hal2.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949
  1. /*
  2. * Driver for A2 audio system used in SGI machines
  3. * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  4. *
  5. * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  6. * was based on code from Ulf Carlsson
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. *
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <asm/sgi/hpc3.h>
  30. #include <asm/sgi/ip22.h>
  31. #include <sound/core.h>
  32. #include <sound/control.h>
  33. #include <sound/pcm.h>
  34. #include <sound/pcm-indirect.h>
  35. #include <sound/initval.h>
  36. #include "hal2.h"
  37. static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
  38. static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
  39. module_param(index, int, 0444);
  40. MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
  41. module_param(id, charp, 0444);
  42. MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
  43. MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
  44. MODULE_AUTHOR("Thomas Bogendoerfer");
  45. MODULE_LICENSE("GPL");
  46. #define H2_BLOCK_SIZE 1024
  47. #define H2_BUF_SIZE 16384
  48. struct hal2_pbus {
  49. struct hpc3_pbus_dmacregs *pbus;
  50. int pbusnr;
  51. unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
  52. };
  53. struct hal2_desc {
  54. struct hpc_dma_desc desc;
  55. u32 pad; /* padding */
  56. };
  57. struct hal2_codec {
  58. struct snd_pcm_indirect pcm_indirect;
  59. struct snd_pcm_substream *substream;
  60. unsigned char *buffer;
  61. dma_addr_t buffer_dma;
  62. struct hal2_desc *desc;
  63. dma_addr_t desc_dma;
  64. int desc_count;
  65. struct hal2_pbus pbus;
  66. int voices; /* mono/stereo */
  67. unsigned int sample_rate;
  68. unsigned int master; /* Master frequency */
  69. unsigned short mod; /* MOD value */
  70. unsigned short inc; /* INC value */
  71. };
  72. #define H2_MIX_OUTPUT_ATT 0
  73. #define H2_MIX_INPUT_GAIN 1
  74. struct snd_hal2 {
  75. struct snd_card *card;
  76. struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
  77. struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
  78. struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
  79. struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
  80. struct hal2_codec dac;
  81. struct hal2_codec adc;
  82. };
  83. #define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
  84. #define H2_READ_ADDR(addr) (addr | (1<<7))
  85. #define H2_WRITE_ADDR(addr) (addr)
  86. static inline u32 hal2_read(u32 *reg)
  87. {
  88. return __raw_readl(reg);
  89. }
  90. static inline void hal2_write(u32 val, u32 *reg)
  91. {
  92. __raw_writel(val, reg);
  93. }
  94. static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
  95. {
  96. u32 ret;
  97. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  98. hal2_write(H2_READ_ADDR(addr), &regs->iar);
  99. H2_INDIRECT_WAIT(regs);
  100. ret = hal2_read(&regs->idr0) & 0xffff;
  101. hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
  102. H2_INDIRECT_WAIT(regs);
  103. ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
  104. return ret;
  105. }
  106. static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
  107. {
  108. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  109. hal2_write(val, &regs->idr0);
  110. hal2_write(0, &regs->idr1);
  111. hal2_write(0, &regs->idr2);
  112. hal2_write(0, &regs->idr3);
  113. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  114. H2_INDIRECT_WAIT(regs);
  115. }
  116. static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
  117. {
  118. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  119. hal2_write(val & 0xffff, &regs->idr0);
  120. hal2_write(val >> 16, &regs->idr1);
  121. hal2_write(0, &regs->idr2);
  122. hal2_write(0, &regs->idr3);
  123. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  124. H2_INDIRECT_WAIT(regs);
  125. }
  126. static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
  127. {
  128. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  129. hal2_write(H2_READ_ADDR(addr), &regs->iar);
  130. H2_INDIRECT_WAIT(regs);
  131. hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
  132. hal2_write(0, &regs->idr1);
  133. hal2_write(0, &regs->idr2);
  134. hal2_write(0, &regs->idr3);
  135. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  136. H2_INDIRECT_WAIT(regs);
  137. }
  138. static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
  139. {
  140. struct hal2_ctl_regs *regs = hal2->ctl_regs;
  141. hal2_write(H2_READ_ADDR(addr), &regs->iar);
  142. H2_INDIRECT_WAIT(regs);
  143. hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
  144. hal2_write(0, &regs->idr1);
  145. hal2_write(0, &regs->idr2);
  146. hal2_write(0, &regs->idr3);
  147. hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
  148. H2_INDIRECT_WAIT(regs);
  149. }
  150. static int hal2_gain_info(struct snd_kcontrol *kcontrol,
  151. struct snd_ctl_elem_info *uinfo)
  152. {
  153. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  154. uinfo->count = 2;
  155. uinfo->value.integer.min = 0;
  156. switch ((int)kcontrol->private_value) {
  157. case H2_MIX_OUTPUT_ATT:
  158. uinfo->value.integer.max = 31;
  159. break;
  160. case H2_MIX_INPUT_GAIN:
  161. uinfo->value.integer.max = 15;
  162. break;
  163. }
  164. return 0;
  165. }
  166. static int hal2_gain_get(struct snd_kcontrol *kcontrol,
  167. struct snd_ctl_elem_value *ucontrol)
  168. {
  169. struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
  170. u32 tmp;
  171. int l, r;
  172. switch ((int)kcontrol->private_value) {
  173. case H2_MIX_OUTPUT_ATT:
  174. tmp = hal2_i_read32(hal2, H2I_DAC_C2);
  175. if (tmp & H2I_C2_MUTE) {
  176. l = 0;
  177. r = 0;
  178. } else {
  179. l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
  180. r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
  181. }
  182. break;
  183. case H2_MIX_INPUT_GAIN:
  184. tmp = hal2_i_read32(hal2, H2I_ADC_C2);
  185. l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
  186. r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
  187. break;
  188. }
  189. ucontrol->value.integer.value[0] = l;
  190. ucontrol->value.integer.value[1] = r;
  191. return 0;
  192. }
  193. static int hal2_gain_put(struct snd_kcontrol *kcontrol,
  194. struct snd_ctl_elem_value *ucontrol)
  195. {
  196. struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
  197. u32 old, new;
  198. int l, r;
  199. l = ucontrol->value.integer.value[0];
  200. r = ucontrol->value.integer.value[1];
  201. switch ((int)kcontrol->private_value) {
  202. case H2_MIX_OUTPUT_ATT:
  203. old = hal2_i_read32(hal2, H2I_DAC_C2);
  204. new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
  205. if (l | r) {
  206. l = 31 - l;
  207. r = 31 - r;
  208. new |= (l << H2I_C2_L_ATT_SHIFT);
  209. new |= (r << H2I_C2_R_ATT_SHIFT);
  210. } else
  211. new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
  212. hal2_i_write32(hal2, H2I_DAC_C2, new);
  213. break;
  214. case H2_MIX_INPUT_GAIN:
  215. old = hal2_i_read32(hal2, H2I_ADC_C2);
  216. new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
  217. new |= (l << H2I_C2_L_GAIN_SHIFT);
  218. new |= (r << H2I_C2_R_GAIN_SHIFT);
  219. hal2_i_write32(hal2, H2I_ADC_C2, new);
  220. break;
  221. }
  222. return old != new;
  223. }
  224. static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
  225. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  226. .name = "Headphone Playback Volume",
  227. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  228. .private_value = H2_MIX_OUTPUT_ATT,
  229. .info = hal2_gain_info,
  230. .get = hal2_gain_get,
  231. .put = hal2_gain_put,
  232. };
  233. static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
  234. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  235. .name = "Mic Capture Volume",
  236. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  237. .private_value = H2_MIX_INPUT_GAIN,
  238. .info = hal2_gain_info,
  239. .get = hal2_gain_get,
  240. .put = hal2_gain_put,
  241. };
  242. static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
  243. {
  244. int err;
  245. /* mute DAC */
  246. hal2_i_write32(hal2, H2I_DAC_C2,
  247. H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
  248. /* mute ADC */
  249. hal2_i_write32(hal2, H2I_ADC_C2, 0);
  250. err = snd_ctl_add(hal2->card,
  251. snd_ctl_new1(&hal2_ctrl_headphone, hal2));
  252. if (err < 0)
  253. return err;
  254. err = snd_ctl_add(hal2->card,
  255. snd_ctl_new1(&hal2_ctrl_mic, hal2));
  256. if (err < 0)
  257. return err;
  258. return 0;
  259. }
  260. static irqreturn_t hal2_interrupt(int irq, void *dev_id)
  261. {
  262. struct snd_hal2 *hal2 = dev_id;
  263. irqreturn_t ret = IRQ_NONE;
  264. /* decide what caused this interrupt */
  265. if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
  266. snd_pcm_period_elapsed(hal2->dac.substream);
  267. ret = IRQ_HANDLED;
  268. }
  269. if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
  270. snd_pcm_period_elapsed(hal2->adc.substream);
  271. ret = IRQ_HANDLED;
  272. }
  273. return ret;
  274. }
  275. static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
  276. {
  277. unsigned short mod;
  278. if (44100 % rate < 48000 % rate) {
  279. mod = 4 * 44100 / rate;
  280. codec->master = 44100;
  281. } else {
  282. mod = 4 * 48000 / rate;
  283. codec->master = 48000;
  284. }
  285. codec->inc = 4;
  286. codec->mod = mod;
  287. rate = 4 * codec->master / mod;
  288. return rate;
  289. }
  290. static void hal2_set_dac_rate(struct snd_hal2 *hal2)
  291. {
  292. unsigned int master = hal2->dac.master;
  293. int inc = hal2->dac.inc;
  294. int mod = hal2->dac.mod;
  295. hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
  296. hal2_i_write32(hal2, H2I_BRES1_C2,
  297. ((0xffff & (inc - mod - 1)) << 16) | inc);
  298. }
  299. static void hal2_set_adc_rate(struct snd_hal2 *hal2)
  300. {
  301. unsigned int master = hal2->adc.master;
  302. int inc = hal2->adc.inc;
  303. int mod = hal2->adc.mod;
  304. hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
  305. hal2_i_write32(hal2, H2I_BRES2_C2,
  306. ((0xffff & (inc - mod - 1)) << 16) | inc);
  307. }
  308. static void hal2_setup_dac(struct snd_hal2 *hal2)
  309. {
  310. unsigned int fifobeg, fifoend, highwater, sample_size;
  311. struct hal2_pbus *pbus = &hal2->dac.pbus;
  312. /* Now we set up some PBUS information. The PBUS needs information about
  313. * what portion of the fifo it will use. If it's receiving or
  314. * transmitting, and finally whether the stream is little endian or big
  315. * endian. The information is written later, on the start call.
  316. */
  317. sample_size = 2 * hal2->dac.voices;
  318. /* Fifo should be set to hold exactly four samples. Highwater mark
  319. * should be set to two samples. */
  320. highwater = (sample_size * 2) >> 1; /* halfwords */
  321. fifobeg = 0; /* playback is first */
  322. fifoend = (sample_size * 4) >> 3; /* doublewords */
  323. pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
  324. (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
  325. /* We disable everything before we do anything at all */
  326. pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  327. hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
  328. /* Setup the HAL2 for playback */
  329. hal2_set_dac_rate(hal2);
  330. /* Set endianess */
  331. hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
  332. /* Set DMA bus */
  333. hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
  334. /* We are using 1st Bresenham clock generator for playback */
  335. hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
  336. | (1 << H2I_C1_CLKID_SHIFT)
  337. | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
  338. }
  339. static void hal2_setup_adc(struct snd_hal2 *hal2)
  340. {
  341. unsigned int fifobeg, fifoend, highwater, sample_size;
  342. struct hal2_pbus *pbus = &hal2->adc.pbus;
  343. sample_size = 2 * hal2->adc.voices;
  344. highwater = (sample_size * 2) >> 1; /* halfwords */
  345. fifobeg = (4 * 4) >> 3; /* record is second */
  346. fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
  347. pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
  348. (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
  349. pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  350. hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
  351. /* Setup the HAL2 for record */
  352. hal2_set_adc_rate(hal2);
  353. /* Set endianess */
  354. hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
  355. /* Set DMA bus */
  356. hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
  357. /* We are using 2nd Bresenham clock generator for record */
  358. hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
  359. | (2 << H2I_C1_CLKID_SHIFT)
  360. | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
  361. }
  362. static void hal2_start_dac(struct snd_hal2 *hal2)
  363. {
  364. struct hal2_pbus *pbus = &hal2->dac.pbus;
  365. pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
  366. pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
  367. /* enable DAC */
  368. hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
  369. }
  370. static void hal2_start_adc(struct snd_hal2 *hal2)
  371. {
  372. struct hal2_pbus *pbus = &hal2->adc.pbus;
  373. pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
  374. pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
  375. /* enable ADC */
  376. hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
  377. }
  378. static inline void hal2_stop_dac(struct snd_hal2 *hal2)
  379. {
  380. hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  381. /* The HAL2 itself may remain enabled safely */
  382. }
  383. static inline void hal2_stop_adc(struct snd_hal2 *hal2)
  384. {
  385. hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
  386. }
  387. static int hal2_alloc_dmabuf(struct hal2_codec *codec)
  388. {
  389. struct hal2_desc *desc;
  390. dma_addr_t desc_dma, buffer_dma;
  391. int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
  392. int i;
  393. codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
  394. &buffer_dma, GFP_KERNEL);
  395. if (!codec->buffer)
  396. return -ENOMEM;
  397. desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
  398. &desc_dma, GFP_KERNEL);
  399. if (!desc) {
  400. dma_free_noncoherent(NULL, H2_BUF_SIZE,
  401. codec->buffer, buffer_dma);
  402. return -ENOMEM;
  403. }
  404. codec->buffer_dma = buffer_dma;
  405. codec->desc_dma = desc_dma;
  406. codec->desc = desc;
  407. for (i = 0; i < count; i++) {
  408. desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
  409. desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
  410. desc->desc.pnext = (i == count - 1) ?
  411. desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
  412. desc++;
  413. }
  414. dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
  415. DMA_TO_DEVICE);
  416. codec->desc_count = count;
  417. return 0;
  418. }
  419. static void hal2_free_dmabuf(struct hal2_codec *codec)
  420. {
  421. dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
  422. codec->desc, codec->desc_dma);
  423. dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
  424. codec->buffer_dma);
  425. }
  426. static struct snd_pcm_hardware hal2_pcm_hw = {
  427. .info = (SNDRV_PCM_INFO_MMAP |
  428. SNDRV_PCM_INFO_MMAP_VALID |
  429. SNDRV_PCM_INFO_INTERLEAVED |
  430. SNDRV_PCM_INFO_BLOCK_TRANSFER),
  431. .formats = SNDRV_PCM_FMTBIT_S16_BE,
  432. .rates = SNDRV_PCM_RATE_8000_48000,
  433. .rate_min = 8000,
  434. .rate_max = 48000,
  435. .channels_min = 2,
  436. .channels_max = 2,
  437. .buffer_bytes_max = 65536,
  438. .period_bytes_min = 1024,
  439. .period_bytes_max = 65536,
  440. .periods_min = 2,
  441. .periods_max = 1024,
  442. };
  443. static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
  444. struct snd_pcm_hw_params *params)
  445. {
  446. int err;
  447. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  448. if (err < 0)
  449. return err;
  450. return 0;
  451. }
  452. static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
  453. {
  454. return snd_pcm_lib_free_pages(substream);
  455. }
  456. static int hal2_playback_open(struct snd_pcm_substream *substream)
  457. {
  458. struct snd_pcm_runtime *runtime = substream->runtime;
  459. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  460. int err;
  461. runtime->hw = hal2_pcm_hw;
  462. err = hal2_alloc_dmabuf(&hal2->dac);
  463. if (err)
  464. return err;
  465. return 0;
  466. }
  467. static int hal2_playback_close(struct snd_pcm_substream *substream)
  468. {
  469. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  470. hal2_free_dmabuf(&hal2->dac);
  471. return 0;
  472. }
  473. static int hal2_playback_prepare(struct snd_pcm_substream *substream)
  474. {
  475. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  476. struct snd_pcm_runtime *runtime = substream->runtime;
  477. struct hal2_codec *dac = &hal2->dac;
  478. dac->voices = runtime->channels;
  479. dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
  480. memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
  481. dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
  482. dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  483. dac->substream = substream;
  484. hal2_setup_dac(hal2);
  485. return 0;
  486. }
  487. static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
  488. {
  489. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  490. switch (cmd) {
  491. case SNDRV_PCM_TRIGGER_START:
  492. hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
  493. hal2->dac.pcm_indirect.hw_data = 0;
  494. substream->ops->ack(substream);
  495. hal2_start_dac(hal2);
  496. break;
  497. case SNDRV_PCM_TRIGGER_STOP:
  498. hal2_stop_dac(hal2);
  499. break;
  500. default:
  501. return -EINVAL;
  502. }
  503. return 0;
  504. }
  505. static snd_pcm_uframes_t
  506. hal2_playback_pointer(struct snd_pcm_substream *substream)
  507. {
  508. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  509. struct hal2_codec *dac = &hal2->dac;
  510. return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
  511. dac->pbus.pbus->pbdma_bptr);
  512. }
  513. static void hal2_playback_transfer(struct snd_pcm_substream *substream,
  514. struct snd_pcm_indirect *rec, size_t bytes)
  515. {
  516. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  517. unsigned char *buf = hal2->dac.buffer + rec->hw_data;
  518. memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
  519. dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
  520. }
  521. static int hal2_playback_ack(struct snd_pcm_substream *substream)
  522. {
  523. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  524. struct hal2_codec *dac = &hal2->dac;
  525. dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
  526. snd_pcm_indirect_playback_transfer(substream,
  527. &dac->pcm_indirect,
  528. hal2_playback_transfer);
  529. return 0;
  530. }
  531. static int hal2_capture_open(struct snd_pcm_substream *substream)
  532. {
  533. struct snd_pcm_runtime *runtime = substream->runtime;
  534. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  535. struct hal2_codec *adc = &hal2->adc;
  536. int err;
  537. runtime->hw = hal2_pcm_hw;
  538. err = hal2_alloc_dmabuf(adc);
  539. if (err)
  540. return err;
  541. return 0;
  542. }
  543. static int hal2_capture_close(struct snd_pcm_substream *substream)
  544. {
  545. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  546. hal2_free_dmabuf(&hal2->adc);
  547. return 0;
  548. }
  549. static int hal2_capture_prepare(struct snd_pcm_substream *substream)
  550. {
  551. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  552. struct snd_pcm_runtime *runtime = substream->runtime;
  553. struct hal2_codec *adc = &hal2->adc;
  554. adc->voices = runtime->channels;
  555. adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
  556. memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
  557. adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
  558. adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
  559. adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  560. adc->substream = substream;
  561. hal2_setup_adc(hal2);
  562. return 0;
  563. }
  564. static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
  565. {
  566. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  567. switch (cmd) {
  568. case SNDRV_PCM_TRIGGER_START:
  569. hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
  570. hal2->adc.pcm_indirect.hw_data = 0;
  571. printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
  572. hal2_start_adc(hal2);
  573. break;
  574. case SNDRV_PCM_TRIGGER_STOP:
  575. hal2_stop_adc(hal2);
  576. break;
  577. default:
  578. return -EINVAL;
  579. }
  580. return 0;
  581. }
  582. static snd_pcm_uframes_t
  583. hal2_capture_pointer(struct snd_pcm_substream *substream)
  584. {
  585. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  586. struct hal2_codec *adc = &hal2->adc;
  587. return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
  588. adc->pbus.pbus->pbdma_bptr);
  589. }
  590. static void hal2_capture_transfer(struct snd_pcm_substream *substream,
  591. struct snd_pcm_indirect *rec, size_t bytes)
  592. {
  593. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  594. unsigned char *buf = hal2->adc.buffer + rec->hw_data;
  595. dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
  596. memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
  597. }
  598. static int hal2_capture_ack(struct snd_pcm_substream *substream)
  599. {
  600. struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
  601. struct hal2_codec *adc = &hal2->adc;
  602. snd_pcm_indirect_capture_transfer(substream,
  603. &adc->pcm_indirect,
  604. hal2_capture_transfer);
  605. return 0;
  606. }
  607. static struct snd_pcm_ops hal2_playback_ops = {
  608. .open = hal2_playback_open,
  609. .close = hal2_playback_close,
  610. .ioctl = snd_pcm_lib_ioctl,
  611. .hw_params = hal2_pcm_hw_params,
  612. .hw_free = hal2_pcm_hw_free,
  613. .prepare = hal2_playback_prepare,
  614. .trigger = hal2_playback_trigger,
  615. .pointer = hal2_playback_pointer,
  616. .ack = hal2_playback_ack,
  617. };
  618. static struct snd_pcm_ops hal2_capture_ops = {
  619. .open = hal2_capture_open,
  620. .close = hal2_capture_close,
  621. .ioctl = snd_pcm_lib_ioctl,
  622. .hw_params = hal2_pcm_hw_params,
  623. .hw_free = hal2_pcm_hw_free,
  624. .prepare = hal2_capture_prepare,
  625. .trigger = hal2_capture_trigger,
  626. .pointer = hal2_capture_pointer,
  627. .ack = hal2_capture_ack,
  628. };
  629. static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
  630. {
  631. struct snd_pcm *pcm;
  632. int err;
  633. /* create first pcm device with one outputs and one input */
  634. err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
  635. if (err < 0)
  636. return err;
  637. pcm->private_data = hal2;
  638. strcpy(pcm->name, "SGI HAL2");
  639. /* set operators */
  640. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
  641. &hal2_playback_ops);
  642. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
  643. &hal2_capture_ops);
  644. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  645. snd_dma_continuous_data(GFP_KERNEL),
  646. 0, 1024 * 1024);
  647. return 0;
  648. }
  649. static int hal2_dev_free(struct snd_device *device)
  650. {
  651. struct snd_hal2 *hal2 = device->device_data;
  652. free_irq(SGI_HPCDMA_IRQ, hal2);
  653. kfree(hal2);
  654. return 0;
  655. }
  656. static struct snd_device_ops hal2_ops = {
  657. .dev_free = hal2_dev_free,
  658. };
  659. static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
  660. int index)
  661. {
  662. codec->pbus.pbusnr = index;
  663. codec->pbus.pbus = &hpc3->pbdma[index];
  664. }
  665. static int hal2_detect(struct snd_hal2 *hal2)
  666. {
  667. unsigned short board, major, minor;
  668. unsigned short rev;
  669. /* reset HAL2 */
  670. hal2_write(0, &hal2->ctl_regs->isr);
  671. /* release reset */
  672. hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
  673. &hal2->ctl_regs->isr);
  674. hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
  675. rev = hal2_read(&hal2->ctl_regs->rev);
  676. if (rev & H2_REV_AUDIO_PRESENT)
  677. return -ENODEV;
  678. board = (rev & H2_REV_BOARD_M) >> 12;
  679. major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
  680. minor = (rev & H2_REV_MINOR_CHIP_M);
  681. printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
  682. board, major, minor);
  683. return 0;
  684. }
  685. static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
  686. {
  687. struct snd_hal2 *hal2;
  688. struct hpc3_regs *hpc3 = hpc3c0;
  689. int err;
  690. hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
  691. if (!hal2)
  692. return -ENOMEM;
  693. hal2->card = card;
  694. if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
  695. "SGI HAL2", hal2)) {
  696. printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
  697. kfree(hal2);
  698. return -EAGAIN;
  699. }
  700. hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
  701. hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
  702. hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
  703. hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
  704. if (hal2_detect(hal2) < 0) {
  705. kfree(hal2);
  706. return -ENODEV;
  707. }
  708. hal2_init_codec(&hal2->dac, hpc3, 0);
  709. hal2_init_codec(&hal2->adc, hpc3, 1);
  710. /*
  711. * All DMA channel interfaces in HAL2 are designed to operate with
  712. * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
  713. * in D5. HAL2 is a 16-bit device which can accept both big and little
  714. * endian format. It assumes that even address bytes are on high
  715. * portion of PBUS (15:8) and assumes that HPC3 is programmed to
  716. * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
  717. */
  718. #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
  719. (2 << HPC3_DMACFG_D4R_SHIFT) | \
  720. (2 << HPC3_DMACFG_D5R_SHIFT) | \
  721. (0 << HPC3_DMACFG_D3W_SHIFT) | \
  722. (2 << HPC3_DMACFG_D4W_SHIFT) | \
  723. (2 << HPC3_DMACFG_D5W_SHIFT) | \
  724. HPC3_DMACFG_DS16 | \
  725. HPC3_DMACFG_EVENHI | \
  726. HPC3_DMACFG_RTIME | \
  727. (8 << HPC3_DMACFG_BURST_SHIFT) | \
  728. HPC3_DMACFG_DRQLIVE)
  729. /*
  730. * Ignore what's mentioned in the specification and write value which
  731. * works in The Real World (TM)
  732. */
  733. hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
  734. hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
  735. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
  736. if (err < 0) {
  737. free_irq(SGI_HPCDMA_IRQ, hal2);
  738. kfree(hal2);
  739. return err;
  740. }
  741. *rchip = hal2;
  742. return 0;
  743. }
  744. static int __devinit hal2_probe(struct platform_device *pdev)
  745. {
  746. struct snd_card *card;
  747. struct snd_hal2 *chip;
  748. int err;
  749. err = snd_card_create(index, id, THIS_MODULE, 0, &card);
  750. if (err < 0)
  751. return err;
  752. err = hal2_create(card, &chip);
  753. if (err < 0) {
  754. snd_card_free(card);
  755. return err;
  756. }
  757. snd_card_set_dev(card, &pdev->dev);
  758. err = hal2_pcm_create(chip);
  759. if (err < 0) {
  760. snd_card_free(card);
  761. return err;
  762. }
  763. err = hal2_mixer_create(chip);
  764. if (err < 0) {
  765. snd_card_free(card);
  766. return err;
  767. }
  768. strcpy(card->driver, "SGI HAL2 Audio");
  769. strcpy(card->shortname, "SGI HAL2 Audio");
  770. sprintf(card->longname, "%s irq %i",
  771. card->shortname,
  772. SGI_HPCDMA_IRQ);
  773. err = snd_card_register(card);
  774. if (err < 0) {
  775. snd_card_free(card);
  776. return err;
  777. }
  778. platform_set_drvdata(pdev, card);
  779. return 0;
  780. }
  781. static int __devexit hal2_remove(struct platform_device *pdev)
  782. {
  783. struct snd_card *card = platform_get_drvdata(pdev);
  784. snd_card_free(card);
  785. platform_set_drvdata(pdev, NULL);
  786. return 0;
  787. }
  788. static struct platform_driver hal2_driver = {
  789. .probe = hal2_probe,
  790. .remove = __devexit_p(hal2_remove),
  791. .driver = {
  792. .name = "sgihal2",
  793. .owner = THIS_MODULE,
  794. }
  795. };
  796. static int __init alsa_card_hal2_init(void)
  797. {
  798. return platform_driver_register(&hal2_driver);
  799. }
  800. static void __exit alsa_card_hal2_exit(void)
  801. {
  802. platform_driver_unregister(&hal2_driver);
  803. }
  804. module_init(alsa_card_hal2_init);
  805. module_exit(alsa_card_hal2_exit);