one by 2, which maps 0 to 0). So it doesn't matter
  1532. * if we do more steps of the algorithm than necessary; hence, for
  1533. * constant time, we just need to find the maximum number we could
  1534. * _possibly_ require, and do that many.
  1535. *
  1536. * If a,b < 2^n, at most 2n iterations are required. Proof: consider
  1537. * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
  1538. * numbers (and may also reduce one of them further by doing a
  1539. * subtraction beforehand, but in the worst case, not by much or not
  1540. * at all). So Q reduces by at least 1 per iteration, and it starts
  1541. * off with a value at most 2n.
  1542. *
  1543. * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
  1544. * (i.e. x is a power of 2 and y is all 1s). In that situation, the
  1545. * first n-1 steps repeatedly halve x until it's 1, and then there are
  1546. * n further steps each of which subtracts 1 from y and halves it.
  1547. */
  1548. static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
  1549. mp_int *gcd_out, mp_int *a_in, mp_int *b_in)
  1550. {
  1551. size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
  1552. /* Make mutable copies of the input numbers */
  1553. mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
  1554. mp_copy_into(a, a_in);
  1555. mp_copy_into(b, b_in);
  1556. /* Space to build up the output coefficients, with an extra word
  1557. * so that intermediate values can overflow off the top and still
  1558. * right-shift back down to the correct value */
  1559. mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
  1560. /* And a general-purpose temp register */
  1561. mp_int *tmp = mp_make_sized(nw);
  1562. /* Space to record the sequence of reduction steps to unwind. We
  1563. * make it a BignumInt for no particular reason except that (a)
  1564. * mp_make_sized conveniently zeroes the allocation and mp_free
  1565. * wipes it, and (b) this way I can use mp_dump() if I have to
  1566. * debug this code. */
  1567. size_t steps = 2 * nw * BIGNUM_INT_BITS;
  1568. mp_int *record = mp_make_sized(
  1569. (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
  1570. for (size_t step = 0; step < steps; step++) {
  1571. /*
  1572. * If a and b are both odd, we want to sort them so that a is
  1573. * larger. But if one is even, we want to sort them so that a
  1574. * is the even one.
  1575. */
  1576. unsigned swap_if_both_odd = mp_cmp_hs(b, a);
  1577. unsigned swap_if_one_even = a->w[0] & 1;
  1578. unsigned both_odd = a->w[0] & b->w[0] & 1;
  1579. unsigned swap = swap_if_one_even ^ (
  1580. (swap_if_both_odd ^ swap_if_one_even) & both_odd);
  1581. mp_cond_swap(a, b, swap);
  1582. /*
  1583. * If a,b are both odd, then a is the larger number, so
  1584. * subtract the smaller one from it.
  1585. */
  1586. mp_cond_sub_into(a, a, b, both_odd);
  1587. /*
  1588. * Now a is even, so divide it by two.
  1589. */
  1590. mp_rshift_fixed_into(a, a, 1);
  1591. /*
  1592. * Record the two 1-bit values both_odd and swap.
  1593. */
  1594. mp_set_bit(record, step*2, both_odd);
  1595. mp_set_bit(record, step*2+1, swap);
  1596. }
  1597. /*
  1598. * Now we expect to have reduced the two numbers to 0 and d,
  1599. * although we don't know which way round. (But we avoid checking
  1600. * this by assertion; sometimes we'll need to do this computation
  1601. * without giving away that we already know the inputs were bogus.
  1602. * So we'd prefer to just press on and return nonsense.)
  1603. */
  1604. if (gcd_out) {
  1605. /*
  1606. * At this point we can return the actual gcd. Since one of
  1607. * a,b is it and the other is zero, the easiest way to get it
  1608. * is to add them together.
  1609. */
  1610. mp_add_into(gcd_out, a, b);
  1611. }
  1612. /*
  1613. * If the caller _only_ wanted the gcd, and neither Bezout
  1614. * coefficient is even required, we can skip the entire unwind
  1615. * stage.
  1616. */
  1617. if (a_coeff_out || b_coeff_out) {
  1618. /*
  1619. * The Bezout coefficients of a,b at this point are simply 0
  1620. * for whichever of a,b is zero, and 1 for whichever is
  1621. * nonzero. The nonzero number equals gcd(a,b), which by
  1622. * assumption is odd, so we can do this by just taking the low
  1623. * bit of each one.
  1624. */
  1625. ac->w[0] = mp_get_bit(a, 0);
  1626. bc->w[0] = mp_get_bit(b, 0);
  1627. /*
  1628. * Overwrite a,b themselves with those same numbers. This has
  1629. * the effect of dividing both of them by d, which will
  1630. * arrange that during the unwind stage we generate the
  1631. * minimal coefficients instead of a larger pair.
  1632. */
  1633. mp_copy_into(a, ac);
  1634. mp_copy_into(b, bc);
  1635. /*
  1636. * We'll maintain the invariant as we unwind that ac * a - bc
  1637. * * b is either +d or -d (or rather, +1/-1 after scaling by
  1638. * d), and we'll remember which. (We _could_ keep it at +d the
  1639. * whole time, but it would cost more work every time round
  1640. * the loop, so it's cheaper to fix that up once at the end.)
  1641. *
  1642. * Initially, the result is +d if a was the nonzero value after
  1643. * reduction, and -d if b was.
  1644. */
  1645. unsigned minus_d = b->w[0];
  1646. for (size_t step = steps; step-- > 0 ;) {
  1647. /*
  1648. * Recover the data from the step we're unwinding.
  1649. */
  1650. unsigned both_odd = mp_get_bit(record, step*2);
  1651. unsigned swap = mp_get_bit(record, step*2+1);
  1652. /*
  1653. * Unwind the division: if our coefficient of a is odd, we
  1654. * adjust the coefficients by +b and +a respectively.
  1655. */
  1656. unsigned adjust = ac->w[0] & 1;
  1657. mp_cond_add_into(ac, ac, b, adjust);
  1658. mp_cond_add_into(bc, bc, a, adjust);
  1659. /*
  1660. * Now ac is definitely even, so we divide it by two.
  1661. */
  1662. mp_rshift_fixed_into(ac, ac, 1);
  1663. /*
  1664. * Now unwind the subtraction, if there was one, by adding
  1665. * ac to bc.
  1666. */
  1667. mp_cond_add_into(bc, bc, ac, both_odd);
  1668. /*
  1669. * Undo the transformation of the input numbers, by
  1670. * multiplying a by 2 and then adding b to a (the latter
  1671. * only if both_odd).
  1672. */
  1673. mp_lshift_fixed_into(a, a, 1);
  1674. mp_cond_add_into(a, a, b, both_odd);
  1675. /*
  1676. * Finally, undo the swap. If we do swap, this also
  1677. * reverses the sign of the current result ac*a+bc*b.
  1678. */
  1679. mp_cond_swap(a, b, swap);
  1680. mp_cond_swap(ac, bc, swap);
  1681. minus_d ^= swap;
  1682. }
  1683. /*
  1684. * Now we expect to have recovered the input a,b (or rather,
  1685. * the versions of them divided by d). But we might find that
  1686. * our current result is -d instead of +d, that is, we have
  1687. * A',B' such that A'a - B'b = -d.
  1688. *
  1689. * In that situation, we set A = b-A' and B = a-B', giving us
  1690. * Aa-Bb = ab - A'a - ab + B'b = +1.
  1691. */
  1692. mp_sub_into(tmp, b, ac);
  1693. mp_select_into(ac, ac, tmp, minus_d);
  1694. mp_sub_into(tmp, a, bc);
  1695. mp_select_into(bc, bc, tmp, minus_d);
  1696. /*
  1697. * Now we really are done. Return the outputs.
  1698. */
  1699. if (a_coeff_out)
  1700. mp_copy_into(a_coeff_out, ac);
  1701. if (b_coeff_out)
  1702. mp_copy_into(b_coeff_out, bc);
  1703. }
  1704. mp_free(a);
  1705. mp_free(b);
  1706. mp_free(ac);
  1707. mp_free(bc);
  1708. mp_free(tmp);
  1709. mp_free(record);
  1710. }
  1711. mp_int *mp_invert(mp_int *x, mp_int *m)
  1712. {
  1713. mp_int *result = mp_make_sized(m->nw);
  1714. mp_bezout_into(result, NULL, NULL, x, m);
  1715. return result;
  1716. }
  1717. void mp_gcd_into(mp_int *a, mp_int *b, mp_int *gcd, mp_int *A, mp_int *B)
  1718. {
  1719. /*
  1720. * Identify shared factors of 2. To do this we OR the two numbers
  1721. * to get something whose lowest set bit is in the right place,
  1722. * remove all higher bits by ANDing it with its own negation, and
  1723. * use mp_get_nbits to find the location of the single remaining
  1724. * set bit.
  1725. */
  1726. mp_int *tmp = mp_make_sized(size_t_max(a->nw, b->nw));
  1727. for (size_t i = 0; i < tmp->nw; i++)
  1728. tmp->w[i] = mp_word(a, i) | mp_word(b, i);
  1729. BignumCarry carry = 1;
  1730. for (size_t i = 0; i < tmp->nw; i++) {
  1731. BignumInt negw;
  1732. BignumADC(negw, carry, 0, ~tmp->w[i], carry);
  1733. tmp->w[i] &= negw;
  1734. }
  1735. size_t shift = mp_get_nbits(tmp) - 1;
  1736. mp_free(tmp);
  1737. /*
  1738. * Make copies of a,b with those shared factors of 2 divided off,
  1739. * so that at least one is odd (which is the precondition for
  1740. * mp_bezout_into). Compute the gcd of those.
  1741. */
  1742. mp_int *as = mp_rshift_safe(a, shift);
  1743. mp_int *bs = mp_rshift_safe(b, shift);
  1744. mp_bezout_into(A, B, gcd, as, bs);
  1745. mp_free(as);
  1746. mp_free(bs);
  1747. /*
  1748. * And finally shift the gcd back up (unless the caller didn't
  1749. * even ask for it), to put the shared factors of 2 back in.
  1750. */
  1751. if (gcd)
  1752. mp_lshift_safe_in_place(gcd, shift);
  1753. }
  1754. mp_int *mp_gcd(mp_int *a, mp_int *b)
  1755. {
  1756. mp_int *gcd = mp_make_sized(size_t_min(a->nw, b->nw));
  1757. mp_gcd_into(a, b, gcd, NULL, NULL);
  1758. return gcd;
  1759. }
  1760. unsigned mp_coprime(mp_int *a, mp_int *b)
  1761. {
  1762. mp_int *gcd = mp_gcd(a, b);
  1763. unsigned toret = mp_eq_integer(gcd, 1);
  1764. mp_free(gcd);
  1765. return toret;
  1766. }
  1767. static uint32_t recip_approx_32(uint32_t x)
  1768. {
  1769. /*
  1770. * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
  1771. * bit set, this function returns an approximation to 2^63/x,
  1772. * computed using only multiplications and bit shifts just in case
  1773. * the C divide operator has non-constant time (either because the
  1774. * underlying machine instruction does, or because the operator
  1775. * expands to a library function on a CPU without hardware
  1776. * division).
  1777. *
  1778. * The coefficients are derived from those of the degree-9
  1779. * polynomial which is the minimax-optimal approximation to that
  1780. * function on the given interval (generated using the Remez
  1781. * algorithm), converted into integer arithmetic with shifts used
  1782. * to maximise the number of significant bits at every state. (A
  1783. * sort of 'static floating point' - the exponent is statically
  1784. * known at every point in the code, so it never needs to be
  1785. * stored at run time or to influence runtime decisions.)
  1786. *
  1787. * Exhaustive iteration over the whole input space shows the
  1788. * largest possible error to be 1686.54. (The input value
  1789. * attaining that bound is 4226800006 == 0xfbefd986, whose true
  1790. * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
  1791. * this function returns 2182115287 == 0x82106fd7.)
  1792. */
  1793. uint64_t r = 0x92db03d6ULL;
  1794. r = 0xf63e71eaULL - ((r*x) >> 34);
  1795. r = 0xb63721e8ULL - ((r*x) >> 34);
  1796. r = 0x9c2da00eULL - ((r*x) >> 33);
  1797. r = 0xaada0bb8ULL - ((r*x) >> 32);
  1798. r = 0xf75cd403ULL - ((r*x) >> 31);
  1799. r = 0xecf97a41ULL - ((r*x) >> 31);
  1800. r = 0x90d876cdULL - ((r*x) >> 31);
  1801. r = 0x6682799a0ULL - ((r*x) >> 26);
  1802. return r;
  1803. }
  1804. void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
  1805. {
  1806. assert(!mp_eq_integer(d, 0));
  1807. /*
  1808. * We do division by using Newton-Raphson iteration to converge to
  1809. * the reciprocal of d (or rather, R/d for R a sufficiently large
  1810. * power of 2); then we multiply that reciprocal by n; and we
  1811. * finish up with conditional subtraction.
  1812. *
  1813. * But we have to do it in a fixed number of N-R iterations, so we
  1814. * need some error analysis to know how many we might need.
  1815. *
  1816. * The iteration is derived by defining f(r) = d - R/r.
  1817. * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
  1818. * formula applied to those functions gives
  1819. *
  1820. * r_{i+1} = r_i - f(r_i) / f'(r_i)
  1821. * = r_i - (d - R/r_i) r_i^2 / R
  1822. * = r_i (2 R - d r_i) / R
  1823. *
  1824. * Now let e_i be the error in a given iteration, in the sense
  1825. * that
  1826. *
  1827. * d r_i = R + e_i
  1828. * i.e. e_i/R = (r_i - r_true) / r_true
  1829. *
  1830. * so e_i is the _relative_ error in r_i.
  1831. *
  1832. * We must also introduce a rounding-error term, because the
  1833. * division by R always gives an integer. This might make the
  1834. * output off by up to 1 (in the negative direction, because
  1835. * right-shifting gives floor of the true quotient). So when we
  1836. * divide by R, we must imagine adding some f in [0,1). Then we
  1837. * have
  1838. *
  1839. * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
  1840. * = (R + e_i) (R - e_i) / R - d f
  1841. * = (R^2 - e_i^2) / R - d f
  1842. * = R - (e_i^2 / R + d f)
  1843. * => e_{i+1} = - (e_i^2 / R + d f)
  1844. *
  1845. * The sum of two positive quantities is bounded above by twice
  1846. * their max, and max |f| = 1, so we can bound this as follows:
  1847. *
  1848. * |e_{i+1}| <= 2 max (e_i^2/R, d)
  1849. * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
  1850. * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
  1851. *
  1852. * which tells us that the number of 'good' bits - i.e.
  1853. * log2(R/e_i) - very nearly doubles at every iteration (apart
  1854. * from that subtraction of 1), until it gets to the same size as
  1855. * log2(R/d). In other words, the size of R in bits has to be the
  1856. * size of denominator we're putting in, _plus_ the amount of
  1857. * precision we want to get back out.
  1858. *
  1859. * So when we multiply n (the input numerator) by our final
  1860. * reciprocal approximation r, but actually r differs from R/d by
  1861. * up to 2, then it follows that
  1862. *
  1863. * n/d - nr/R = n/d - [ n (R/d + e) ] / R
  1864. * = n/d - [ (n/d) R + n e ] / R
  1865. * = -ne/R
  1866. * => 0 <= n/d - nr/R < 2n/R
  1867. *
  1868. * so our computed quotient can differ from the true n/d by up to
  1869. * 2n/R. Hence, as long as we also choose R large enough that 2n/R
  1870. * is bounded above by a constant, we can guarantee a bounded
  1871. * number of final conditional-subtraction steps.
  1872. */
  1873. /*
  1874. * Get at least 32 of the most significant bits of the input
  1875. * number.
  1876. */
  1877. size_t hiword_index = 0;
  1878. uint64_t hibits = 0, lobits = 0;
  1879. mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
  1880. &hiword_index, &hibits, &lobits);
  1881. /*
  1882. * Make a shifted combination of those two words which puts the
  1883. * topmost bit of the number at bit 63.
  1884. */
  1885. size_t shift_up = 0;
  1886. for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1887. size_t sl = (size_t)1 << i; /* left shift count */
  1888. size_t sr = 64 - sl; /* complementary right-shift count */
  1889. /* Should we shift up? */
  1890. unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
  1891. /* If we do, what will we get? */
  1892. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1893. uint64_t new_lobits = lobits << sl;
  1894. size_t new_shift_up = shift_up + sl;
  1895. /* Conditionally swap those values in. */
  1896. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1897. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1898. shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
  1899. }
  1900. /*
  1901. * So now we know the most significant 32 bits of d are at the top
  1902. * of hibits. Approximate the reciprocal of those bits.
  1903. */
  1904. lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
  1905. hibits = 0;
  1906. /*
  1907. * And shift that up by as many bits as the input was shifted up
  1908. * just now, so that the product of this approximation and the
  1909. * actual input will be close to a fixed power of two regardless
  1910. * of where the MSB was.
  1911. *
  1912. * I do this in another log n individual passes, partly in case
  1913. * the CPU's register-controlled shift operation isn't
  1914. * time-constant, and also in case the compiler code-generates
  1915. * uint64_t shifts out of a variable number of smaller-word shift
  1916. * instructions, e.g. by splitting up into cases.
  1917. */
  1918. for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1919. size_t sl = (size_t)1 << i; /* left shift count */
  1920. size_t sr = 64 - sl; /* complementary right-shift count */
  1921. /* Should we shift up? */
  1922. unsigned indicator = 1 & (shift_up >> i);
  1923. /* If we do, what will we get? */
  1924. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1925. uint64_t new_lobits = lobits << sl;
  1926. /* Conditionally swap those values in. */
  1927. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1928. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1929. }
  1930. /*
  1931. * The product of the 128-bit value now in hibits:lobits with the
  1932. * 128-bit value we originally retrieved in the same variables
  1933. * will be in the vicinity of 2^191. So we'll take log2(R) to be
  1934. * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
  1935. * to hold the combined sizes of n and d.
  1936. */
  1937. size_t log2_R;
  1938. {
  1939. size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
  1940. log2_R = max_log2_n + 3;
  1941. log2_R -= size_t_min(191, log2_R);
  1942. log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
  1943. log2_R += 191;
  1944. }
  1945. /* Number of words in a bignum capable of holding numbers the size
  1946. * of twice R. */
  1947. size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1948. /*
  1949. * Now construct our full-sized starting reciprocal approximation.
  1950. */
  1951. mp_int *r_approx = mp_make_sized(rw);
  1952. size_t output_bit_index;
  1953. {
  1954. /* Where in the input number did the input 128-bit value come from? */
  1955. size_t input_bit_index =
  1956. (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
  1957. /* So how far do we need to shift our 64-bit output, if the
  1958. * product of those two fixed-size values is 2^191 and we want
  1959. * to make it 2^log2_R instead? */
  1960. output_bit_index = log2_R - 191 - input_bit_index;
  1961. /* If we've done all that right, it should be a whole number
  1962. * of words. */
  1963. assert(output_bit_index % BIGNUM_INT_BITS == 0);
  1964. size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
  1965. mp_add_integer_into_shifted_by_words(
  1966. r_approx, r_approx, lobits, output_word_index);
  1967. mp_add_integer_into_shifted_by_words(
  1968. r_approx, r_approx, hibits,
  1969. output_word_index + 64 / BIGNUM_INT_BITS);
  1970. }
  1971. /*
  1972. * Make the constant 2*R, which we'll need in the iteration.
  1973. */
  1974. mp_int *two_R = mp_make_sized(rw);
  1975. BignumInt top_word = (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS);
  1976. mp_add_integer_into_shifted_by_words(
  1977. two_R, two_R, top_word, (log2_R+1) / BIGNUM_INT_BITS);
  1978. /*
  1979. * Scratch space.
  1980. */
  1981. mp_int *dr = mp_make_sized(rw + d->nw);
  1982. mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
  1983. mp_int *product = mp_make_sized(rw + diff->nw);
  1984. size_t scratchsize = size_t_max(
  1985. mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
  1986. mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
  1987. mp_int *scratch = mp_make_sized(scratchsize);
  1988. mp_int product_shifted = mp_make_alias(
  1989. product, log2_R / BIGNUM_INT_BITS, product->nw);
  1990. /*
  1991. * Initial error estimate: the 32-bit output of recip_approx_32
  1992. * differs by less than 2048 (== 2^11) from the true top 32 bits
  1993. * of the reciprocal, so the relative error is at most 2^11
  1994. * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
  1995. * 2^-20. So even in the worst case, we have 20 good bits of
  1996. * reciprocal to start with.
  1997. */
  1998. size_t good_bits = 31 - 11;
  1999. size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
  2000. /*
  2001. * Now do Newton-Raphson iterations until we have reason to think
  2002. * they're not converging any more.
  2003. */
  2004. while (good_bits < good_bits_needed) {
  2005. /*
  2006. * Compute the next iterate.
  2007. */
  2008. mp_mul_internal(dr, r_approx, d, *scratch);
  2009. mp_sub_into(diff, two_R, dr);
  2010. mp_mul_internal(product, r_approx, diff, *scratch);
  2011. mp_rshift_fixed_into(r_approx, &product_shifted,
  2012. log2_R % BIGNUM_INT_BITS);
  2013. /*
  2014. * Adjust the error estimate.
  2015. */
  2016. good_bits = good_bits * 2 - 1;
  2017. }
  2018. mp_free(dr);
  2019. mp_free(diff);
  2020. mp_free(product);
  2021. mp_free(scratch);
  2022. /*
  2023. * Now we've got our reciprocal, we can compute the quotient, by
  2024. * multiplying in n and then shifting down by log2_R bits.
  2025. */
  2026. mp_int *quotient_full = mp_mul(r_approx, n);
  2027. mp_int quotient_alias = mp_make_alias(
  2028. quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
  2029. mp_int *quotient = mp_make_sized(n->nw);
  2030. mp_rshift_fixed_into(quotient, &quotient_alias, log2_R % BIGNUM_INT_BITS);
  2031. /*
  2032. * Next, compute the remainder.
  2033. */
  2034. mp_int *remainder = mp_make_sized(d->nw);
  2035. mp_mul_into(remainder, quotient, d);
  2036. mp_sub_into(remainder, n, remainder);
  2037. /*
  2038. * Finally, two conditional subtractions to fix up any remaining
  2039. * rounding error. (I _think_ one should be enough, but this
  2040. * routine isn't time-critical enough to take chances.)
  2041. */
  2042. unsigned q_correction = 0;
  2043. for (unsigned iter = 0; iter < 2; iter++) {
  2044. unsigned need_correction = mp_cmp_hs(remainder, d);
  2045. mp_cond_sub_into(remainder, remainder, d, need_correction);
  2046. q_correction += need_correction;
  2047. }
  2048. mp_add_integer_into(quotient, quotient, q_correction);
  2049. /*
  2050. * Now we should have a perfect answer, i.e. 0 <= r < d.
  2051. */
  2052. assert(!mp_cmp_hs(remainder, d));
  2053. if (q_out)
  2054. mp_copy_into(q_out, quotient);
  2055. if (r_out)
  2056. mp_copy_into(r_out, remainder);
  2057. mp_free(r_approx);
  2058. mp_free(two_R);
  2059. mp_free(quotient_full);
  2060. mp_free(quotient);
  2061. mp_free(remainder);
  2062. }
  2063. mp_int *mp_div(mp_int *n, mp_int *d)
  2064. {
  2065. mp_int *q = mp_make_sized(n->nw);
  2066. mp_divmod_into(n, d, q, NULL);
  2067. return q;
  2068. }
  2069. mp_int *mp_mod(mp_int *n, mp_int *d)
  2070. {
  2071. mp_int *r = mp_make_sized(d->nw);
  2072. mp_divmod_into(n, d, NULL, r);
  2073. return r;
  2074. }
  2075. uint32_t mp_mod_known_integer(mp_int *x, uint32_t m)
  2076. {
  2077. uint64_t reciprocal = ((uint64_t)1 << 48) / m;
  2078. uint64_t accumulator = 0;
  2079. for (size_t i = mp_max_bytes(x); i-- > 0 ;) {
  2080. accumulator = 0x100 * accumulator + mp_get_byte(x, i);
  2081. /*
  2082. * Let A be the value in 'accumulator' at this point, and let
  2083. * R be the value it will have after we subtract quot*m below.
  2084. *
  2085. * Lemma 1: if A < 2^48, then R < 2m.
  2086. *
  2087. * Proof:
  2088. *
  2089. * By construction, we have 2^48/m - 1 < reciprocal <= 2^48/m.
  2090. * Multiplying that by the accumulator gives
  2091. *
  2092. * A/m * 2^48 - A < unshifted_quot <= A/m * 2^48
  2093. * i.e. 0 <= (A/m * 2^48) - unshifted_quot < A
  2094. * i.e. 0 <= A/m - unshifted_quot/2^48 < A/2^48
  2095. *
  2096. * So when we shift this quotient right by 48 bits, i.e. take
  2097. * the floor of (unshifted_quot/2^48), the value we take the
  2098. * floor of is at most A/2^48 less than the true rational
  2099. * value A/m that we _wanted_ to take the floor of.
  2100. *
  2101. * Provided A < 2^48, this is less than 1. So the quotient
  2102. * 'quot' that we've just produced is either the true quotient
  2103. * floor(A/m), or one less than it. Hence, the output value R
  2104. * is less than 2m. []
  2105. *
  2106. * Lemma 2: if A < 2^16 m, then the multiplication of
  2107. * accumulator*reciprocal does not overflow.
  2108. *
  2109. * Proof: as above, we have reciprocal <= 2^48/m. Multiplying
  2110. * by A gives unshifted_quot <= 2^48 * A / m < 2^48 * 2^16 =
  2111. * 2^64. []
  2112. */
  2113. uint64_t unshifted_quot = accumulator * reciprocal;
  2114. uint64_t quot = unshifted_quot >> 48;
  2115. accumulator -= quot * m;
  2116. }
  2117. /*
  2118. * Theorem 1: accumulator < 2m at the end of every iteration of
  2119. * this loop.
  2120. *
  2121. * Proof: induction on the above loop.
  2122. *
  2123. * Base case: at the start of the first loop iteration, the
  2124. * accumulator is 0, which is certainly < 2m.
  2125. *
  2126. * Inductive step: in each loop iteration, we take a value at most
  2127. * 2m-1, multiply it by 2^8, and add another byte less than 2^8 to
  2128. * generate the input value A to the reduction process above. So
  2129. * we have A < 2m * 2^8 - 1. We know m < 2^32 (because it was
  2130. * passed in as a uint32_t), so A < 2^41, which is enough to allow
  2131. * us to apply Lemma 1, showing that the value of 'accumulator' at
  2132. * the end of the loop is still < 2m. []
  2133. *
  2134. * Corollary: we need at most one final subtraction of m to
  2135. * produce the canonical residue of x mod m, i.e. in the range
  2136. * [0,m).
  2137. *
  2138. * Theorem 2: no multiplication in the inner loop overflows.
  2139. *
  2140. * Proof: in Theorem 1 we established A < 2m * 2^8 - 1 in every
  2141. * iteration. That is less than m * 2^16, so Lemma 2 applies.
  2142. *
  2143. * The other multiplication, of quot * m, cannot overflow because
  2144. * quot is at most A/m, so quot*m <= A < 2^64. []
  2145. */
  2146. uint32_t result = accumulator;
  2147. uint32_t reduced = result - m;
  2148. uint32_t select = -(reduced >> 31);
  2149. result = reduced ^ ((result ^ reduced) & select);
  2150. assert(result < m);
  2151. return result;
  2152. }
  2153. mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder_out)
  2154. {
  2155. /*
  2156. * Allocate scratch space.
  2157. */
  2158. mp_int **alloc, **powers, **newpowers, *scratch;
  2159. size_t nalloc = 2*(n+1)+1;
  2160. alloc = snewn(nalloc, mp_int *);
  2161. for (size_t i = 0; i < nalloc; i++)
  2162. alloc[i] = mp_make_sized(y->nw + 1);
  2163. powers = alloc;
  2164. newpowers = alloc + (n+1);
  2165. scratch = alloc[2*n+2];
  2166. /*
  2167. * We're computing the rounded-down nth root of y, i.e. the
  2168. * maximal x such that x^n <= y. We try to add 2^i to it for each
  2169. * possible value of i, starting from the largest one that might
  2170. * fit (i.e. such that 2^{n*i} fits in the size of y) downwards to
  2171. * i=0.
  2172. *
  2173. * We track all the smaller powers of x in the array 'powers'. In
  2174. * each iteration, if we update x, we update all of those values
  2175. * to match.
  2176. */
  2177. mp_copy_integer_into(powers[0], 1);
  2178. for (size_t s = mp_max_bits(y) / n + 1; s-- > 0 ;) {
  2179. /*
  2180. * Let b = 2^s. We need to compute the powers (x+b)^i for each
  2181. * i, starting from our recorded values of x^i.
  2182. */
  2183. for (size_t i = 0; i < n+1; i++) {
  2184. /*
  2185. * (x+b)^i = x^i
  2186. * + (i choose 1) x^{i-1} b
  2187. * + (i choose 2) x^{i-2} b^2
  2188. * + ...
  2189. * + b^i
  2190. */
  2191. uint16_t binom = 1; /* coefficient of b^i */
  2192. mp_copy_into(newpowers[i], powers[i]);
  2193. for (size_t j = 0; j < i; j++) {
  2194. /* newpowers[i] += binom * powers[j] * 2^{(i-j)*s} */
  2195. mp_mul_integer_into(scratch, powers[j], binom);
  2196. mp_lshift_fixed_into(scratch, scratch, (i-j) * s);
  2197. mp_add_into(newpowers[i], newpowers[i], scratch);
  2198. uint32_t binom_mul = binom;
  2199. binom_mul *= (i-j);
  2200. binom_mul /= (j+1);
  2201. assert(binom_mul < 0x10000);
  2202. binom = binom_mul;
  2203. }
  2204. }
  2205. /*
  2206. * Now, is the new value of x^n still <= y? If so, update.
  2207. */
  2208. unsigned newbit = mp_cmp_hs(y, newpowers[n]);
  2209. for (size_t i = 0; i < n+1; i++)
  2210. mp_select_into(powers[i], powers[i], newpowers[i], newbit);
  2211. }
  2212. if (remainder_out)
  2213. mp_sub_into(remainder_out, y, powers[n]);
  2214. mp_int *root = mp_new(mp_max_bits(y) / n);
  2215. mp_copy_into(root, powers[1]);
  2216. for (size_t i = 0; i < nalloc; i++)
  2217. mp_free(alloc[i]);
  2218. sfree(alloc);
  2219. return root;
  2220. }
  2221. mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
  2222. {
  2223. mp_int *product = mp_mul(x, y);
  2224. mp_int *reduced = mp_mod(product, modulus);
  2225. mp_free(product);
  2226. return reduced;
  2227. }
  2228. mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
  2229. {
  2230. mp_int *sum = mp_add(x, y);
  2231. mp_int *reduced = mp_mod(sum, modulus);
  2232. mp_free(sum);
  2233. return reduced;
  2234. }
  2235. mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
  2236. {
  2237. mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
  2238. mp_sub_into(diff, x, y);
  2239. unsigned negate = mp_cmp_hs(y, x);
  2240. mp_cond_negate(diff, diff, negate);
  2241. mp_int *residue = mp_mod(diff, modulus);
  2242. mp_cond_negate(residue, residue, negate);
  2243. /* If we've just negated the residue, then it will be < 0 and need
  2244. * the modulus adding to it to make it positive - *except* if the
  2245. * residue was zero when we negated it. */
  2246. unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
  2247. mp_cond_add_into(residue, residue, modulus, make_positive);
  2248. mp_free(diff);
  2249. return residue;
  2250. }
  2251. static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  2252. {
  2253. mp_int *sum = mp_make_sized(modulus->nw);
  2254. unsigned carry = mp_add_into_internal(sum, x, y);
  2255. mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
  2256. return sum;
  2257. }
  2258. static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  2259. {
  2260. mp_int *diff = mp_make_sized(modulus->nw);
  2261. mp_sub_into(diff, x, y);
  2262. mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
  2263. return diff;
  2264. }
  2265. mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
  2266. {
  2267. return mp_modadd_in_range(x, y, mc->m);
  2268. }
  2269. mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
  2270. {
  2271. return mp_modsub_in_range(x, y, mc->m);
  2272. }
  2273. void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
  2274. {
  2275. mp_select_into(r, x, y, mp_cmp_hs(x, y));
  2276. }
  2277. void mp_max_into(mp_int *r, mp_int *x, mp_int *y)
  2278. {
  2279. mp_select_into(r, y, x, mp_cmp_hs(x, y));
  2280. }
  2281. mp_int *mp_min(mp_int *x, mp_int *y)
  2282. {
  2283. mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
  2284. mp_min_into(r, x, y);
  2285. return r;
  2286. }
  2287. mp_int *mp_max(mp_int *x, mp_int *y)
  2288. {
  2289. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  2290. mp_max_into(r, x, y);
  2291. return r;
  2292. }
  2293. mp_int *mp_power_2(size_t power)
  2294. {
  2295. mp_int *x = mp_new(power + 1);
  2296. mp_set_bit(x, power, 1);
  2297. return x;
  2298. }
  2299. struct ModsqrtContext {
  2300. mp_int *p; /* the prime */
  2301. MontyContext *mc; /* for doing arithmetic mod p */
  2302. /* Decompose p-1 as 2^e k, for positive integer e and odd k */
  2303. size_t e;
  2304. mp_int *k;
  2305. mp_int *km1o2; /* (k-1)/2 */
  2306. /* The user-provided value z which is not a quadratic residue mod
  2307. * p, and its kth power. Both in Montgomery form. */
  2308. mp_int *z, *zk;
  2309. };
  2310. ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
  2311. {
  2312. ModsqrtContext *sc = snew(ModsqrtContext);
  2313. memset(sc, 0, sizeof(ModsqrtContext));
  2314. sc->p = mp_copy(p);
  2315. sc->mc = monty_new(sc->p);
  2316. sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
  2317. /* Find the lowest set bit in p-1. Since this routine expects p to
  2318. * be non-secret (typically a well-known standard elliptic curve
  2319. * parameter), for once we don't need clever bit tricks. */
  2320. for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
  2321. if (mp_get_bit(p, sc->e))
  2322. break;
  2323. sc->k = mp_rshift_fixed(p, sc->e);
  2324. sc->km1o2 = mp_rshift_fixed(sc->k, 1);
  2325. /* Leave zk to be filled in lazily, since it's more expensive to
  2326. * compute. If this context turns out never to be needed, we can
  2327. * save the bulk of the setup time this way. */
  2328. return sc;
  2329. }
  2330. static void modsqrt_lazy_setup(ModsqrtContext *sc)
  2331. {
  2332. if (!sc->zk)
  2333. sc->zk = monty_pow(sc->mc, sc->z, sc->k);
  2334. }
  2335. void modsqrt_free(ModsqrtContext *sc)
  2336. {
  2337. monty_free(sc->mc);
  2338. mp_free(sc->p);
  2339. mp_free(sc->z);
  2340. mp_free(sc->k);
  2341. mp_free(sc->km1o2);
  2342. if (sc->zk)
  2343. mp_free(sc->zk);
  2344. sfree(sc);
  2345. }
  2346. mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2347. {
  2348. mp_int *mx = monty_import(sc->mc, x);
  2349. mp_int *mroot = monty_modsqrt(sc, mx, success);
  2350. mp_free(mx);
  2351. mp_int *root = monty_export(sc->mc, mroot);
  2352. mp_free(mroot);
  2353. return root;
  2354. }
  2355. /*
  2356. * Modular square root, using an algorithm more or less similar to
  2357. * Tonelli-Shanks but adapted for constant time.
  2358. *
  2359. * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
  2360. * Then the multiplicative group mod p (call it G) has a sequence of
  2361. * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
  2362. * G_i is exactly half the size of G_{i-1} and consists of all the
  2363. * squares of elements in G_{i-1}. So the innermost group G_e has
  2364. * order k, which is odd, and hence within that group you can take a
  2365. * square root by raising to the power (k+1)/2.
  2366. *
  2367. * Our strategy is to iterate over these groups one by one and make
  2368. * sure the number x we're trying to take the square root of is inside
  2369. * each one, by adjusting it if it isn't.
  2370. *
  2371. * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
  2372. * don't actually need to know what g _is_; we just imagine it for the
  2373. * sake of understanding.) Then G_i consists of precisely the (2^i)th
  2374. * powers of g, and hence, you can tell if a number is in G_i if
  2375. * raising it to the power k 2^{e-i} gives 1. So the conceptual
  2376. * algorithm goes: for each i, test whether x is in G_i by that
  2377. * method. If it isn't, then the previous iteration ensured it's in
  2378. * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
  2379. * multiplying by any other odd power of g^{2^{i-1}} will give x' in
  2380. * G_i. And we have one of those, because our non-square z is an odd
  2381. * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
  2382. *
  2383. * (There's a special case in the very first iteration, where we don't
  2384. * have a G_{i-1}. If it turns out that x is not even in G_1, that
  2385. * means it's not a square, so we set *success to 0. We still run the
  2386. * rest of the algorithm anyway, for the sake of constant time, but we
  2387. * don't give a hoot what it returns.)
  2388. *
  2389. * When we get to the end and have x in G_e, then we can take its
  2390. * square root by raising to (k+1)/2. But of course that's not the
  2391. * square root of the original input - it's only the square root of
  2392. * the adjusted version we produced during the algorithm. To get the
  2393. * true output answer we also have to multiply by a power of z,
  2394. * namely, z to the power of _half_ whatever we've been multiplying in
  2395. * as we go along. (The power of z we multiplied in must have been
  2396. * even, because the case in which we would have multiplied in an odd
  2397. * power of z is the i=0 case, in which we instead set the failure
  2398. * flag.)
  2399. *
  2400. * The code below is an optimised version of that basic idea, in which
  2401. * we _start_ by computing x^k so as to be able to test membership in
  2402. * G_i by only a few squarings rather than a full from-scratch modpow
  2403. * every time; we also start by computing our candidate output value
  2404. * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
  2405. * for some i, we have to adjust our running values of x^k and
  2406. * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
  2407. * because, as above, i is always even). And it turns out that we
  2408. * don't actually have to store the adjusted version of x itself at
  2409. * all - we _only_ keep those two powers of it.
  2410. */
  2411. mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2412. {
  2413. modsqrt_lazy_setup(sc);
  2414. mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
  2415. mp_int scratch = *scratch_to_free;
  2416. /*
  2417. * Compute toret = x^{(k+1)/2}, our starting point for the output
  2418. * square root, and also xk = x^k which we'll use as we go along
  2419. * for knowing when to apply correction factors. We do this by
  2420. * first computing x^{(k-1)/2}, then multiplying it by x, then
  2421. * multiplying the two together.
  2422. */
  2423. mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
  2424. mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2425. mp_copy_into(&xk, toret);
  2426. monty_mul_into(sc->mc, toret, toret, x);
  2427. monty_mul_into(sc->mc, &xk, toret, &xk);
  2428. mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2429. mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2430. mp_copy_into(&power_of_zk, sc->zk);
  2431. for (size_t i = 0; i < sc->e; i++) {
  2432. mp_copy_into(&tmp, &xk);
  2433. for (size_t j = i+1; j < sc->e; j++)
  2434. monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
  2435. unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
  2436. if (i == 0) {
  2437. /* One special case: if x=0, then no power of x will ever
  2438. * equal 1, but we should still report success on the
  2439. * grounds that 0 does have a square root mod p. */
  2440. *success = eq1 | mp_eq_integer(x, 0);
  2441. } else {
  2442. monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
  2443. mp_select_into(toret, &tmp, toret, eq1);
  2444. monty_mul_into(sc->mc, &power_of_zk,
  2445. &power_of_zk, &power_of_zk);
  2446. monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
  2447. mp_select_into(&xk, &tmp, &xk, eq1);
  2448. }
  2449. }
  2450. mp_free(scratch_to_free);
  2451. return toret;
  2452. }
  2453. mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
  2454. {
  2455. size_t bytes = (bits + 7) / 8;
  2456. uint8_t *randbuf = snewn(bytes, uint8_t);
  2457. random_read(randbuf, bytes);
  2458. if (bytes)
  2459. randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
  2460. mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
  2461. smemclr(randbuf, bytes);
  2462. sfree(randbuf);
  2463. return toret;
  2464. }
  2465. mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t rf)
  2466. {
  2467. /*
  2468. * It would be nice to generate our random numbers in such a way
  2469. * as to make every possible outcome literally equiprobable. But
  2470. * we can't do that in constant time, so we have to go for a very
  2471. * close approximation instead. I'm going to take the view that a
  2472. * factor of (1+2^-128) between the probabilities of two outcomes
  2473. * is acceptable on the grounds that you'd have to examine so many
  2474. * outputs to even detect it.
  2475. */
  2476. mp_int *unreduced = mp_random_bits_fn(mp_max_bits(limit) + 128, rf);
  2477. mp_int *reduced = mp_mod(unreduced, limit);
  2478. mp_free(unreduced);
  2479. return reduced;
  2480. }
  2481. mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
  2482. {
  2483. mp_int *n_outcomes = mp_sub(hi, lo);
  2484. mp_int *addend = mp_random_upto_fn(n_outcomes, rf);
  2485. mp_int *result = mp_make_sized(hi->nw);
  2486. mp_add_into(result, addend, lo);
  2487. mp_free(addend);
  2488. mp_free(n_outcomes);
  2489. return result;
  2490. }