123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811 |
- /*
- * Multiprecision integer arithmetic, implementing mpint.h.
- */
- #include <assert.h>
- #include <limits.h>
- #include <stdio.h>
- #include "defs.h"
- #include "misc.h"
- #include "puttymem.h"
- #include "mpint.h"
- #include "mpint_i.h"
- #define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
- /*
- * Inline helpers to take min and max of size_t values, used
- * throughout this code.
- */
- static inline size_t size_t_min(size_t a, size_t b)
- {
- return a < b ? a : b;
- }
- static inline size_t size_t_max(size_t a, size_t b)
- {
- return a > b ? a : b;
- }
- /*
- * Helper to fetch a word of data from x with array overflow checking.
- * If x is too short to have that word, 0 is returned.
- */
- static inline BignumInt mp_word(mp_int *x, size_t i)
- {
- return i < x->nw ? x->w[i] : 0;
- }
- /*
- * Shift an ordinary C integer by BIGNUM_INT_BITS, in a way that
- * avoids writing a shift operator whose RHS is greater or equal to
- * the size of the type, because that's undefined behaviour in C.
- *
- * In fact we must avoid even writing it in a definitely-untaken
- * branch of an if, because compilers will sometimes warn about
- * that. So you can't just write 'shift too big ? 0 : n >> shift',
- * because even if 'shift too big' is a constant-expression
- * evaluating to false, you can still get complaints about the
- * else clause of the ?:.
- *
- * So we have to re-check _inside_ that clause, so that the shift
- * count is reset to something nonsensical but safe in the case
- * where the clause wasn't going to be taken anyway.
- */
- static uintmax_t shift_right_by_one_word(uintmax_t n)
- {
- bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
- return shift_too_big ? 0 :
- n >> (shift_too_big ? 0 : BIGNUM_INT_BITS);
- }
- static uintmax_t shift_left_by_one_word(uintmax_t n)
- {
- bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
- return shift_too_big ? 0 :
- n << (shift_too_big ? 0 : BIGNUM_INT_BITS);
- }
- mp_int *mp_make_sized(size_t nw)
- {
- mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
- assert(nw); /* we outlaw the zero-word mp_int */
- x->nw = nw;
- x->w = snew_plus_get_aux(x);
- mp_clear(x);
- return x;
- }
- mp_int *mp_new(size_t maxbits)
- {
- size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- return mp_make_sized(words);
- }
- mp_int *mp_resize(mp_int *mp, size_t newmaxbits)
- {
- mp_int *copy = mp_new(newmaxbits);
- mp_copy_into(copy, mp);
- mp_free(mp);
- return copy;
- }
- mp_int *mp_from_integer(uintmax_t n)
- {
- mp_int *x = mp_make_sized(
- (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
- for (size_t i = 0; i < x->nw; i++)
- x->w[i] = n >> (i * BIGNUM_INT_BITS);
- return x;
- }
- size_t mp_max_bytes(mp_int *x)
- {
- return x->nw * BIGNUM_INT_BYTES;
- }
- size_t mp_max_bits(mp_int *x)
- {
- return x->nw * BIGNUM_INT_BITS;
- }
- void mp_free(mp_int *x)
- {
- mp_clear(x);
- smemclr(x, sizeof(*x));
- sfree(x);
- }
- void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
- {
- fprintf(fp, "%s0x", prefix);
- for (size_t i = mp_max_bytes(x); i-- > 0 ;)
- fprintf(fp, "%02X", mp_get_byte(x, i));
- fputs(suffix, fp);
- }
- void mp_copy_into(mp_int *dest, mp_int *src)
- {
- size_t copy_nw = size_t_min(dest->nw, src->nw);
- memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
- smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
- }
- void mp_copy_integer_into(mp_int *r, uintmax_t n)
- {
- for (size_t i = 0; i < r->nw; i++) {
- r->w[i] = n;
- n = shift_right_by_one_word(n);
- }
- }
- /*
- * Conditional selection is done by negating 'which', to give a mask
- * word which is all 1s if which==1 and all 0s if which==0. Then you
- * can select between two inputs a,b without data-dependent control
- * flow by XORing them to get their difference; ANDing with the mask
- * word to replace that difference with 0 if which==0; and XORing that
- * into a, which will either turn it into b or leave it alone.
- *
- * This trick will be used throughout this code and taken as read the
- * rest of the time (or else I'd be here all week typing comments),
- * but I felt I ought to explain it in words _once_.
- */
- void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
- unsigned which)
- {
- BignumInt mask = -(BignumInt)(1 & which);
- for (size_t i = 0; i < dest->nw; i++) {
- BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
- dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
- }
- }
- void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
- {
- assert(x0->nw == x1->nw);
- volatile BignumInt mask = -(BignumInt)(1 & swap);
- for (size_t i = 0; i < x0->nw; i++) {
- BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
- x0->w[i] ^= diff;
- x1->w[i] ^= diff;
- }
- }
- void mp_clear(mp_int *x)
- {
- smemclr(x->w, x->nw * sizeof(BignumInt));
- }
- void mp_cond_clear(mp_int *x, unsigned clear)
- {
- BignumInt mask = ~-(BignumInt)(1 & clear);
- for (size_t i = 0; i < x->nw; i++)
- x->w[i] &= mask;
- }
- /*
- * Common code between mp_from_bytes_{le,be} which reads bytes in an
- * arbitrary arithmetic progression.
- */
- static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
- {
- size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;
- nw = size_t_max(nw, 1);
- mp_int *n = mp_make_sized(nw);
- for (size_t i = 0; i < bytes.len; i++)
- n->w[i / BIGNUM_INT_BYTES] |=
- (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
- (8 * (i % BIGNUM_INT_BYTES));
- return n;
- }
- mp_int *mp_from_bytes_le(ptrlen bytes)
- {
- return mp_from_bytes_int(bytes, 1, 0);
- }
- mp_int *mp_from_bytes_be(ptrlen bytes)
- {
- return mp_from_bytes_int(bytes, -1, bytes.len - 1);
- }
- static mp_int *mp_from_words(size_t nw, const BignumInt *w)
- {
- mp_int *x = mp_make_sized(nw);
- memcpy(x->w, w, x->nw * sizeof(BignumInt));
- return x;
- }
- /*
- * Decimal-to-binary conversion: just go through the input string
- * adding on the decimal value of each digit, and then multiplying the
- * number so far by 10.
- */
- mp_int *mp_from_decimal_pl(ptrlen decimal)
- {
- /* 196/59 is an upper bound (and also a continued-fraction
- * convergent) for log2(10), so this conservatively estimates the
- * number of bits that will be needed to store any number that can
- * be written in this many decimal digits. */
- assert(decimal.len < (~(size_t)0) / 196);
- size_t bits = 196 * decimal.len / 59;
- /* Now round that up to words. */
- size_t words = bits / BIGNUM_INT_BITS + 1;
- mp_int *x = mp_make_sized(words);
- for (size_t i = 0; i < decimal.len; i++) {
- mp_add_integer_into(x, x, ((const char *)decimal.ptr)[i] - '0');
- if (i+1 == decimal.len)
- break;
- mp_mul_integer_into(x, x, 10);
- }
- return x;
- }
- mp_int *mp_from_decimal(const char *decimal)
- {
- return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
- }
- /*
- * Hex-to-binary conversion: _algorithmically_ simpler than decimal
- * (none of those multiplications by 10), but there's some fiddly
- * bit-twiddling needed to process each hex digit without diverging
- * control flow depending on whether it's a letter or a number.
- */
- mp_int *mp_from_hex_pl(ptrlen hex)
- {
- assert(hex.len <= (~(size_t)0) / 4);
- size_t bits = hex.len * 4;
- size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- words = size_t_max(words, 1);
- mp_int *x = mp_make_sized(words);
- for (size_t nibble = 0; nibble < hex.len; nibble++) {
- BignumInt digit = ((const char *)hex.ptr)[hex.len-1 - nibble];
- BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
- >> (BIGNUM_INT_BITS-1));
- BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
- >> (BIGNUM_INT_BITS-1));
- BignumInt digitval = digit - '0';
- digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
- digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
- digitval &= 0xF; /* at least be _slightly_ nice about weird input */
- size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
- size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
- x->w[word_idx] |= digitval << (nibble_within_word * 4);
- }
- return x;
- }
- mp_int *mp_from_hex(const char *hex)
- {
- return mp_from_hex_pl(ptrlen_from_asciz(hex));
- }
- mp_int *mp_copy(mp_int *x)
- {
- return mp_from_words(x->nw, x->w);
- }
- uint8_t mp_get_byte(mp_int *x, size_t byte)
- {
- return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
- (8 * (byte % BIGNUM_INT_BYTES)));
- }
- unsigned mp_get_bit(mp_int *x, size_t bit)
- {
- return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
- (bit % BIGNUM_INT_BITS));
- }
- uintmax_t mp_get_integer(mp_int *x)
- {
- uintmax_t toret = 0;
- for (size_t i = x->nw; i-- > 0 ;)
- toret = shift_left_by_one_word(toret) | x->w[i];
- return toret;
- }
- void mp_set_bit(mp_int *x, size_t bit, unsigned val)
- {
- size_t word = bit / BIGNUM_INT_BITS;
- assert(word < x->nw);
- unsigned shift = (bit % BIGNUM_INT_BITS);
- x->w[word] &= ~((BignumInt)1 << shift);
- x->w[word] |= (BignumInt)(val & 1) << shift;
- }
- /*
- * Helper function used here and there to normalise any nonzero input
- * value to 1.
- */
- static inline unsigned normalise_to_1(BignumInt n)
- {
- n = (n >> 1) | (n & 1); /* ensure top bit is clear */
- n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
- return n;
- }
- static inline unsigned normalise_to_1_u64(uint64_t n)
- {
- n = (n >> 1) | (n & 1); /* ensure top bit is clear */
- n = (-n) >> 63; /* normalise to 0 or 1 */
- return n;
- }
- /*
- * Find the highest nonzero word in a number. Returns the index of the
- * word in x->w, and also a pair of output uint64_t in which that word
- * appears in the high one shifted left by 'shift_wanted' bits, the
- * words immediately below it occupy the space to the right, and the
- * words below _that_ fill up the low one.
- *
- * If there is no nonzero word at all, the passed-by-reference output
- * variables retain their original values.
- */
- static inline void mp_find_highest_nonzero_word_pair(
- mp_int *x, size_t shift_wanted, size_t *index,
- uint64_t *hi, uint64_t *lo)
- {
- uint64_t curr_hi = 0, curr_lo = 0;
- for (size_t curr_index = 0; curr_index < x->nw; curr_index++) {
- BignumInt curr_word = x->w[curr_index];
- unsigned indicator = normalise_to_1(curr_word);
- curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
- (curr_hi << (64 - BIGNUM_INT_BITS));
- curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
- ((uint64_t)curr_word << shift_wanted);
- if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
- if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
- if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
- }
- }
- size_t mp_get_nbits(mp_int *x)
- {
- /* Sentinel values in case there are no bits set at all: we
- * imagine that there's a word at position -1 (i.e. the topmost
- * fraction word) which is all 1s, because that way, we handle a
- * zero input by considering its highest set bit to be the top one
- * of that word, i.e. just below the units digit, i.e. at bit
- * index -1, i.e. so we'll return 0 on output. */
- size_t hiword_index = -(size_t)1;
- uint64_t hiword64 = ~(BignumInt)0;
- /*
- * Find the highest nonzero word and its index.
- */
- mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
- BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
- /*
- * Find the index of the highest set bit within hiword.
- */
- BignumInt hibit_index = 0;
- for (size_t i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
- BignumInt shifted_word = hiword >> i;
- BignumInt indicator =
- (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
- hiword ^= (shifted_word ^ hiword ) & -indicator;
- hibit_index += i & -(size_t)indicator;
- }
- /*
- * Put together the result.
- */
- return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
- }
- /*
- * Shared code between the hex and decimal output functions to get rid
- * of leading zeroes on the output string. The idea is that we wrote
- * out a fixed number of digits and a trailing \0 byte into 'buf', and
- * now we want to shift it all left so that the first nonzero digit
- * moves to buf[0] (or, if there are no nonzero digits at all, we move
- * up by 'maxtrim', so that we return 0 as "0" instead of "").
- */
- static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
- {
- size_t trim = maxtrim;
- /*
- * Look for the first character not equal to '0', to find the
- * shift count.
- */
- if (trim > 0) {
- for (size_t pos = trim; pos-- > 0 ;) {
- uint8_t diff = buf[pos] ^ '0';
- size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
- trim ^= (trim ^ pos) & ~mask;
- }
- }
- /*
- * Now do the shift, in log n passes each of which does a
- * conditional shift by 2^i bytes if bit i is set in the shift
- * count.
- */
- uint8_t *ubuf = (uint8_t *)buf;
- for (size_t logd = 0; bufsize >> logd; logd++) {
- uint8_t mask = -(uint8_t)((trim >> logd) & 1);
- size_t d = (size_t)1 << logd;
- for (size_t i = 0; i+d < bufsize; i++) {
- uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
- ubuf[i] ^= diff;
- ubuf[i+d] ^= diff;
- }
- }
- }
- /*
- * Binary to decimal conversion. Our strategy here is to extract each
- * decimal digit by finding the input number's residue mod 10, then
- * subtract that off to give an exact multiple of 10, which then means
- * you can safely divide by 10 by means of shifting right one bit and
- * then multiplying by the inverse of 5 mod 2^n.
- */
- char *mp_get_decimal(mp_int *x_orig)
- {
- mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
- /*
- * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
- * appropriate number of 'c's. Manually construct an integer the
- * right size.
- */
- mp_int *inv5 = mp_make_sized(x->nw);
- assert(BIGNUM_INT_BITS % 8 == 0);
- for (size_t i = 0; i < inv5->nw; i++)
- inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
- inv5->w[0]++;
- /*
- * 146/485 is an upper bound (and also a continued-fraction
- * convergent) of log10(2), so this is a conservative estimate of
- * the number of decimal digits needed to store a value that fits
- * in this many binary bits.
- */
- assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
- size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
- char *outbuf = snewn(bufsize, char);
- outbuf[bufsize - 1] = '\0';
- /*
- * Loop over the number generating digits from the least
- * significant upwards, so that we write to outbuf in reverse
- * order.
- */
- for (size_t pos = bufsize - 1; pos-- > 0 ;) {
- /*
- * Find the current residue mod 10. We do this by first
- * summing the bytes of the number, with all but the lowest
- * one multiplied by 6 (because 256^i == 6 mod 10 for all
- * i>0). That gives us a single word congruent mod 10 to the
- * input number, and then we reduce it further by manual
- * multiplication and shifting, just in case the compiler
- * target implements the C division operator in a way that has
- * input-dependent timing.
- */
- uint32_t low_digit = 0, maxval = 0, mult = 1;
- for (size_t i = 0; i < x->nw; i++) {
- for (unsigned j = 0; j < BIGNUM_INT_BYTES; j++) {
- low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
- maxval += mult * 0xFF;
- mult = 6;
- }
- /*
- * For _really_ big numbers, prevent overflow of t by
- * periodically folding the top half of the accumulator
- * into the bottom half, using the same rule 'multiply by
- * 6 when shifting down by one or more whole bytes'.
- */
- if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
- low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
- maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
- }
- }
- /*
- * Final reduction of low_digit. We multiply by 2^32 / 10
- * (that's the constant 0x19999999) to get a 64-bit value
- * whose top 32 bits are the approximate quotient
- * low_digit/10; then we subtract off 10 times that; and
- * finally we do one last trial subtraction of 10 by adding 6
- * (which sets bit 4 if the number was just over 10) and then
- * testing bit 4.
- */
- low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
- low_digit -= 10 * ((low_digit + 6) >> 4);
- assert(low_digit < 10); /* make sure we did reduce fully */
- outbuf[pos] = '0' + low_digit;
- /*
- * Now subtract off that digit, divide by 2 (using a right
- * shift) and by 5 (using the modular inverse), to get the
- * next output digit into the units position.
- */
- mp_sub_integer_into(x, x, low_digit);
- mp_rshift_fixed_into(y, x, 1);
- mp_mul_into(x, y, inv5);
- }
- mp_free(x);
- mp_free(y);
- mp_free(inv5);
- trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
- return outbuf;
- }
- /*
- * Binary to hex conversion. Reasonably simple (only a spot of bit
- * twiddling to choose whether to output a digit or a letter for each
- * nibble).
- */
- static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
- {
- size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
- size_t bufsize = nibbles + 1;
- char *outbuf = snewn(bufsize, char);
- outbuf[nibbles] = '\0';
- for (size_t nibble = 0; nibble < nibbles; nibble++) {
- size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
- size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
- uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
- uint8_t mask = -((digitval + 6) >> 4);
- char digit = digitval + '0' + (letter_offset & mask);
- outbuf[nibbles-1 - nibble] = digit;
- }
- trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
- return outbuf;
- }
- char *mp_get_hex(mp_int *x)
- {
- return mp_get_hex_internal(x, 'a' - ('0'+10));
- }
- char *mp_get_hex_uppercase(mp_int *x)
- {
- return mp_get_hex_internal(x, 'A' - ('0'+10));
- }
- /*
- * Routines for reading and writing the SSH-1 and SSH-2 wire formats
- * for multiprecision integers, declared in marshal.h.
- *
- * These can't avoid having control flow dependent on the true bit
- * size of the number, because the wire format requires the number of
- * output bytes to depend on that.
- */
- void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
- {
- size_t bits = mp_get_nbits(x);
- size_t bytes = (bits + 7) / 8;
- assert(bits < 0x10000);
- put_uint16(bs, bits);
- for (size_t i = bytes; i-- > 0 ;)
- put_byte(bs, mp_get_byte(x, i));
- }
- void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
- {
- size_t bytes = (mp_get_nbits(x) + 8) / 8;
- put_uint32(bs, bytes);
- for (size_t i = bytes; i-- > 0 ;)
- put_byte(bs, mp_get_byte(x, i));
- }
- mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
- {
- unsigned bitc = get_uint16(src);
- ptrlen bytes = get_data(src, (bitc + 7) / 8);
- if (get_err(src)) {
- return mp_from_integer(0);
- } else {
- mp_int *toret = mp_from_bytes_be(bytes);
- /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
- * _greater_ than the actual number of bits */
- if (mp_get_nbits(toret) > bitc) {
- src->err = BSE_INVALID;
- mp_free(toret);
- toret = mp_from_integer(0);
- }
- return toret;
- }
- }
- mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
- {
- ptrlen bytes = get_string(src);
- if (get_err(src)) {
- return mp_from_integer(0);
- } else {
- const unsigned char *p = bytes.ptr;
- if ((bytes.len > 0 &&
- ((p[0] & 0x80) ||
- (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
- src->err = BSE_INVALID;
- return mp_from_integer(0);
- }
- return mp_from_bytes_be(bytes);
- }
- }
- /*
- * Make an mp_int structure whose words array aliases a subinterval of
- * some other mp_int. This makes it easy to read or write just the low
- * or high words of a number, e.g. to add a number starting from a
- * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
- *
- * The convention throughout this code is that when we store an mp_int
- * directly by value, we always expect it to be an alias of some kind,
- * so its words array won't ever need freeing. Whereas an 'mp_int *'
- * has an owner, who knows whether it needs freeing or whether it was
- * created by address-taking an alias.
- */
- static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
- {
- /*
- * Bounds-check the offset and length so that we always return
- * something valid, even if it's not necessarily the length the
- * caller asked for.
- */
- if (offset > in->nw)
- offset = in->nw;
- if (len > in->nw - offset)
- len = in->nw - offset;
- mp_int toret;
- toret.nw = len;
- toret.w = in->w + offset;
- return toret;
- }
- /*
- * A special case of mp_make_alias: in some cases we preallocate a
- * large mp_int to use as scratch space (to avoid pointless
- * malloc/free churn in recursive or iterative work).
- *
- * mp_alloc_from_scratch creates an alias of size 'len' to part of
- * 'pool', and adjusts 'pool' itself so that further allocations won't
- * overwrite that space.
- *
- * There's no free function to go with this. Typically you just copy
- * the pool mp_int by value, allocate from the copy, and when you're
- * done with those allocations, throw the copy away and go back to the
- * original value of pool. (A mark/release system.)
- */
- static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
- {
- assert(len <= pool->nw);
- mp_int toret = mp_make_alias(pool, 0, len);
- *pool = mp_make_alias(pool, len, pool->nw);
- return toret;
- }
- /*
- * Internal component common to lots of assorted add/subtract code.
- * Reads words from a,b; writes into w_out (which might be NULL if the
- * output isn't even needed). Takes an input carry flag in 'carry',
- * and returns the output carry. Each word read from b is ANDed with
- * b_and and then XORed with b_xor.
- *
- * So you can implement addition by setting b_and to all 1s and b_xor
- * to 0; you can subtract by making b_xor all 1s too (effectively
- * bit-flipping b) and also passing 1 as the input carry (to turn
- * one's complement into two's complement). And you can do conditional
- * add/subtract by choosing b_and to be all 1s or all 0s based on a
- * condition, because the value of b will be totally ignored if b_and
- * == 0.
- */
- static BignumCarry mp_add_masked_into(
- BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
- BignumInt b_and, BignumInt b_xor, BignumCarry carry)
- {
- for (size_t i = 0; i < rw; i++) {
- BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
- bword = (bword & b_and) ^ b_xor;
- BignumADC(out, carry, aword, bword, carry);
- if (w_out)
- w_out[i] = out;
- }
- return carry;
- }
- /*
- * Like the public mp_add_into except that it returns the output carry.
- */
- static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
- {
- return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
- }
- void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
- {
- mp_add_into_internal(r, a, b);
- }
- void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
- {
- mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
- }
- void mp_and_into(mp_int *r, mp_int *a, mp_int *b)
- {
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
- r->w[i] = aword & bword;
- }
- }
- void mp_or_into(mp_int *r, mp_int *a, mp_int *b)
- {
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
- r->w[i] = aword | bword;
- }
- }
- void mp_xor_into(mp_int *r, mp_int *a, mp_int *b)
- {
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
- r->w[i] = aword ^ bword;
- }
- }
- void mp_bic_into(mp_int *r, mp_int *a, mp_int *b)
- {
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
- r->w[i] = aword & ~bword;
- }
- }
- static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
- {
- BignumCarry carry = yes;
- BignumInt flip = -(BignumInt)yes;
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt xword = mp_word(x, i);
- xword ^= flip;
- BignumADC(r->w[i], carry, 0, xword, carry);
- }
- }
- /*
- * Similar to mp_add_masked_into, but takes a C integer instead of an
- * mp_int as the masked operand.
- */
- static BignumCarry mp_add_masked_integer_into(
- BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
- BignumInt b_and, BignumInt b_xor, BignumCarry carry)
- {
- for (size_t i = 0; i < rw; i++) {
- BignumInt aword = mp_word(a, i);
- BignumInt bword = b;
- b = shift_right_by_one_word(b);
- BignumInt out;
- bword = (bword ^ b_xor) & b_and;
- BignumADC(out, carry, aword, bword, carry);
- if (w_out)
- w_out[i] = out;
- }
- return carry;
- }
- void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
- {
- mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
- }
- void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
- {
- mp_add_masked_integer_into(r->w, r->nw, a, n,
- ~(BignumInt)0, ~(BignumInt)0, 1);
- }
- /*
- * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
- * word_index as secret data.
- */
- static void mp_add_integer_into_shifted_by_words(
- mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
- {
- unsigned indicator = 0;
- BignumCarry carry = 0;
- for (size_t i = 0; i < r->nw; i++) {
- /* indicator becomes 1 when we reach the index that the least
- * significant bits of n want to be placed at, and it stays 1
- * thereafter. */
- indicator |= 1 ^ normalise_to_1(i ^ word_index);
- /* If indicator is 1, we add the low bits of n into r, and
- * shift n down. If it's 0, we add zero bits into r, and
- * leave n alone. */
- BignumInt bword = n & -(BignumInt)indicator;
- uintmax_t new_n = shift_right_by_one_word(n);
- n ^= (n ^ new_n) & -(uintmax_t)indicator;
- BignumInt aword = mp_word(a, i);
- BignumInt out;
- BignumADC(out, carry, aword, bword, carry);
- r->w[i] = out;
- }
- }
- void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
- {
- BignumInt carry = 0, mult = n;
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt aword = mp_word(a, i);
- BignumMULADD(carry, r->w[i], aword, mult, carry);
- }
- assert(!carry);
- }
- void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
- {
- BignumInt mask = -(BignumInt)(yes & 1);
- mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
- }
- void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
- {
- BignumInt mask = -(BignumInt)(yes & 1);
- mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
- }
- /*
- * Ordered comparison between unsigned numbers is done by subtracting
- * one from the other and looking at the output carry.
- */
- unsigned mp_cmp_hs(mp_int *a, mp_int *b)
- {
- size_t rw = size_t_max(a->nw, b->nw);
- return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
- }
- unsigned mp_hs_integer(mp_int *x, uintmax_t n)
- {
- BignumInt carry = 1;
- size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
- for (size_t i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
- BignumInt nword = n;
- n = shift_right_by_one_word(n);
- BignumInt dummy_out;
- BignumADC(dummy_out, carry, mp_word(x, i), ~nword, carry);
- (void)dummy_out;
- }
- return carry;
- }
- /*
- * Equality comparison is done by bitwise XOR of the input numbers,
- * ORing together all the output words, and normalising the result
- * using our careful normalise_to_1 helper function.
- */
- unsigned mp_cmp_eq(mp_int *a, mp_int *b)
- {
- BignumInt diff = 0;
- for (size_t i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
- diff |= mp_word(a, i) ^ mp_word(b, i);
- return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
- }
- unsigned mp_eq_integer(mp_int *x, uintmax_t n)
- {
- BignumInt diff = 0;
- size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
- for (size_t i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
- BignumInt nword = n;
- n = shift_right_by_one_word(n);
- diff |= mp_word(x, i) ^ nword;
- }
- return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
- }
- static void mp_neg_into(mp_int *r, mp_int *a)
- {
- mp_int zero;
- zero.nw = 0;
- mp_sub_into(r, &zero, a);
- }
- mp_int *mp_add(mp_int *x, mp_int *y)
- {
- mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
- mp_add_into(r, x, y);
- return r;
- }
- mp_int *mp_sub(mp_int *x, mp_int *y)
- {
- mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
- mp_sub_into(r, x, y);
- return r;
- }
- /*
- * Internal routine: multiply and accumulate in the trivial O(N^2)
- * way. Sets r <- r + a*b.
- */
- static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
- {
- BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
- for (BignumInt *ap = a->w, *rp = r->w;
- ap < aend && rp < rend; ap++, rp++) {
- BignumInt adata = *ap, carry = 0, *rq = rp;
- for (BignumInt *bp = b->w; bp < bend && rq < rend; bp++, rq++) {
- BignumInt bdata = bp < bend ? *bp : 0;
- BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
- }
- for (; rq < rend; rq++)
- BignumADC(*rq, carry, carry, *rq, 0);
- }
- }
- #ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
- #define KARATSUBA_THRESHOLD 24
- #endif
- static inline size_t mp_mul_scratchspace_unary(size_t n)
- {
- /*
- * Simplistic and overcautious bound on the amount of scratch
- * space that the recursive multiply function will need.
- *
- * The rationale is: on the main Karatsuba branch of
- * mp_mul_internal, which is the most space-intensive one, we
- * allocate space for (a0+a1) and (b0+b1) (each just over half the
- * input length n) and their product (the sum of those sizes, i.e.
- * just over n itself). Then in order to actually compute the
- * product, we do a recursive multiplication of size just over n.
- *
- * If all those 'just over' weren't there, and everything was
- * _exactly_ half the length, you'd get the amount of space for a
- * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
- * which is satisfied by M(n) = 4n. But instead it's (2n plus a
- * word or two) and M(n/2 plus a word or two). On the assumption
- * that there's still some constant k such that M(n) <= kn, this
- * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
- * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
- * since we don't even _start_ needing scratch space until n is at
- * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
- *
- * So I claim that 6n words of scratch space will suffice, and I
- * check that by assertion at every stage of the recursion.
- */
- return n * 6;
- }
- static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
- {
- size_t inlen = size_t_min(rw, size_t_max(aw, bw));
- return mp_mul_scratchspace_unary(inlen);
- }
- static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
- {
- size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
- assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
- mp_clear(r);
- if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
- /*
- * The input numbers are too small to bother optimising. Go
- * straight to the simple primitive approach.
- */
- mp_mul_add_simple(r, a, b);
- return;
- }
- /*
- * Karatsuba divide-and-conquer algorithm. We cut each input in
- * half, so that it's expressed as two big 'digits' in a giant
- * base D:
- *
- * a = a_1 D + a_0
- * b = b_1 D + b_0
- *
- * Then the product is of course
- *
- * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
- *
- * and we compute the three coefficients by recursively calling
- * ourself to do half-length multiplications.
- *
- * The clever bit that makes this worth doing is that we only need
- * _one_ half-length multiplication for the central coefficient
- * rather than the two that it obviouly looks like, because we can
- * use a single multiplication to compute
- *
- * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
- *
- * and then we subtract the other two coefficients (a_1 b_1 and
- * a_0 b_0) which we were computing anyway.
- *
- * Hence we get to multiply two numbers of length N in about three
- * times as much work as it takes to multiply numbers of length
- * N/2, which is obviously better than the four times as much work
- * it would take if we just did a long conventional multiply.
- */
- /* Break up the input as botlen + toplen, with botlen >= toplen.
- * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
- size_t toplen = inlen / 2;
- size_t botlen = inlen - toplen;
- /* Alias bignums that address the two halves of a,b, and useful
- * pieces of r. */
- mp_int a0 = mp_make_alias(a, 0, botlen);
- mp_int b0 = mp_make_alias(b, 0, botlen);
- mp_int a1 = mp_make_alias(a, botlen, toplen);
- mp_int b1 = mp_make_alias(b, botlen, toplen);
- mp_int r0 = mp_make_alias(r, 0, botlen*2);
- mp_int r1 = mp_make_alias(r, botlen, r->nw);
- mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
- /* Recurse to compute a0*b0 and a1*b1, in their correct positions
- * in the output bignum. They can't overlap. */
- mp_mul_internal(&r0, &a0, &b0, scratch);
- mp_mul_internal(&r2, &a1, &b1, scratch);
- if (r->nw < inlen*2) {
- /*
- * The output buffer isn't large enough to require the whole
- * product, so some of a1*b1 won't have been stored. In that
- * case we won't try to do the full Karatsuba optimisation;
- * we'll just recurse again to compute a0*b1 and a1*b0 - or at
- * least as much of them as the output buffer size requires -
- * and add each one in.
- */
- mp_int s = mp_alloc_from_scratch(
- &scratch, size_t_min(botlen+toplen, r1.nw));
- mp_mul_internal(&s, &a0, &b1, scratch);
- mp_add_into(&r1, &r1, &s);
- mp_mul_internal(&s, &a1, &b0, scratch);
- mp_add_into(&r1, &r1, &s);
- return;
- }
- /* a0+a1 and b0+b1 */
- mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
- mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
- mp_add_into(&asum, &a0, &a1);
- mp_add_into(&bsum, &b0, &b1);
- /* Their product */
- mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
- mp_mul_internal(&product, &asum, &bsum, scratch);
- /* Subtract off the outer terms we already have */
- mp_sub_into(&product, &product, &r0);
- mp_sub_into(&product, &product, &r2);
- /* And add it in with the right offset. */
- mp_add_into(&r1, &r1, &product);
- }
- void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
- {
- mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
- mp_mul_internal(r, a, b, *scratch);
- mp_free(scratch);
- }
- mp_int *mp_mul(mp_int *x, mp_int *y)
- {
- mp_int *r = mp_make_sized(x->nw + y->nw);
- mp_mul_into(r, x, y);
- return r;
- }
- void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
- {
- size_t words = bits / BIGNUM_INT_BITS;
- size_t bitoff = bits % BIGNUM_INT_BITS;
- for (size_t i = r->nw; i-- > 0 ;) {
- if (i < words) {
- r->w[i] = 0;
- } else {
- r->w[i] = mp_word(a, i - words);
- if (bitoff != 0) {
- r->w[i] <<= bitoff;
- if (i > words)
- r->w[i] |= mp_word(a, i - words - 1) >>
- (BIGNUM_INT_BITS - bitoff);
- }
- }
- }
- }
- void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
- {
- size_t words = bits / BIGNUM_INT_BITS;
- size_t bitoff = bits % BIGNUM_INT_BITS;
- for (size_t i = 0; i < r->nw; i++) {
- r->w[i] = mp_word(a, i + words);
- if (bitoff != 0) {
- r->w[i] >>= bitoff;
- r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
- }
- }
- }
- mp_int *mp_lshift_fixed(mp_int *x, size_t bits)
- {
- size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- mp_int *r = mp_make_sized(x->nw + words);
- mp_lshift_fixed_into(r, x, bits);
- return r;
- }
- mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
- {
- size_t words = bits / BIGNUM_INT_BITS;
- size_t nw = x->nw - size_t_min(x->nw, words);
- mp_int *r = mp_make_sized(size_t_max(nw, 1));
- mp_rshift_fixed_into(r, x, bits);
- return r;
- }
- /*
- * Safe right shift is done using the same technique as
- * trim_leading_zeroes above: you make an n-word left shift by
- * composing an appropriate subset of power-of-2-sized shifts, so it
- * takes log_2(n) loop iterations each of which does a different shift
- * by a power of 2 words, using the usual bit twiddling to make the
- * whole shift conditional on the appropriate bit of n.
- */
- static void mp_rshift_safe_in_place(mp_int *r, size_t bits)
- {
- size_t wordshift = bits / BIGNUM_INT_BITS;
- size_t bitshift = bits % BIGNUM_INT_BITS;
- unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
- mp_cond_clear(r, clear);
- for (unsigned bit = 0; r->nw >> bit; bit++) {
- size_t word_offset = (size_t)1 << bit;
- BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt w = mp_word(r, i + word_offset);
- r->w[i] ^= (r->w[i] ^ w) & mask;
- }
- }
- /*
- * That's done the shifting by words; now we do the shifting by
- * bits.
- */
- for (unsigned bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) {
- unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
- BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
- for (size_t i = 0; i < r->nw; i++) {
- BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
- r->w[i] ^= (r->w[i] ^ w) & mask;
- }
- }
- }
- mp_int *mp_rshift_safe(mp_int *x, size_t bits)
- {
- mp_int *r = mp_copy(x);
- mp_rshift_safe_in_place(r, bits);
- return r;
- }
- void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t bits)
- {
- mp_copy_into(r, x);
- mp_rshift_safe_in_place(r, bits);
- }
- static void mp_lshift_safe_in_place(mp_int *r, size_t bits)
- {
- size_t wordshift = bits / BIGNUM_INT_BITS;
- size_t bitshift = bits % BIGNUM_INT_BITS;
- /*
- * Same strategy as mp_rshift_safe_in_place, but of course the
- * other way up.
- */
- unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
- mp_cond_clear(r, clear);
- for (unsigned bit = 0; r->nw >> bit; bit++) {
- size_t word_offset = (size_t)1 << bit;
- BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
- for (size_t i = r->nw; i-- > 0 ;) {
- BignumInt w = mp_word(r, i - word_offset);
- r->w[i] ^= (r->w[i] ^ w) & mask;
- }
- }
- size_t downshift = BIGNUM_INT_BITS - bitshift;
- size_t no_shift = (downshift >> BIGNUM_INT_BITS_BITS);
- downshift &= ~-(size_t)no_shift;
- BignumInt downshifted_mask = ~-(BignumInt)no_shift;
- for (size_t i = r->nw; i-- > 0 ;) {
- r->w[i] = (r->w[i] << bitshift) |
- ((mp_word(r, i-1) >> downshift) & downshifted_mask);
- }
- }
- void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t bits)
- {
- mp_copy_into(r, x);
- mp_lshift_safe_in_place(r, bits);
- }
- void mp_reduce_mod_2to(mp_int *x, size_t p)
- {
- size_t word = p / BIGNUM_INT_BITS;
- size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
- for (; word < x->nw; word++) {
- x->w[word] &= mask;
- mask = 0;
- }
- }
- /*
- * Inverse mod 2^n is computed by an iterative technique which doubles
- * the number of bits at each step.
- */
- mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
- {
- /* Input checks: x must be coprime to the modulus, i.e. odd, and p
- * can't be zero */
- assert(x->nw > 0);
- assert(x->w[0] & 1);
- assert(p > 0);
- size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- rw = size_t_max(rw, 1);
- mp_int *r = mp_make_sized(rw);
- size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
- mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
- mp_int scratch_per_iter = *scratch_orig;
- mp_int mul_scratch = mp_alloc_from_scratch(
- &scratch_per_iter, mul_scratchsize);
- r->w[0] = 1;
- for (size_t b = 1; b < p; b <<= 1) {
- /*
- * In each step of this iteration, we have the inverse of x
- * mod 2^b, and we want the inverse of x mod 2^{2b}.
- *
- * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
- * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
- *
- * We want to find r_0 and r_1 such that
- * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
- *
- * To begin with, we know r_0 must be the inverse mod B of
- * x_0, i.e. of x, i.e. it is the inverse we computed in the
- * previous iteration. So now all we need is r_1.
- *
- * Multiplying out, neglecting multiples of B^2, and writing
- * x_0 r_0 = K B + 1, we have
- *
- * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
- * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
- * => r_1 x_0 == - r_0 x_1 - K (mod B)
- * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
- *
- * (the last step because we multiply through by the inverse
- * of x_0, which we already know is r_0).
- */
- mp_int scratch_this_iter = scratch_per_iter;
- size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- /* Start by finding K: multiply x_0 by r_0, and shift down. */
- mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
- mp_copy_into(&x0, x);
- mp_reduce_mod_2to(&x0, b);
- mp_int r0 = mp_make_alias(r, 0, Bw);
- mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
- mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
- mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
- mp_rshift_fixed_into(&K, &Kshift, b);
- /* Now compute the product r_0 x_1, reusing the space of Kshift. */
- mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
- mp_rshift_fixed_into(&x1, x, b);
- mp_reduce_mod_2to(&x1, b);
- mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
- mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
- /* Add K to that. */
- mp_add_into(&r0x1, &r0x1, &K);
- /* Negate it. */
- mp_neg_into(&r0x1, &r0x1);
- /* Multiply by r_0. */
- mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
- mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
- mp_reduce_mod_2to(&r1, b);
- /* That's our r_1, so add it on to r_0 to get the full inverse
- * output from this iteration. */
- mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
- size_t Bpos = b / BIGNUM_INT_BITS;
- mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
- mp_add_into(&r1_position, &r1_position, &K);
- }
- /* Finally, reduce mod the precise desired number of bits. */
- mp_reduce_mod_2to(r, p);
- mp_free(scratch_orig);
- return r;
- }
- static size_t monty_scratch_size(MontyContext *mc)
- {
- return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
- }
- MontyContext *monty_new(mp_int *modulus)
- {
- MontyContext *mc = snew(MontyContext);
- mc->rw = modulus->nw;
- mc->rbits = mc->rw * BIGNUM_INT_BITS;
- mc->pw = mc->rw * 2 + 1;
- mc->m = mp_copy(modulus);
- mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
- mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
- mp_int *r = mp_make_sized(mc->rw + 1);
- r->w[mc->rw] = 1;
- mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
- mp_free(r);
- for (size_t j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
- mc->powers_of_r_mod_m[j] = mp_modmul(
- mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
- mc->scratch = mp_make_sized(monty_scratch_size(mc));
- return mc;
- }
- void monty_free(MontyContext *mc)
- {
- mp_free(mc->m);
- for (size_t j = 0; j < 3; j++)
- mp_free(mc->powers_of_r_mod_m[j]);
- mp_free(mc->minus_minv_mod_r);
- mp_free(mc->scratch);
- smemclr(mc, sizeof(*mc));
- sfree(mc);
- }
- /*
- * The main Montgomery reduction step.
- */
- static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
- {
- /*
- * The trick with Montgomery reduction is that on the one hand we
- * want to reduce the size of the input by a factor of about r,
- * and on the other hand, the two numbers we just multiplied were
- * both stored with an extra factor of r multiplied in. So we
- * computed ar*br = ab r^2, but we want to return abr, so we need
- * to divide by r - and if we can do that by _actually dividing_
- * by r then this also reduces the size of the number.
- *
- * But we can only do that if the number we're dividing by r is a
- * multiple of r. So first we must add an adjustment to it which
- * clears its bottom 'rbits' bits. That adjustment must be a
- * multiple of m in order to leave the residue mod n unchanged, so
- * the question is, what multiple of m can we add to x to make it
- * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
- */
- /* x mod r */
- mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
- /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
- mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
- mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
- /* m times that, i.e. the number we want to add to x */
- mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
- mp_mul_internal(&mk, mc->m, &k, scratch);
- /* Add it to x */
- mp_add_into(&mk, x, &mk);
- /* Reduce mod r, by simply making an alias to the upper words of x */
- mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
- /*
- * We'll generally be doing this after a multiplication of two
- * fully reduced values. So our input could be anything up to m^2,
- * and then we added up to rm to it. Hence, the maximum value is
- * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
- * So a single trial-subtraction will finish reducing to the
- * interval [0,m).
- */
- mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
- return toret;
- }
- void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
- {
- assert(x->nw <= mc->rw);
- assert(y->nw <= mc->rw);
- mp_int scratch = *mc->scratch;
- mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
- mp_mul_into(&tmp, x, y);
- mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
- mp_copy_into(r, &reduced);
- mp_clear(mc->scratch);
- }
- mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
- {
- mp_int *toret = mp_make_sized(mc->rw);
- monty_mul_into(mc, toret, x, y);
- return toret;
- }
- mp_int *monty_modulus(MontyContext *mc)
- {
- return mc->m;
- }
- mp_int *monty_identity(MontyContext *mc)
- {
- return mc->powers_of_r_mod_m[0];
- }
- mp_int *monty_invert(MontyContext *mc, mp_int *x)
- {
- /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
- * monty_reduce((xr)^{-1} r^3) */
- mp_int *tmp = mp_invert(x, mc->m);
- mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
- mp_free(tmp);
- return toret;
- }
- /*
- * Importing a number into Montgomery representation involves
- * multiplying it by r and reducing mod m. We use the general-purpose
- * mp_modmul for this, in case the input number is out of range.
- */
- mp_int *monty_import(MontyContext *mc, mp_int *x)
- {
- return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);
- }
- void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
- {
- mp_int *imported = monty_import(mc, x);
- mp_copy_into(r, imported);
- mp_free(imported);
- }
- /*
- * Exporting a number means multiplying it by r^{-1}, which is exactly
- * what monty_reduce does anyway, so we just do that.
- */
- void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
- {
- assert(x->nw <= 2*mc->rw);
- mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
- mp_copy_into(r, &reduced);
- mp_clear(mc->scratch);
- }
- mp_int *monty_export(MontyContext *mc, mp_int *x)
- {
- mp_int *toret = mp_make_sized(mc->rw);
- monty_export_into(mc, toret, x);
- return toret;
- }
- #define MODPOW_LOG2_WINDOW_SIZE 5
- #define MODPOW_WINDOW_SIZE (1 << MODPOW_LOG2_WINDOW_SIZE)
- mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
- {
- /*
- * Modular exponentiation is done from the top down, using a
- * fixed-window technique.
- *
- * We have a table storing every power of the base from base^0 up
- * to base^{w-1}, where w is a small power of 2, say 2^k. (k is
- * defined above as MODPOW_LOG2_WINDOW_SIZE, and w = 2^k is
- * defined as MODPOW_WINDOW_SIZE.)
- *
- * We break the exponent up into k-bit chunks, from the bottom up,
- * that is
- *
- * exponent = c_0 + 2^k c_1 + 2^{2k} c_2 + ... + 2^{nk} c_n
- *
- * and we compute base^exponent by computing in turn
- *
- * base^{c_n}
- * base^{2^k c_n + c_{n-1}}
- * base^{2^{2k} c_n + 2^k c_{n-1} + c_{n-2}}
- * ...
- *
- * where each line is obtained by raising the previous line to the
- * power 2^k (i.e. squaring it k times) and then multiplying in
- * a value base^{c_i}, which we can look up in our table.
- *
- * Side-channel considerations: the exponent is secret, so
- * actually doing a single table lookup by using a chunk of
- * exponent bits as an array index would be an obvious leak of
- * secret information into the cache. So instead, in each
- * iteration, we read _all_ the table entries, and do a sequence
- * of mp_select operations to leave just the one we wanted in the
- * variable that will go into the multiplication. In other
- * contexts (like software AES) that technique is so prohibitively
- * slow that it makes you choose a strategy that doesn't use table
- * lookups at all (we do bitslicing in preference); but here, this
- * iteration through 2^k table elements is replacing k-1 bignum
- * _multiplications_ that you'd have to use instead if you did
- * simple square-and-multiply, and that makes it still a win.
- */
- /* Table that holds base^0, ..., base^{w-1} */
- mp_int *table[MODPOW_WINDOW_SIZE];
- table[0] = mp_copy(monty_identity(mc));
- for (size_t i = 1; i < MODPOW_WINDOW_SIZE; i++)
- table[i] = monty_mul(mc, table[i-1], base);
- /* out accumulates the output value */
- mp_int *out = mp_make_sized(mc->rw);
- mp_copy_into(out, monty_identity(mc));
- /* table_entry will hold each value we get out of the table */
- mp_int *table_entry = mp_make_sized(mc->rw);
- /* Bit index of the chunk of bits we're working on. Start with the
- * highest multiple of k strictly less than the size of our
- * bignum, i.e. the highest-index chunk of bits that might
- * conceivably contain any nonzero bit. */
- size_t i = (exponent->nw * BIGNUM_INT_BITS) - 1;
- i -= i % MODPOW_LOG2_WINDOW_SIZE;
- bool first_iteration = true;
- while (true) {
- /* Construct the table index */
- unsigned table_index = 0;
- for (size_t j = 0; j < MODPOW_LOG2_WINDOW_SIZE; j++)
- table_index |= mp_get_bit(exponent, i+j) << j;
- /* Iterate through the table to do a side-channel-safe lookup,
- * ending up with table_entry = table[table_index] */
- mp_copy_into(table_entry, table[0]);
- for (size_t j = 1; j < MODPOW_WINDOW_SIZE; j++) {
- unsigned not_this_one =
- ((table_index ^ j) + MODPOW_WINDOW_SIZE - 1)
- >> MODPOW_LOG2_WINDOW_SIZE;
- mp_select_into(table_entry, table[j], table_entry, not_this_one);
- }
- if (!first_iteration) {
- /* Multiply into the output */
- monty_mul_into(mc, out, out, table_entry);
- } else {
- /* On the first iteration, we can save one multiplication
- * by just copying */
- mp_copy_into(out, table_entry);
- first_iteration = false;
- }
- /* If that was the bottommost chunk of bits, we're done */
- if (i == 0)
- break;
- /* Otherwise, square k times and go round again. */
- for (size_t j = 0; j < MODPOW_LOG2_WINDOW_SIZE; j++)
- monty_mul_into(mc, out, out, out);
- i-= MODPOW_LOG2_WINDOW_SIZE;
- }
- for (size_t i = 0; i < MODPOW_WINDOW_SIZE; i++)
- mp_free(table[i]);
- mp_free(table_entry);
- mp_clear(mc->scratch);
- return out;
- }
- mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
- {
- assert(modulus->nw > 0);
- assert(modulus->w[0] & 1);
- MontyContext *mc = monty_new(modulus);
- mp_int *m_base = monty_import(mc, base);
- mp_int *m_out = monty_pow(mc, m_base, exponent);
- mp_int *out = monty_export(mc, m_out);
- mp_free(m_base);
- mp_free(m_out);
- monty_free(mc);
- return out;
- }
- /*
- * Given two input integers a,b which are not both even, computes d =
- * gcd(a,b) and also two integers A,B such that A*a - B*b = d. A,B
- * will be the minimal non-negative pair satisfying that criterion,
- * which is equivalent to saying that 0 <= A < b/d and 0 <= B < a/d.
- *
- * This algorithm is an adapted form of Stein's algorithm, which
- * computes gcd(a,b) using only addition and bit shifts (i.e. without
- * needing general division), using the following rules:
- *
- * - if both of a,b are even, divide off a common factor of 2
- * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
- * just divide a by 2
- * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
- * gcd(b,(a-b)/2).
- *
- * Sometimes this function is used for modular inversion, in which
- * case we already know we expect the two inputs to be coprime, so to
- * save time the 'both even' initial case is assumed not to arise (or
- * to have been handled already by the caller). So this function just
- * performs a sequence of reductions in the following form:
- *
- * - if a,b are both odd, sort them so that a > b, and replace a with
- * b-a; otherwise sort them so that a is the even one
- * - either way, now a is even and b is odd, so divide a by 2.
- *
- * The big change to Stein's algorithm is that we need the Bezout
- * coefficients as output, not just the gcd. So we need to know how to
- * generate those in each case, based on the coefficients from the
- * reduced pair of numbers:
- *
- * - If a is even, and u,v are such that u*(a/2) + v*b = d:
- * + if u is also even, then this is just (u/2)*a + v*b = d
- * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to d, and
- * since u and b are both odd, (u+b)/2 is an integer, so we have
- * ((u+b)/2)*a + (v-a/2)*b = d.
- *
- * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = d,
- * then v*a + (u-v)*b = d.
- *
- * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
- * as having first subtracted b from a and then halved a, so both of
- * these transformations must be done in sequence.
- *
- * The code below transforms this from a recursive to an iterative
- * algorithm. We first reduce a,b to 0,1, recording at each stage
- * whether we did the initial subtraction, and whether we had to swap
- * the two values; then we iterate backwards over that record of what
- * we did, applying the above rules for building up the Bezout
- * coefficients as we go. Of course, all the case analysis is done by
- * the usual bit-twiddling conditionalisation to avoid data-dependent
- * control flow.
- *
- * Also, since these mp_ints are generally treated as unsigned, we
- * store the coefficients by absolute value, with the semantics that
- * they always have opposite sign, and in the unwinding loop we keep a
- * bit indicating whether Aa-Bb is currently expected to be +d or -d,
- * so that we can do one final conditional adjustment if it's -d.
- *
- * Once the reduction rules have managed to reduce the input numbers
- * to (0,d), then they are stable (the next reduction will always
- * divide the even one by 2, which maps 0 to 0). So it doesn't matter
- * if we do more steps of the algorithm than necessary; hence, for
- * constant time, we just need to find the maximum number we could
- * _possibly_ require, and do that many.
- *
- * If a,b < 2^n, at most 2n iterations are required. Proof: consider
- * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
- * numbers (and may also reduce one of them further by doing a
- * subtraction beforehand, but in the worst case, not by much or not
- * at all). So Q reduces by at least 1 per iteration, and it starts
- * off with a value at most 2n.
- *
- * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
- * (i.e. x is a power of 2 and y is all 1s). In that situation, the
- * first n-1 steps repeatedly halve x until it's 1, and then there are
- * n further steps each of which subtracts 1 from y and halves it.
- */
- static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
- mp_int *gcd_out, mp_int *a_in, mp_int *b_in)
- {
- size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
- /* Make mutable copies of the input numbers */
- mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
- mp_copy_into(a, a_in);
- mp_copy_into(b, b_in);
- /* Space to build up the output coefficients, with an extra word
- * so that intermediate values can overflow off the top and still
- * right-shift back down to the correct value */
- mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
- /* And a general-purpose temp register */
- mp_int *tmp = mp_make_sized(nw);
- /* Space to record the sequence of reduction steps to unwind. We
- * make it a BignumInt for no particular reason except that (a)
- * mp_make_sized conveniently zeroes the allocation and mp_free
- * wipes it, and (b) this way I can use mp_dump() if I have to
- * debug this code. */
- size_t steps = 2 * nw * BIGNUM_INT_BITS;
- mp_int *record = mp_make_sized(
- (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
- for (size_t step = 0; step < steps; step++) {
- /*
- * If a and b are both odd, we want to sort them so that a is
- * larger. But if one is even, we want to sort them so that a
- * is the even one.
- */
- unsigned swap_if_both_odd = mp_cmp_hs(b, a);
- unsigned swap_if_one_even = a->w[0] & 1;
- unsigned both_odd = a->w[0] & b->w[0] & 1;
- unsigned swap = swap_if_one_even ^ (
- (swap_if_both_odd ^ swap_if_one_even) & both_odd);
- mp_cond_swap(a, b, swap);
- /*
- * If a,b are both odd, then a is the larger number, so
- * subtract the smaller one from it.
- */
- mp_cond_sub_into(a, a, b, both_odd);
- /*
- * Now a is even, so divide it by two.
- */
- mp_rshift_fixed_into(a, a, 1);
- /*
- * Record the two 1-bit values both_odd and swap.
- */
- mp_set_bit(record, step*2, both_odd);
- mp_set_bit(record, step*2+1, swap);
- }
- /*
- * Now we expect to have reduced the two numbers to 0 and d,
- * although we don't know which way round. (But we avoid checking
- * this by assertion; sometimes we'll need to do this computation
- * without giving away that we already know the inputs were bogus.
- * So we'd prefer to just press on and return nonsense.)
- */
- if (gcd_out) {
- /*
- * At this point we can return the actual gcd. Since one of
- * a,b is it and the other is zero, the easiest way to get it
- * is to add them together.
- */
- mp_add_into(gcd_out, a, b);
- }
- /*
- * If the caller _only_ wanted the gcd, and neither Bezout
- * coefficient is even required, we can skip the entire unwind
- * stage.
- */
- if (a_coeff_out || b_coeff_out) {
- /*
- * The Bezout coefficients of a,b at this point are simply 0
- * for whichever of a,b is zero, and 1 for whichever is
- * nonzero. The nonzero number equals gcd(a,b), which by
- * assumption is odd, so we can do this by just taking the low
- * bit of each one.
- */
- ac->w[0] = mp_get_bit(a, 0);
- bc->w[0] = mp_get_bit(b, 0);
- /*
- * Overwrite a,b themselves with those same numbers. This has
- * the effect of dividing both of them by d, which will
- * arrange that during the unwind stage we generate the
- * minimal coefficients instead of a larger pair.
- */
- mp_copy_into(a, ac);
- mp_copy_into(b, bc);
- /*
- * We'll maintain the invariant as we unwind that ac * a - bc
- * * b is either +d or -d (or rather, +1/-1 after scaling by
- * d), and we'll remember which. (We _could_ keep it at +d the
- * whole time, but it would cost more work every time round
- * the loop, so it's cheaper to fix that up once at the end.)
- *
- * Initially, the result is +d if a was the nonzero value after
- * reduction, and -d if b was.
- */
- unsigned minus_d = b->w[0];
- for (size_t step = steps; step-- > 0 ;) {
- /*
- * Recover the data from the step we're unwinding.
- */
- unsigned both_odd = mp_get_bit(record, step*2);
- unsigned swap = mp_get_bit(record, step*2+1);
- /*
- * Unwind the division: if our coefficient of a is odd, we
- * adjust the coefficients by +b and +a respectively.
- */
- unsigned adjust = ac->w[0] & 1;
- mp_cond_add_into(ac, ac, b, adjust);
- mp_cond_add_into(bc, bc, a, adjust);
- /*
- * Now ac is definitely even, so we divide it by two.
- */
- mp_rshift_fixed_into(ac, ac, 1);
- /*
- * Now unwind the subtraction, if there was one, by adding
- * ac to bc.
- */
- mp_cond_add_into(bc, bc, ac, both_odd);
- /*
- * Undo the transformation of the input numbers, by
- * multiplying a by 2 and then adding b to a (the latter
- * only if both_odd).
- */
- mp_lshift_fixed_into(a, a, 1);
- mp_cond_add_into(a, a, b, both_odd);
- /*
- * Finally, undo the swap. If we do swap, this also
- * reverses the sign of the current result ac*a+bc*b.
- */
- mp_cond_swap(a, b, swap);
- mp_cond_swap(ac, bc, swap);
- minus_d ^= swap;
- }
- /*
- * Now we expect to have recovered the input a,b (or rather,
- * the versions of them divided by d). But we might find that
- * our current result is -d instead of +d, that is, we have
- * A',B' such that A'a - B'b = -d.
- *
- * In that situation, we set A = b-A' and B = a-B', giving us
- * Aa-Bb = ab - A'a - ab + B'b = +1.
- */
- mp_sub_into(tmp, b, ac);
- mp_select_into(ac, ac, tmp, minus_d);
- mp_sub_into(tmp, a, bc);
- mp_select_into(bc, bc, tmp, minus_d);
- /*
- * Now we really are done. Return the outputs.
- */
- if (a_coeff_out)
- mp_copy_into(a_coeff_out, ac);
- if (b_coeff_out)
- mp_copy_into(b_coeff_out, bc);
- }
- mp_free(a);
- mp_free(b);
- mp_free(ac);
- mp_free(bc);
- mp_free(tmp);
- mp_free(record);
- }
- mp_int *mp_invert(mp_int *x, mp_int *m)
- {
- mp_int *result = mp_make_sized(m->nw);
- mp_bezout_into(result, NULL, NULL, x, m);
- return result;
- }
- void mp_gcd_into(mp_int *a, mp_int *b, mp_int *gcd, mp_int *A, mp_int *B)
- {
- /*
- * Identify shared factors of 2. To do this we OR the two numbers
- * to get something whose lowest set bit is in the right place,
- * remove all higher bits by ANDing it with its own negation, and
- * use mp_get_nbits to find the location of the single remaining
- * set bit.
- */
- mp_int *tmp = mp_make_sized(size_t_max(a->nw, b->nw));
- for (size_t i = 0; i < tmp->nw; i++)
- tmp->w[i] = mp_word(a, i) | mp_word(b, i);
- BignumCarry carry = 1;
- for (size_t i = 0; i < tmp->nw; i++) {
- BignumInt negw;
- BignumADC(negw, carry, 0, ~tmp->w[i], carry);
- tmp->w[i] &= negw;
- }
- size_t shift = mp_get_nbits(tmp) - 1;
- mp_free(tmp);
- /*
- * Make copies of a,b with those shared factors of 2 divided off,
- * so that at least one is odd (which is the precondition for
- * mp_bezout_into). Compute the gcd of those.
- */
- mp_int *as = mp_rshift_safe(a, shift);
- mp_int *bs = mp_rshift_safe(b, shift);
- mp_bezout_into(A, B, gcd, as, bs);
- mp_free(as);
- mp_free(bs);
- /*
- * And finally shift the gcd back up (unless the caller didn't
- * even ask for it), to put the shared factors of 2 back in.
- */
- if (gcd)
- mp_lshift_safe_in_place(gcd, shift);
- }
- mp_int *mp_gcd(mp_int *a, mp_int *b)
- {
- mp_int *gcd = mp_make_sized(size_t_min(a->nw, b->nw));
- mp_gcd_into(a, b, gcd, NULL, NULL);
- return gcd;
- }
- unsigned mp_coprime(mp_int *a, mp_int *b)
- {
- mp_int *gcd = mp_gcd(a, b);
- unsigned toret = mp_eq_integer(gcd, 1);
- mp_free(gcd);
- return toret;
- }
- static uint32_t recip_approx_32(uint32_t x)
- {
- /*
- * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
- * bit set, this function returns an approximation to 2^63/x,
- * computed using only multiplications and bit shifts just in case
- * the C divide operator has non-constant time (either because the
- * underlying machine instruction does, or because the operator
- * expands to a library function on a CPU without hardware
- * division).
- *
- * The coefficients are derived from those of the degree-9
- * polynomial which is the minimax-optimal approximation to that
- * function on the given interval (generated using the Remez
- * algorithm), converted into integer arithmetic with shifts used
- * to maximise the number of significant bits at every state. (A
- * sort of 'static floating point' - the exponent is statically
- * known at every point in the code, so it never needs to be
- * stored at run time or to influence runtime decisions.)
- *
- * Exhaustive iteration over the whole input space shows the
- * largest possible error to be 1686.54. (The input value
- * attaining that bound is 4226800006 == 0xfbefd986, whose true
- * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
- * this function returns 2182115287 == 0x82106fd7.)
- */
- uint64_t r = 0x92db03d6ULL;
- r = 0xf63e71eaULL - ((r*x) >> 34);
- r = 0xb63721e8ULL - ((r*x) >> 34);
- r = 0x9c2da00eULL - ((r*x) >> 33);
- r = 0xaada0bb8ULL - ((r*x) >> 32);
- r = 0xf75cd403ULL - ((r*x) >> 31);
- r = 0xecf97a41ULL - ((r*x) >> 31);
- r = 0x90d876cdULL - ((r*x) >> 31);
- r = 0x6682799a0ULL - ((r*x) >> 26);
- return r;
- }
- void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
- {
- assert(!mp_eq_integer(d, 0));
- /*
- * We do division by using Newton-Raphson iteration to converge to
- * the reciprocal of d (or rather, R/d for R a sufficiently large
- * power of 2); then we multiply that reciprocal by n; and we
- * finish up with conditional subtraction.
- *
- * But we have to do it in a fixed number of N-R iterations, so we
- * need some error analysis to know how many we might need.
- *
- * The iteration is derived by defining f(r) = d - R/r.
- * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
- * formula applied to those functions gives
- *
- * r_{i+1} = r_i - f(r_i) / f'(r_i)
- * = r_i - (d - R/r_i) r_i^2 / R
- * = r_i (2 R - d r_i) / R
- *
- * Now let e_i be the error in a given iteration, in the sense
- * that
- *
- * d r_i = R + e_i
- * i.e. e_i/R = (r_i - r_true) / r_true
- *
- * so e_i is the _relative_ error in r_i.
- *
- * We must also introduce a rounding-error term, because the
- * division by R always gives an integer. This might make the
- * output off by up to 1 (in the negative direction, because
- * right-shifting gives floor of the true quotient). So when we
- * divide by R, we must imagine adding some f in [0,1). Then we
- * have
- *
- * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
- * = (R + e_i) (R - e_i) / R - d f
- * = (R^2 - e_i^2) / R - d f
- * = R - (e_i^2 / R + d f)
- * => e_{i+1} = - (e_i^2 / R + d f)
- *
- * The sum of two positive quantities is bounded above by twice
- * their max, and max |f| = 1, so we can bound this as follows:
- *
- * |e_{i+1}| <= 2 max (e_i^2/R, d)
- * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
- * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
- *
- * which tells us that the number of 'good' bits - i.e.
- * log2(R/e_i) - very nearly doubles at every iteration (apart
- * from that subtraction of 1), until it gets to the same size as
- * log2(R/d). In other words, the size of R in bits has to be the
- * size of denominator we're putting in, _plus_ the amount of
- * precision we want to get back out.
- *
- * So when we multiply n (the input numerator) by our final
- * reciprocal approximation r, but actually r differs from R/d by
- * up to 2, then it follows that
- *
- * n/d - nr/R = n/d - [ n (R/d + e) ] / R
- * = n/d - [ (n/d) R + n e ] / R
- * = -ne/R
- * => 0 <= n/d - nr/R < 2n/R
- *
- * so our computed quotient can differ from the true n/d by up to
- * 2n/R. Hence, as long as we also choose R large enough that 2n/R
- * is bounded above by a constant, we can guarantee a bounded
- * number of final conditional-subtraction steps.
- */
- /*
- * Get at least 32 of the most significant bits of the input
- * number.
- */
- size_t hiword_index = 0;
- uint64_t hibits = 0, lobits = 0;
- mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
- &hiword_index, &hibits, &lobits);
- /*
- * Make a shifted combination of those two words which puts the
- * topmost bit of the number at bit 63.
- */
- size_t shift_up = 0;
- for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
- size_t sl = (size_t)1 << i; /* left shift count */
- size_t sr = 64 - sl; /* complementary right-shift count */
- /* Should we shift up? */
- unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
- /* If we do, what will we get? */
- uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
- uint64_t new_lobits = lobits << sl;
- size_t new_shift_up = shift_up + sl;
- /* Conditionally swap those values in. */
- hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
- lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
- shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
- }
- /*
- * So now we know the most significant 32 bits of d are at the top
- * of hibits. Approximate the reciprocal of those bits.
- */
- lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
- hibits = 0;
- /*
- * And shift that up by as many bits as the input was shifted up
- * just now, so that the product of this approximation and the
- * actual input will be close to a fixed power of two regardless
- * of where the MSB was.
- *
- * I do this in another log n individual passes, partly in case
- * the CPU's register-controlled shift operation isn't
- * time-constant, and also in case the compiler code-generates
- * uint64_t shifts out of a variable number of smaller-word shift
- * instructions, e.g. by splitting up into cases.
- */
- for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
- size_t sl = (size_t)1 << i; /* left shift count */
- size_t sr = 64 - sl; /* complementary right-shift count */
- /* Should we shift up? */
- unsigned indicator = 1 & (shift_up >> i);
- /* If we do, what will we get? */
- uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
- uint64_t new_lobits = lobits << sl;
- /* Conditionally swap those values in. */
- hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
- lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
- }
- /*
- * The product of the 128-bit value now in hibits:lobits with the
- * 128-bit value we originally retrieved in the same variables
- * will be in the vicinity of 2^191. So we'll take log2(R) to be
- * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
- * to hold the combined sizes of n and d.
- */
- size_t log2_R;
- {
- size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
- log2_R = max_log2_n + 3;
- log2_R -= size_t_min(191, log2_R);
- log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
- log2_R += 191;
- }
- /* Number of words in a bignum capable of holding numbers the size
- * of twice R. */
- size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
- /*
- * Now construct our full-sized starting reciprocal approximation.
- */
- mp_int *r_approx = mp_make_sized(rw);
- size_t output_bit_index;
- {
- /* Where in the input number did the input 128-bit value come from? */
- size_t input_bit_index =
- (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
- /* So how far do we need to shift our 64-bit output, if the
- * product of those two fixed-size values is 2^191 and we want
- * to make it 2^log2_R instead? */
- output_bit_index = log2_R - 191 - input_bit_index;
- /* If we've done all that right, it should be a whole number
- * of words. */
- assert(output_bit_index % BIGNUM_INT_BITS == 0);
- size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
- mp_add_integer_into_shifted_by_words(
- r_approx, r_approx, lobits, output_word_index);
- mp_add_integer_into_shifted_by_words(
- r_approx, r_approx, hibits,
- output_word_index + 64 / BIGNUM_INT_BITS);
- }
- /*
- * Make the constant 2*R, which we'll need in the iteration.
- */
- mp_int *two_R = mp_make_sized(rw);
- BignumInt top_word = (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS);
- mp_add_integer_into_shifted_by_words(
- two_R, two_R, top_word, (log2_R+1) / BIGNUM_INT_BITS);
- /*
- * Scratch space.
- */
- mp_int *dr = mp_make_sized(rw + d->nw);
- mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
- mp_int *product = mp_make_sized(rw + diff->nw);
- size_t scratchsize = size_t_max(
- mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
- mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
- mp_int *scratch = mp_make_sized(scratchsize);
- mp_int product_shifted = mp_make_alias(
- product, log2_R / BIGNUM_INT_BITS, product->nw);
- /*
- * Initial error estimate: the 32-bit output of recip_approx_32
- * differs by less than 2048 (== 2^11) from the true top 32 bits
- * of the reciprocal, so the relative error is at most 2^11
- * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
- * 2^-20. So even in the worst case, we have 20 good bits of
- * reciprocal to start with.
- */
- size_t good_bits = 31 - 11;
- size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
- /*
- * Now do Newton-Raphson iterations until we have reason to think
- * they're not converging any more.
- */
- while (good_bits < good_bits_needed) {
- /*
- * Compute the next iterate.
- */
- mp_mul_internal(dr, r_approx, d, *scratch);
- mp_sub_into(diff, two_R, dr);
- mp_mul_internal(product, r_approx, diff, *scratch);
- mp_rshift_fixed_into(r_approx, &product_shifted,
- log2_R % BIGNUM_INT_BITS);
- /*
- * Adjust the error estimate.
- */
- good_bits = good_bits * 2 - 1;
- }
- mp_free(dr);
- mp_free(diff);
- mp_free(product);
- mp_free(scratch);
- /*
- * Now we've got our reciprocal, we can compute the quotient, by
- * multiplying in n and then shifting down by log2_R bits.
- */
- mp_int *quotient_full = mp_mul(r_approx, n);
- mp_int quotient_alias = mp_make_alias(
- quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
- mp_int *quotient = mp_make_sized(n->nw);
- mp_rshift_fixed_into(quotient, "ient_alias, log2_R % BIGNUM_INT_BITS);
- /*
- * Next, compute the remainder.
- */
- mp_int *remainder = mp_make_sized(d->nw);
- mp_mul_into(remainder, quotient, d);
- mp_sub_into(remainder, n, remainder);
- /*
- * Finally, two conditional subtractions to fix up any remaining
- * rounding error. (I _think_ one should be enough, but this
- * routine isn't time-critical enough to take chances.)
- */
- unsigned q_correction = 0;
- for (unsigned iter = 0; iter < 2; iter++) {
- unsigned need_correction = mp_cmp_hs(remainder, d);
- mp_cond_sub_into(remainder, remainder, d, need_correction);
- q_correction += need_correction;
- }
- mp_add_integer_into(quotient, quotient, q_correction);
- /*
- * Now we should have a perfect answer, i.e. 0 <= r < d.
- */
- assert(!mp_cmp_hs(remainder, d));
- if (q_out)
- mp_copy_into(q_out, quotient);
- if (r_out)
- mp_copy_into(r_out, remainder);
- mp_free(r_approx);
- mp_free(two_R);
- mp_free(quotient_full);
- mp_free(quotient);
- mp_free(remainder);
- }
- mp_int *mp_div(mp_int *n, mp_int *d)
- {
- mp_int *q = mp_make_sized(n->nw);
- mp_divmod_into(n, d, q, NULL);
- return q;
- }
- mp_int *mp_mod(mp_int *n, mp_int *d)
- {
- mp_int *r = mp_make_sized(d->nw);
- mp_divmod_into(n, d, NULL, r);
- return r;
- }
- uint32_t mp_mod_known_integer(mp_int *x, uint32_t m)
- {
- uint64_t reciprocal = ((uint64_t)1 << 48) / m;
- uint64_t accumulator = 0;
- for (size_t i = mp_max_bytes(x); i-- > 0 ;) {
- accumulator = 0x100 * accumulator + mp_get_byte(x, i);
- /*
- * Let A be the value in 'accumulator' at this point, and let
- * R be the value it will have after we subtract quot*m below.
- *
- * Lemma 1: if A < 2^48, then R < 2m.
- *
- * Proof:
- *
- * By construction, we have 2^48/m - 1 < reciprocal <= 2^48/m.
- * Multiplying that by the accumulator gives
- *
- * A/m * 2^48 - A < unshifted_quot <= A/m * 2^48
- * i.e. 0 <= (A/m * 2^48) - unshifted_quot < A
- * i.e. 0 <= A/m - unshifted_quot/2^48 < A/2^48
- *
- * So when we shift this quotient right by 48 bits, i.e. take
- * the floor of (unshifted_quot/2^48), the value we take the
- * floor of is at most A/2^48 less than the true rational
- * value A/m that we _wanted_ to take the floor of.
- *
- * Provided A < 2^48, this is less than 1. So the quotient
- * 'quot' that we've just produced is either the true quotient
- * floor(A/m), or one less than it. Hence, the output value R
- * is less than 2m. []
- *
- * Lemma 2: if A < 2^16 m, then the multiplication of
- * accumulator*reciprocal does not overflow.
- *
- * Proof: as above, we have reciprocal <= 2^48/m. Multiplying
- * by A gives unshifted_quot <= 2^48 * A / m < 2^48 * 2^16 =
- * 2^64. []
- */
- uint64_t unshifted_quot = accumulator * reciprocal;
- uint64_t quot = unshifted_quot >> 48;
- accumulator -= quot * m;
- }
- /*
- * Theorem 1: accumulator < 2m at the end of every iteration of
- * this loop.
- *
- * Proof: induction on the above loop.
- *
- * Base case: at the start of the first loop iteration, the
- * accumulator is 0, which is certainly < 2m.
- *
- * Inductive step: in each loop iteration, we take a value at most
- * 2m-1, multiply it by 2^8, and add another byte less than 2^8 to
- * generate the input value A to the reduction process above. So
- * we have A < 2m * 2^8 - 1. We know m < 2^32 (because it was
- * passed in as a uint32_t), so A < 2^41, which is enough to allow
- * us to apply Lemma 1, showing that the value of 'accumulator' at
- * the end of the loop is still < 2m. []
- *
- * Corollary: we need at most one final subtraction of m to
- * produce the canonical residue of x mod m, i.e. in the range
- * [0,m).
- *
- * Theorem 2: no multiplication in the inner loop overflows.
- *
- * Proof: in Theorem 1 we established A < 2m * 2^8 - 1 in every
- * iteration. That is less than m * 2^16, so Lemma 2 applies.
- *
- * The other multiplication, of quot * m, cannot overflow because
- * quot is at most A/m, so quot*m <= A < 2^64. []
- */
- uint32_t result = accumulator;
- uint32_t reduced = result - m;
- uint32_t select = -(reduced >> 31);
- result = reduced ^ ((result ^ reduced) & select);
- assert(result < m);
- return result;
- }
- mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder_out)
- {
- /*
- * Allocate scratch space.
- */
- mp_int **alloc, **powers, **newpowers, *scratch;
- size_t nalloc = 2*(n+1)+1;
- alloc = snewn(nalloc, mp_int *);
- for (size_t i = 0; i < nalloc; i++)
- alloc[i] = mp_make_sized(y->nw + 1);
- powers = alloc;
- newpowers = alloc + (n+1);
- scratch = alloc[2*n+2];
- /*
- * We're computing the rounded-down nth root of y, i.e. the
- * maximal x such that x^n <= y. We try to add 2^i to it for each
- * possible value of i, starting from the largest one that might
- * fit (i.e. such that 2^{n*i} fits in the size of y) downwards to
- * i=0.
- *
- * We track all the smaller powers of x in the array 'powers'. In
- * each iteration, if we update x, we update all of those values
- * to match.
- */
- mp_copy_integer_into(powers[0], 1);
- for (size_t s = mp_max_bits(y) / n + 1; s-- > 0 ;) {
- /*
- * Let b = 2^s. We need to compute the powers (x+b)^i for each
- * i, starting from our recorded values of x^i.
- */
- for (size_t i = 0; i < n+1; i++) {
- /*
- * (x+b)^i = x^i
- * + (i choose 1) x^{i-1} b
- * + (i choose 2) x^{i-2} b^2
- * + ...
- * + b^i
- */
- uint16_t binom = 1; /* coefficient of b^i */
- mp_copy_into(newpowers[i], powers[i]);
- for (size_t j = 0; j < i; j++) {
- /* newpowers[i] += binom * powers[j] * 2^{(i-j)*s} */
- mp_mul_integer_into(scratch, powers[j], binom);
- mp_lshift_fixed_into(scratch, scratch, (i-j) * s);
- mp_add_into(newpowers[i], newpowers[i], scratch);
- uint32_t binom_mul = binom;
- binom_mul *= (i-j);
- binom_mul /= (j+1);
- assert(binom_mul < 0x10000);
- binom = binom_mul;
- }
- }
- /*
- * Now, is the new value of x^n still <= y? If so, update.
- */
- unsigned newbit = mp_cmp_hs(y, newpowers[n]);
- for (size_t i = 0; i < n+1; i++)
- mp_select_into(powers[i], powers[i], newpowers[i], newbit);
- }
- if (remainder_out)
- mp_sub_into(remainder_out, y, powers[n]);
- mp_int *root = mp_new(mp_max_bits(y) / n);
- mp_copy_into(root, powers[1]);
- for (size_t i = 0; i < nalloc; i++)
- mp_free(alloc[i]);
- sfree(alloc);
- return root;
- }
- mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
- {
- mp_int *product = mp_mul(x, y);
- mp_int *reduced = mp_mod(product, modulus);
- mp_free(product);
- return reduced;
- }
- mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
- {
- mp_int *sum = mp_add(x, y);
- mp_int *reduced = mp_mod(sum, modulus);
- mp_free(sum);
- return reduced;
- }
- mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
- {
- mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
- mp_sub_into(diff, x, y);
- unsigned negate = mp_cmp_hs(y, x);
- mp_cond_negate(diff, diff, negate);
- mp_int *residue = mp_mod(diff, modulus);
- mp_cond_negate(residue, residue, negate);
- /* If we've just negated the residue, then it will be < 0 and need
- * the modulus adding to it to make it positive - *except* if the
- * residue was zero when we negated it. */
- unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
- mp_cond_add_into(residue, residue, modulus, make_positive);
- mp_free(diff);
- return residue;
- }
- static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
- {
- mp_int *sum = mp_make_sized(modulus->nw);
- unsigned carry = mp_add_into_internal(sum, x, y);
- mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
- return sum;
- }
- static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
- {
- mp_int *diff = mp_make_sized(modulus->nw);
- mp_sub_into(diff, x, y);
- mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
- return diff;
- }
- mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
- {
- return mp_modadd_in_range(x, y, mc->m);
- }
- mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
- {
- return mp_modsub_in_range(x, y, mc->m);
- }
- void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
- {
- mp_select_into(r, x, y, mp_cmp_hs(x, y));
- }
- void mp_max_into(mp_int *r, mp_int *x, mp_int *y)
- {
- mp_select_into(r, y, x, mp_cmp_hs(x, y));
- }
- mp_int *mp_min(mp_int *x, mp_int *y)
- {
- mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
- mp_min_into(r, x, y);
- return r;
- }
- mp_int *mp_max(mp_int *x, mp_int *y)
- {
- mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
- mp_max_into(r, x, y);
- return r;
- }
- mp_int *mp_power_2(size_t power)
- {
- mp_int *x = mp_new(power + 1);
- mp_set_bit(x, power, 1);
- return x;
- }
- struct ModsqrtContext {
- mp_int *p; /* the prime */
- MontyContext *mc; /* for doing arithmetic mod p */
- /* Decompose p-1 as 2^e k, for positive integer e and odd k */
- size_t e;
- mp_int *k;
- mp_int *km1o2; /* (k-1)/2 */
- /* The user-provided value z which is not a quadratic residue mod
- * p, and its kth power. Both in Montgomery form. */
- mp_int *z, *zk;
- };
- ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
- {
- ModsqrtContext *sc = snew(ModsqrtContext);
- memset(sc, 0, sizeof(ModsqrtContext));
- sc->p = mp_copy(p);
- sc->mc = monty_new(sc->p);
- sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
- /* Find the lowest set bit in p-1. Since this routine expects p to
- * be non-secret (typically a well-known standard elliptic curve
- * parameter), for once we don't need clever bit tricks. */
- for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
- if (mp_get_bit(p, sc->e))
- break;
- sc->k = mp_rshift_fixed(p, sc->e);
- sc->km1o2 = mp_rshift_fixed(sc->k, 1);
- /* Leave zk to be filled in lazily, since it's more expensive to
- * compute. If this context turns out never to be needed, we can
- * save the bulk of the setup time this way. */
- return sc;
- }
- static void modsqrt_lazy_setup(ModsqrtContext *sc)
- {
- if (!sc->zk)
- sc->zk = monty_pow(sc->mc, sc->z, sc->k);
- }
- void modsqrt_free(ModsqrtContext *sc)
- {
- monty_free(sc->mc);
- mp_free(sc->p);
- mp_free(sc->z);
- mp_free(sc->k);
- mp_free(sc->km1o2);
- if (sc->zk)
- mp_free(sc->zk);
- sfree(sc);
- }
- mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
- {
- mp_int *mx = monty_import(sc->mc, x);
- mp_int *mroot = monty_modsqrt(sc, mx, success);
- mp_free(mx);
- mp_int *root = monty_export(sc->mc, mroot);
- mp_free(mroot);
- return root;
- }
- /*
- * Modular square root, using an algorithm more or less similar to
- * Tonelli-Shanks but adapted for constant time.
- *
- * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
- * Then the multiplicative group mod p (call it G) has a sequence of
- * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
- * G_i is exactly half the size of G_{i-1} and consists of all the
- * squares of elements in G_{i-1}. So the innermost group G_e has
- * order k, which is odd, and hence within that group you can take a
- * square root by raising to the power (k+1)/2.
- *
- * Our strategy is to iterate over these groups one by one and make
- * sure the number x we're trying to take the square root of is inside
- * each one, by adjusting it if it isn't.
- *
- * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
- * don't actually need to know what g _is_; we just imagine it for the
- * sake of understanding.) Then G_i consists of precisely the (2^i)th
- * powers of g, and hence, you can tell if a number is in G_i if
- * raising it to the power k 2^{e-i} gives 1. So the conceptual
- * algorithm goes: for each i, test whether x is in G_i by that
- * method. If it isn't, then the previous iteration ensured it's in
- * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
- * multiplying by any other odd power of g^{2^{i-1}} will give x' in
- * G_i. And we have one of those, because our non-square z is an odd
- * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
- *
- * (There's a special case in the very first iteration, where we don't
- * have a G_{i-1}. If it turns out that x is not even in G_1, that
- * means it's not a square, so we set *success to 0. We still run the
- * rest of the algorithm anyway, for the sake of constant time, but we
- * don't give a hoot what it returns.)
- *
- * When we get to the end and have x in G_e, then we can take its
- * square root by raising to (k+1)/2. But of course that's not the
- * square root of the original input - it's only the square root of
- * the adjusted version we produced during the algorithm. To get the
- * true output answer we also have to multiply by a power of z,
- * namely, z to the power of _half_ whatever we've been multiplying in
- * as we go along. (The power of z we multiplied in must have been
- * even, because the case in which we would have multiplied in an odd
- * power of z is the i=0 case, in which we instead set the failure
- * flag.)
- *
- * The code below is an optimised version of that basic idea, in which
- * we _start_ by computing x^k so as to be able to test membership in
- * G_i by only a few squarings rather than a full from-scratch modpow
- * every time; we also start by computing our candidate output value
- * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
- * for some i, we have to adjust our running values of x^k and
- * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
- * because, as above, i is always even). And it turns out that we
- * don't actually have to store the adjusted version of x itself at
- * all - we _only_ keep those two powers of it.
- */
- mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
- {
- modsqrt_lazy_setup(sc);
- mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
- mp_int scratch = *scratch_to_free;
- /*
- * Compute toret = x^{(k+1)/2}, our starting point for the output
- * square root, and also xk = x^k which we'll use as we go along
- * for knowing when to apply correction factors. We do this by
- * first computing x^{(k-1)/2}, then multiplying it by x, then
- * multiplying the two together.
- */
- mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
- mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
- mp_copy_into(&xk, toret);
- monty_mul_into(sc->mc, toret, toret, x);
- monty_mul_into(sc->mc, &xk, toret, &xk);
- mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
- mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
- mp_copy_into(&power_of_zk, sc->zk);
- for (size_t i = 0; i < sc->e; i++) {
- mp_copy_into(&tmp, &xk);
- for (size_t j = i+1; j < sc->e; j++)
- monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
- unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
- if (i == 0) {
- /* One special case: if x=0, then no power of x will ever
- * equal 1, but we should still report success on the
- * grounds that 0 does have a square root mod p. */
- *success = eq1 | mp_eq_integer(x, 0);
- } else {
- monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
- mp_select_into(toret, &tmp, toret, eq1);
- monty_mul_into(sc->mc, &power_of_zk,
- &power_of_zk, &power_of_zk);
- monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
- mp_select_into(&xk, &tmp, &xk, eq1);
- }
- }
- mp_free(scratch_to_free);
- return toret;
- }
- mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
- {
- size_t bytes = (bits + 7) / 8;
- uint8_t *randbuf = snewn(bytes, uint8_t);
- random_read(randbuf, bytes);
- if (bytes)
- randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
- mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
- smemclr(randbuf, bytes);
- sfree(randbuf);
- return toret;
- }
- mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t rf)
- {
- /*
- * It would be nice to generate our random numbers in such a way
- * as to make every possible outcome literally equiprobable. But
- * we can't do that in constant time, so we have to go for a very
- * close approximation instead. I'm going to take the view that a
- * factor of (1+2^-128) between the probabilities of two outcomes
- * is acceptable on the grounds that you'd have to examine so many
- * outputs to even detect it.
- */
- mp_int *unreduced = mp_random_bits_fn(mp_max_bits(limit) + 128, rf);
- mp_int *reduced = mp_mod(unreduced, limit);
- mp_free(unreduced);
- return reduced;
- }
- mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
- {
- mp_int *n_outcomes = mp_sub(hi, lo);
- mp_int *addend = mp_random_upto_fn(n_outcomes, rf);
- mp_int *result = mp_make_sized(hi->nw);
- mp_add_into(result, addend, lo);
- mp_free(addend);
- mp_free(n_outcomes);
- return result;
- }
|