123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- // Copyright (C) 2002-2012 Nikolaus Gebhardt
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #ifndef __IRR_LINE_2D_H_INCLUDED__
- #define __IRR_LINE_2D_H_INCLUDED__
- #include "irrTypes.h"
- #include "vector2d.h"
- namespace irr
- {
- namespace core
- {
- //! 2D line between two points with intersection methods.
- template <class T>
- class line2d
- {
- public:
- //! Default constructor for line going from (0,0) to (1,1).
- line2d() : start(0,0), end(1,1) {}
- //! Constructor for line between the two points.
- line2d(T xa, T ya, T xb, T yb) : start(xa, ya), end(xb, yb) {}
- //! Constructor for line between the two points given as vectors.
- line2d(const vector2d<T>& start, const vector2d<T>& end) : start(start), end(end) {}
- //! Copy constructor.
- line2d(const line2d<T>& other) : start(other.start), end(other.end) {}
- // operators
- line2d<T> operator+(const vector2d<T>& point) const { return line2d<T>(start + point, end + point); }
- line2d<T>& operator+=(const vector2d<T>& point) { start += point; end += point; return *this; }
- line2d<T> operator-(const vector2d<T>& point) const { return line2d<T>(start - point, end - point); }
- line2d<T>& operator-=(const vector2d<T>& point) { start -= point; end -= point; return *this; }
- bool operator==(const line2d<T>& other) const
- { return (start==other.start && end==other.end) || (end==other.start && start==other.end);}
- bool operator!=(const line2d<T>& other) const
- { return !(start==other.start && end==other.end) || (end==other.start && start==other.end);}
- // functions
- //! Set this line to new line going through the two points.
- void setLine(const T& xa, const T& ya, const T& xb, const T& yb){start.set(xa, ya); end.set(xb, yb);}
- //! Set this line to new line going through the two points.
- void setLine(const vector2d<T>& nstart, const vector2d<T>& nend){start.set(nstart); end.set(nend);}
- //! Set this line to new line given as parameter.
- void setLine(const line2d<T>& line){start.set(line.start); end.set(line.end);}
- //! Get length of line
- /** \return Length of the line. */
- T getLength() const { return start.getDistanceFrom(end); }
- //! Get squared length of the line
- /** \return Squared length of line. */
- T getLengthSQ() const { return start.getDistanceFromSQ(end); }
- //! Get middle of the line
- /** \return center of the line. */
- vector2d<T> getMiddle() const
- {
- return (start + end)/(T)2;
- }
- //! Get the vector of the line.
- /** \return The vector of the line. */
- vector2d<T> getVector() const { return vector2d<T>( end.X - start.X, end.Y - start.Y); }
- /*! Check if this segment intersects another segment,
- or if segments are coincindent (colinear). */
- bool intersectAsSegments( const line2d<T>& other) const
- {
- // Taken from:
- // http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
- // Find the four orientations needed for general and
- // special cases
- s32 o1 = start.checkOrientation( end, other.start);
- s32 o2 = start.checkOrientation( end, other.end);
- s32 o3 = other.start.checkOrientation( other.end, start);
- s32 o4 = other.start.checkOrientation( other.end, end);
- // General case
- if (o1 != o2 && o3 != o4)
- return true;
- // Special Cases to check if segments are coolinear
- if (o1 == 0 && other.start.isBetweenPoints( start, end)) return true;
- if (o2 == 0 && other.end.isBetweenPoints( start, end)) return true;
- if (o3 == 0 && start.isBetweenPoints( other.start, other.end)) return true;
- if (o4 == 0 && end.isBetweenPoints( other.start, other.end)) return true;
- return false; // Doesn't fall in any of the above cases
- }
- /*! Check if 2 segments are incident (intersects in exactly 1 point).*/
- bool incidentSegments( const line2d<T>& other) const
- {
- return
- start.checkOrientation( end, other.start) != start.checkOrientation( end, other.end)
- && other.start.checkOrientation( other.end, start) != other.start.checkOrientation( other.end, end);
- }
- /*! Check if 2 lines/segments are parallel or nearly parallel.*/
- bool nearlyParallel( const line2d<T>& line, const T factor = relativeErrorFactor<T>()) const
- {
- const vector2d<T> a = getVector();
- const vector2d<T> b = line.getVector();
- return a.nearlyParallel( b, factor);
- }
- /*! returns a intersection point of 2 lines (if lines are not parallel). Behaviour
- undefined if lines are parallel or coincident.
- It's on optimized intersectWith with checkOnlySegments=false and ignoreCoincidentLines=true
- */
- vector2d<T> fastLinesIntersection( const line2d<T>& l) const
- {
- const f32 commonDenominator = (f32)((l.end.Y - l.start.Y)*(end.X - start.X) -
- (l.end.X - l.start.X)*(end.Y - start.Y));
-
- if ( commonDenominator != 0.f )
- {
- const f32 numeratorA = (f32)((l.end.X - l.start.X)*(start.Y - l.start.Y) -
- (l.end.Y - l.start.Y)*(start.X - l.start.X));
- const f32 uA = numeratorA / commonDenominator;
- // Calculate the intersection point.
- return vector2d<T> (
- (T)(start.X + uA * (end.X - start.X)),
- (T)(start.Y + uA * (end.Y - start.Y))
- );
- }
- else
- return l.start;
- }
- /*! Check if this line intersect a segment. The eventual intersection point is returned in "out".*/
- bool lineIntersectSegment( const line2d<T>& segment, vector2d<T> & out) const
- {
- if (nearlyParallel( segment))
- return false;
- out = fastLinesIntersection( segment);
- return out.isBetweenPoints( segment.start, segment.end);
- }
- //! Tests if this line intersects with another line.
- /** \param l: Other line to test intersection with.
- \param checkOnlySegments: Default is to check intersection between the begin and endpoints.
- When set to false the function will check for the first intersection point when extending the lines.
- \param out: If there is an intersection, the location of the
- intersection will be stored in this vector.
- \param ignoreCoincidentLines: When true coincident lines (lines above each other) are never considered as intersecting.
- When false the center of the overlapping part is returned.
- \return True if there is an intersection, false if not. */
- bool intersectWith(const line2d<T>& l, vector2d<T>& out, bool checkOnlySegments=true, bool ignoreCoincidentLines=false) const
- {
- // Uses the method given at:
- // http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
- const f32 commonDenominator = (f32)((l.end.Y - l.start.Y)*(end.X - start.X) -
- (l.end.X - l.start.X)*(end.Y - start.Y));
- const f32 numeratorA = (f32)((l.end.X - l.start.X)*(start.Y - l.start.Y) -
- (l.end.Y - l.start.Y)*(start.X -l.start.X));
- const f32 numeratorB = (f32)((end.X - start.X)*(start.Y - l.start.Y) -
- (end.Y - start.Y)*(start.X -l.start.X));
- if(equals(commonDenominator, 0.f))
- {
- // The lines are either coincident or parallel
- // if both numerators are 0, the lines are coincident
- if(!ignoreCoincidentLines && equals(numeratorA, 0.f) && equals(numeratorB, 0.f))
- {
- // Try and find a common endpoint
- if(l.start == start || l.end == start)
- out = start;
- else if(l.end == end || l.start == end)
- out = end;
- // now check if the two segments are disjunct
- else if (l.start.X>start.X && l.end.X>start.X && l.start.X>end.X && l.end.X>end.X)
- return false;
- else if (l.start.Y>start.Y && l.end.Y>start.Y && l.start.Y>end.Y && l.end.Y>end.Y)
- return false;
- else if (l.start.X<start.X && l.end.X<start.X && l.start.X<end.X && l.end.X<end.X)
- return false;
- else if (l.start.Y<start.Y && l.end.Y<start.Y && l.start.Y<end.Y && l.end.Y<end.Y)
- return false;
- // else the lines are overlapping to some extent
- else
- {
- // find the points which are not contributing to the
- // common part
- vector2d<T> maxp;
- vector2d<T> minp;
- if ((start.X>l.start.X && start.X>l.end.X && start.X>end.X) || (start.Y>l.start.Y && start.Y>l.end.Y && start.Y>end.Y))
- maxp=start;
- else if ((end.X>l.start.X && end.X>l.end.X && end.X>start.X) || (end.Y>l.start.Y && end.Y>l.end.Y && end.Y>start.Y))
- maxp=end;
- else if ((l.start.X>start.X && l.start.X>l.end.X && l.start.X>end.X) || (l.start.Y>start.Y && l.start.Y>l.end.Y && l.start.Y>end.Y))
- maxp=l.start;
- else
- maxp=l.end;
- if (maxp != start && ((start.X<l.start.X && start.X<l.end.X && start.X<end.X) || (start.Y<l.start.Y && start.Y<l.end.Y && start.Y<end.Y)))
- minp=start;
- else if (maxp != end && ((end.X<l.start.X && end.X<l.end.X && end.X<start.X) || (end.Y<l.start.Y && end.Y<l.end.Y && end.Y<start.Y)))
- minp=end;
- else if (maxp != l.start && ((l.start.X<start.X && l.start.X<l.end.X && l.start.X<end.X) || (l.start.Y<start.Y && l.start.Y<l.end.Y && l.start.Y<end.Y)))
- minp=l.start;
- else
- minp=l.end;
- // one line is contained in the other. Pick the center
- // of the remaining points, which overlap for sure
- out = core::vector2d<T>();
- if (start != maxp && start != minp)
- out += start;
- if (end != maxp && end != minp)
- out += end;
- if (l.start != maxp && l.start != minp)
- out += l.start;
- if (l.end != maxp && l.end != minp)
- out += l.end;
- out.X = (T)(out.X/2);
- out.Y = (T)(out.Y/2);
- }
- return true; // coincident
- }
- return false; // parallel
- }
- // Get the point of intersection on this line, checking that
- // it is within the line segment.
- const f32 uA = numeratorA / commonDenominator;
- if (checkOnlySegments)
- {
- if(uA < 0.f || uA > 1.f)
- return false; // Outside the line segment
- const f32 uB = numeratorB / commonDenominator;
- if(uB < 0.f || uB > 1.f)
- return false; // Outside the line segment
- }
- // Calculate the intersection point.
- out.X = (T)(start.X + uA * (end.X - start.X));
- out.Y = (T)(start.Y + uA * (end.Y - start.Y));
- return true;
- }
- //! Get unit vector of the line.
- /** \return Unit vector of this line. */
- vector2d<T> getUnitVector() const
- {
- T len = (T)(1.0 / getLength());
- return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
- }
- //! Get angle between this line and given line.
- /** \param l Other line for test.
- \return Angle in degrees. */
- f64 getAngleWith(const line2d<T>& l) const
- {
- vector2d<T> vect = getVector();
- vector2d<T> vect2 = l.getVector();
- return vect.getAngleWith(vect2);
- }
- //! Tells us if the given point lies to the left, right, or on the line.
- /** \return 0 if the point is on the line
- <0 if to the left, or >0 if to the right. */
- T getPointOrientation(const vector2d<T>& point) const
- {
- return ( (end.X - start.X) * (point.Y - start.Y) -
- (point.X - start.X) * (end.Y - start.Y) );
- }
- //! Check if the given point is a member of the line
- /** \return True if point is between start and end, else false. */
- bool isPointOnLine(const vector2d<T>& point) const
- {
- T d = getPointOrientation(point);
- return (d == 0 && point.isBetweenPoints(start, end));
- }
- //! Check if the given point is between start and end of the line.
- /** Assumes that the point is already somewhere on the line. */
- bool isPointBetweenStartAndEnd(const vector2d<T>& point) const
- {
- return point.isBetweenPoints(start, end);
- }
- //! Get the closest point on this line to a point
- /** \param checkOnlySegments: Default (true) is to return a point on the line-segment (between begin and end) of the line.
- When set to false the function will check for the first the closest point on the the line even when outside the segment. */
- vector2d<T> getClosestPoint(const vector2d<T>& point, bool checkOnlySegments=true) const
- {
- vector2d<f64> c((f64)(point.X-start.X), (f64)(point.Y- start.Y));
- vector2d<f64> v((f64)(end.X-start.X), (f64)(end.Y-start.Y));
- f64 d = v.getLength();
- if ( d == 0 ) // can't tell much when the line is just a single point
- return start;
- v /= d;
- f64 t = v.dotProduct(c);
- if ( checkOnlySegments )
- {
- if (t < 0) return vector2d<T>((T)start.X, (T)start.Y);
- if (t > d) return vector2d<T>((T)end.X, (T)end.Y);
- }
- v *= t;
- return vector2d<T>((T)(start.X + v.X), (T)(start.Y + v.Y));
- }
- //! Start point of the line.
- vector2d<T> start;
- //! End point of the line.
- vector2d<T> end;
- };
- // partial specialization to optimize <f32> lines (avoiding casts)
- template <>
- inline vector2df line2d<irr::f32>::getClosestPoint(const vector2df& point, bool checkOnlySegments) const
- {
- const vector2df c = point - start;
- vector2df v = end - start;
- const f32 d = (f32)v.getLength();
- if ( d == 0 ) // can't tell much when the line is just a single point
- return start;
- v /= d;
- const f32 t = v.dotProduct(c);
- if ( checkOnlySegments )
- {
- if (t < 0) return start;
- if (t > d) return end;
- }
- v *= t;
- return start + v;
- }
- //! Typedef for an f32 line.
- typedef line2d<f32> line2df;
- //! Typedef for an integer line.
- typedef line2d<s32> line2di;
- } // end namespace core
- } // end namespace irr
- #endif
|