ak4xxx-adda.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /*
  2. * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
  3. * AD and DA converters
  4. *
  5. * Copyright (c) 2000-2004 Jaroslav Kysela <perex@perex.cz>,
  6. * Takashi Iwai <tiwai@suse.de>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. */
  23. #include <asm/io.h>
  24. #include <linux/delay.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <sound/core.h>
  28. #include <sound/control.h>
  29. #include <sound/tlv.h>
  30. #include <sound/ak4xxx-adda.h>
  31. #include <sound/info.h>
  32. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Takashi Iwai <tiwai@suse.de>");
  33. MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
  34. MODULE_LICENSE("GPL");
  35. /* write the given register and save the data to the cache */
  36. void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg,
  37. unsigned char val)
  38. {
  39. ak->ops.lock(ak, chip);
  40. ak->ops.write(ak, chip, reg, val);
  41. /* save the data */
  42. snd_akm4xxx_set(ak, chip, reg, val);
  43. ak->ops.unlock(ak, chip);
  44. }
  45. EXPORT_SYMBOL(snd_akm4xxx_write);
  46. /* reset procedure for AK4524 and AK4528 */
  47. static void ak4524_reset(struct snd_akm4xxx *ak, int state)
  48. {
  49. unsigned int chip;
  50. unsigned char reg;
  51. for (chip = 0; chip < ak->num_dacs/2; chip++) {
  52. snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
  53. if (state)
  54. continue;
  55. /* DAC volumes */
  56. for (reg = 0x04; reg < ak->total_regs; reg++)
  57. snd_akm4xxx_write(ak, chip, reg,
  58. snd_akm4xxx_get(ak, chip, reg));
  59. }
  60. }
  61. /* reset procedure for AK4355 and AK4358 */
  62. static void ak435X_reset(struct snd_akm4xxx *ak, int state)
  63. {
  64. unsigned char reg;
  65. if (state) {
  66. snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
  67. return;
  68. }
  69. for (reg = 0x00; reg < ak->total_regs; reg++)
  70. if (reg != 0x01)
  71. snd_akm4xxx_write(ak, 0, reg,
  72. snd_akm4xxx_get(ak, 0, reg));
  73. snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
  74. }
  75. /* reset procedure for AK4381 */
  76. static void ak4381_reset(struct snd_akm4xxx *ak, int state)
  77. {
  78. unsigned int chip;
  79. unsigned char reg;
  80. for (chip = 0; chip < ak->num_dacs/2; chip++) {
  81. snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
  82. if (state)
  83. continue;
  84. for (reg = 0x01; reg < ak->total_regs; reg++)
  85. snd_akm4xxx_write(ak, chip, reg,
  86. snd_akm4xxx_get(ak, chip, reg));
  87. }
  88. }
  89. /*
  90. * reset the AKM codecs
  91. * @state: 1 = reset codec, 0 = restore the registers
  92. *
  93. * assert the reset operation and restores the register values to the chips.
  94. */
  95. void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state)
  96. {
  97. switch (ak->type) {
  98. case SND_AK4524:
  99. case SND_AK4528:
  100. case SND_AK4620:
  101. ak4524_reset(ak, state);
  102. break;
  103. case SND_AK4529:
  104. /* FIXME: needed for ak4529? */
  105. break;
  106. case SND_AK4355:
  107. ak435X_reset(ak, state);
  108. break;
  109. case SND_AK4358:
  110. ak435X_reset(ak, state);
  111. break;
  112. case SND_AK4381:
  113. ak4381_reset(ak, state);
  114. break;
  115. default:
  116. break;
  117. }
  118. }
  119. EXPORT_SYMBOL(snd_akm4xxx_reset);
  120. /*
  121. * Volume conversion table for non-linear volumes
  122. * from -63.5dB (mute) to 0dB step 0.5dB
  123. *
  124. * Used for AK4524/AK4620 input/ouput attenuation, AK4528, and
  125. * AK5365 input attenuation
  126. */
  127. static const unsigned char vol_cvt_datt[128] = {
  128. 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04,
  129. 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06,
  130. 0x06, 0x07, 0x07, 0x08, 0x08, 0x08, 0x09, 0x0a,
  131. 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x0f,
  132. 0x10, 0x10, 0x11, 0x12, 0x12, 0x13, 0x13, 0x14,
  133. 0x15, 0x16, 0x17, 0x17, 0x18, 0x19, 0x1a, 0x1c,
  134. 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x23,
  135. 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2b, 0x2d,
  136. 0x2e, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
  137. 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3e, 0x3f, 0x40,
  138. 0x41, 0x42, 0x43, 0x44, 0x46, 0x47, 0x48, 0x4a,
  139. 0x4b, 0x4d, 0x4e, 0x50, 0x51, 0x52, 0x53, 0x54,
  140. 0x55, 0x56, 0x58, 0x59, 0x5b, 0x5c, 0x5e, 0x5f,
  141. 0x60, 0x61, 0x62, 0x64, 0x65, 0x66, 0x67, 0x69,
  142. 0x6a, 0x6c, 0x6d, 0x6f, 0x70, 0x71, 0x72, 0x73,
  143. 0x75, 0x76, 0x77, 0x79, 0x7a, 0x7c, 0x7d, 0x7f,
  144. };
  145. /*
  146. * dB tables
  147. */
  148. static const DECLARE_TLV_DB_SCALE(db_scale_vol_datt, -6350, 50, 1);
  149. static const DECLARE_TLV_DB_SCALE(db_scale_8bit, -12750, 50, 1);
  150. static const DECLARE_TLV_DB_SCALE(db_scale_7bit, -6350, 50, 1);
  151. static const DECLARE_TLV_DB_LINEAR(db_scale_linear, TLV_DB_GAIN_MUTE, 0);
  152. /*
  153. * initialize all the ak4xxx chips
  154. */
  155. void snd_akm4xxx_init(struct snd_akm4xxx *ak)
  156. {
  157. static const unsigned char inits_ak4524[] = {
  158. 0x00, 0x07, /* 0: all power up */
  159. 0x01, 0x00, /* 1: ADC/DAC reset */
  160. 0x02, 0x60, /* 2: 24bit I2S */
  161. 0x03, 0x19, /* 3: deemphasis off */
  162. 0x01, 0x03, /* 1: ADC/DAC enable */
  163. 0x04, 0x00, /* 4: ADC left muted */
  164. 0x05, 0x00, /* 5: ADC right muted */
  165. 0x06, 0x00, /* 6: DAC left muted */
  166. 0x07, 0x00, /* 7: DAC right muted */
  167. 0xff, 0xff
  168. };
  169. static const unsigned char inits_ak4528[] = {
  170. 0x00, 0x07, /* 0: all power up */
  171. 0x01, 0x00, /* 1: ADC/DAC reset */
  172. 0x02, 0x60, /* 2: 24bit I2S */
  173. 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
  174. 0x01, 0x03, /* 1: ADC/DAC enable */
  175. 0x04, 0x00, /* 4: ADC left muted */
  176. 0x05, 0x00, /* 5: ADC right muted */
  177. 0xff, 0xff
  178. };
  179. static const unsigned char inits_ak4529[] = {
  180. 0x09, 0x01, /* 9: ATS=0, RSTN=1 */
  181. 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
  182. 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
  183. 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
  184. 0x02, 0xff, /* 2: LOUT1 muted */
  185. 0x03, 0xff, /* 3: ROUT1 muted */
  186. 0x04, 0xff, /* 4: LOUT2 muted */
  187. 0x05, 0xff, /* 5: ROUT2 muted */
  188. 0x06, 0xff, /* 6: LOUT3 muted */
  189. 0x07, 0xff, /* 7: ROUT3 muted */
  190. 0x0b, 0xff, /* B: LOUT4 muted */
  191. 0x0c, 0xff, /* C: ROUT4 muted */
  192. 0x08, 0x55, /* 8: deemphasis all off */
  193. 0xff, 0xff
  194. };
  195. static const unsigned char inits_ak4355[] = {
  196. 0x01, 0x02, /* 1: reset and soft-mute */
  197. 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
  198. * disable DZF, sharp roll-off, RSTN#=0 */
  199. 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
  200. // 0x02, 0x2e, /* quad speed */
  201. 0x03, 0x01, /* 3: de-emphasis off */
  202. 0x04, 0x00, /* 4: LOUT1 volume muted */
  203. 0x05, 0x00, /* 5: ROUT1 volume muted */
  204. 0x06, 0x00, /* 6: LOUT2 volume muted */
  205. 0x07, 0x00, /* 7: ROUT2 volume muted */
  206. 0x08, 0x00, /* 8: LOUT3 volume muted */
  207. 0x09, 0x00, /* 9: ROUT3 volume muted */
  208. 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
  209. 0x01, 0x01, /* 1: un-reset, unmute */
  210. 0xff, 0xff
  211. };
  212. static const unsigned char inits_ak4358[] = {
  213. 0x01, 0x02, /* 1: reset and soft-mute */
  214. 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
  215. * disable DZF, sharp roll-off, RSTN#=0 */
  216. 0x02, 0x4e, /* 2: DA's power up, normal speed, RSTN#=0 */
  217. /* 0x02, 0x6e,*/ /* quad speed */
  218. 0x03, 0x01, /* 3: de-emphasis off */
  219. 0x04, 0x00, /* 4: LOUT1 volume muted */
  220. 0x05, 0x00, /* 5: ROUT1 volume muted */
  221. 0x06, 0x00, /* 6: LOUT2 volume muted */
  222. 0x07, 0x00, /* 7: ROUT2 volume muted */
  223. 0x08, 0x00, /* 8: LOUT3 volume muted */
  224. 0x09, 0x00, /* 9: ROUT3 volume muted */
  225. 0x0b, 0x00, /* b: LOUT4 volume muted */
  226. 0x0c, 0x00, /* c: ROUT4 volume muted */
  227. 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
  228. 0x01, 0x01, /* 1: un-reset, unmute */
  229. 0xff, 0xff
  230. };
  231. static const unsigned char inits_ak4381[] = {
  232. 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
  233. 0x01, 0x02, /* 1: de-emphasis off, normal speed,
  234. * sharp roll-off, DZF off */
  235. // 0x01, 0x12, /* quad speed */
  236. 0x02, 0x00, /* 2: DZF disabled */
  237. 0x03, 0x00, /* 3: LATT 0 */
  238. 0x04, 0x00, /* 4: RATT 0 */
  239. 0x00, 0x0f, /* 0: power-up, un-reset */
  240. 0xff, 0xff
  241. };
  242. static const unsigned char inits_ak4620[] = {
  243. 0x00, 0x07, /* 0: normal */
  244. 0x01, 0x00, /* 0: reset */
  245. 0x01, 0x02, /* 1: RSTAD */
  246. 0x01, 0x03, /* 1: RSTDA */
  247. 0x01, 0x0f, /* 1: normal */
  248. 0x02, 0x60, /* 2: 24bit I2S */
  249. 0x03, 0x01, /* 3: deemphasis off */
  250. 0x04, 0x00, /* 4: LIN muted */
  251. 0x05, 0x00, /* 5: RIN muted */
  252. 0x06, 0x00, /* 6: LOUT muted */
  253. 0x07, 0x00, /* 7: ROUT muted */
  254. 0xff, 0xff
  255. };
  256. int chip;
  257. const unsigned char *ptr, *inits;
  258. unsigned char reg, data;
  259. memset(ak->images, 0, sizeof(ak->images));
  260. memset(ak->volumes, 0, sizeof(ak->volumes));
  261. switch (ak->type) {
  262. case SND_AK4524:
  263. inits = inits_ak4524;
  264. ak->num_chips = ak->num_dacs / 2;
  265. ak->name = "ak4524";
  266. ak->total_regs = 0x08;
  267. break;
  268. case SND_AK4528:
  269. inits = inits_ak4528;
  270. ak->num_chips = ak->num_dacs / 2;
  271. ak->name = "ak4528";
  272. ak->total_regs = 0x06;
  273. break;
  274. case SND_AK4529:
  275. inits = inits_ak4529;
  276. ak->num_chips = 1;
  277. ak->name = "ak4529";
  278. ak->total_regs = 0x0d;
  279. break;
  280. case SND_AK4355:
  281. inits = inits_ak4355;
  282. ak->num_chips = 1;
  283. ak->name = "ak4355";
  284. ak->total_regs = 0x0b;
  285. break;
  286. case SND_AK4358:
  287. inits = inits_ak4358;
  288. ak->num_chips = 1;
  289. ak->name = "ak4358";
  290. ak->total_regs = 0x10;
  291. break;
  292. case SND_AK4381:
  293. inits = inits_ak4381;
  294. ak->num_chips = ak->num_dacs / 2;
  295. ak->name = "ak4381";
  296. ak->total_regs = 0x05;
  297. break;
  298. case SND_AK5365:
  299. /* FIXME: any init sequence? */
  300. ak->num_chips = 1;
  301. ak->name = "ak5365";
  302. ak->total_regs = 0x08;
  303. return;
  304. case SND_AK4620:
  305. inits = inits_ak4620;
  306. ak->num_chips = ak->num_dacs / 2;
  307. ak->name = "ak4620";
  308. ak->total_regs = 0x08;
  309. break;
  310. default:
  311. snd_BUG();
  312. return;
  313. }
  314. for (chip = 0; chip < ak->num_chips; chip++) {
  315. ptr = inits;
  316. while (*ptr != 0xff) {
  317. reg = *ptr++;
  318. data = *ptr++;
  319. snd_akm4xxx_write(ak, chip, reg, data);
  320. udelay(10);
  321. }
  322. }
  323. }
  324. EXPORT_SYMBOL(snd_akm4xxx_init);
  325. /*
  326. * Mixer callbacks
  327. */
  328. #define AK_IPGA (1<<20) /* including IPGA */
  329. #define AK_VOL_CVT (1<<21) /* need dB conversion */
  330. #define AK_NEEDSMSB (1<<22) /* need MSB update bit */
  331. #define AK_INVERT (1<<23) /* data is inverted */
  332. #define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
  333. #define AK_GET_ADDR(val) ((val) & 0xff)
  334. #define AK_GET_SHIFT(val) (((val) >> 16) & 0x0f)
  335. #define AK_GET_VOL_CVT(val) (((val) >> 21) & 1)
  336. #define AK_GET_IPGA(val) (((val) >> 20) & 1)
  337. #define AK_GET_NEEDSMSB(val) (((val) >> 22) & 1)
  338. #define AK_GET_INVERT(val) (((val) >> 23) & 1)
  339. #define AK_GET_MASK(val) (((val) >> 24) & 0xff)
  340. #define AK_COMPOSE(chip,addr,shift,mask) \
  341. (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
  342. static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol,
  343. struct snd_ctl_elem_info *uinfo)
  344. {
  345. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  346. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  347. uinfo->count = 1;
  348. uinfo->value.integer.min = 0;
  349. uinfo->value.integer.max = mask;
  350. return 0;
  351. }
  352. static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol,
  353. struct snd_ctl_elem_value *ucontrol)
  354. {
  355. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  356. int chip = AK_GET_CHIP(kcontrol->private_value);
  357. int addr = AK_GET_ADDR(kcontrol->private_value);
  358. ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr);
  359. return 0;
  360. }
  361. static int put_ak_reg(struct snd_kcontrol *kcontrol, int addr,
  362. unsigned char nval)
  363. {
  364. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  365. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  366. int chip = AK_GET_CHIP(kcontrol->private_value);
  367. if (snd_akm4xxx_get_vol(ak, chip, addr) == nval)
  368. return 0;
  369. snd_akm4xxx_set_vol(ak, chip, addr, nval);
  370. if (AK_GET_VOL_CVT(kcontrol->private_value) && nval < 128)
  371. nval = vol_cvt_datt[nval];
  372. if (AK_GET_IPGA(kcontrol->private_value) && nval >= 128)
  373. nval++; /* need to correct + 1 since both 127 and 128 are 0dB */
  374. if (AK_GET_INVERT(kcontrol->private_value))
  375. nval = mask - nval;
  376. if (AK_GET_NEEDSMSB(kcontrol->private_value))
  377. nval |= 0x80;
  378. /* printk(KERN_DEBUG "DEBUG - AK writing reg: chip %x addr %x,
  379. nval %x\n", chip, addr, nval); */
  380. snd_akm4xxx_write(ak, chip, addr, nval);
  381. return 1;
  382. }
  383. static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol,
  384. struct snd_ctl_elem_value *ucontrol)
  385. {
  386. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  387. unsigned int val = ucontrol->value.integer.value[0];
  388. if (val > mask)
  389. return -EINVAL;
  390. return put_ak_reg(kcontrol, AK_GET_ADDR(kcontrol->private_value), val);
  391. }
  392. static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol,
  393. struct snd_ctl_elem_info *uinfo)
  394. {
  395. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  396. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  397. uinfo->count = 2;
  398. uinfo->value.integer.min = 0;
  399. uinfo->value.integer.max = mask;
  400. return 0;
  401. }
  402. static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol,
  403. struct snd_ctl_elem_value *ucontrol)
  404. {
  405. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  406. int chip = AK_GET_CHIP(kcontrol->private_value);
  407. int addr = AK_GET_ADDR(kcontrol->private_value);
  408. ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr);
  409. ucontrol->value.integer.value[1] = snd_akm4xxx_get_vol(ak, chip, addr+1);
  410. return 0;
  411. }
  412. static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol,
  413. struct snd_ctl_elem_value *ucontrol)
  414. {
  415. int addr = AK_GET_ADDR(kcontrol->private_value);
  416. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  417. unsigned int val[2];
  418. int change;
  419. val[0] = ucontrol->value.integer.value[0];
  420. val[1] = ucontrol->value.integer.value[1];
  421. if (val[0] > mask || val[1] > mask)
  422. return -EINVAL;
  423. change = put_ak_reg(kcontrol, addr, val[0]);
  424. change |= put_ak_reg(kcontrol, addr + 1, val[1]);
  425. return change;
  426. }
  427. static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol,
  428. struct snd_ctl_elem_info *uinfo)
  429. {
  430. static char *texts[4] = {
  431. "44.1kHz", "Off", "48kHz", "32kHz",
  432. };
  433. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  434. uinfo->count = 1;
  435. uinfo->value.enumerated.items = 4;
  436. if (uinfo->value.enumerated.item >= 4)
  437. uinfo->value.enumerated.item = 3;
  438. strcpy(uinfo->value.enumerated.name,
  439. texts[uinfo->value.enumerated.item]);
  440. return 0;
  441. }
  442. static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol,
  443. struct snd_ctl_elem_value *ucontrol)
  444. {
  445. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  446. int chip = AK_GET_CHIP(kcontrol->private_value);
  447. int addr = AK_GET_ADDR(kcontrol->private_value);
  448. int shift = AK_GET_SHIFT(kcontrol->private_value);
  449. ucontrol->value.enumerated.item[0] =
  450. (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
  451. return 0;
  452. }
  453. static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol,
  454. struct snd_ctl_elem_value *ucontrol)
  455. {
  456. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  457. int chip = AK_GET_CHIP(kcontrol->private_value);
  458. int addr = AK_GET_ADDR(kcontrol->private_value);
  459. int shift = AK_GET_SHIFT(kcontrol->private_value);
  460. unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
  461. int change;
  462. nval = (nval << shift) |
  463. (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
  464. change = snd_akm4xxx_get(ak, chip, addr) != nval;
  465. if (change)
  466. snd_akm4xxx_write(ak, chip, addr, nval);
  467. return change;
  468. }
  469. #define ak4xxx_switch_info snd_ctl_boolean_mono_info
  470. static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol,
  471. struct snd_ctl_elem_value *ucontrol)
  472. {
  473. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  474. int chip = AK_GET_CHIP(kcontrol->private_value);
  475. int addr = AK_GET_ADDR(kcontrol->private_value);
  476. int shift = AK_GET_SHIFT(kcontrol->private_value);
  477. int invert = AK_GET_INVERT(kcontrol->private_value);
  478. /* we observe the (1<<shift) bit only */
  479. unsigned char val = snd_akm4xxx_get(ak, chip, addr) & (1<<shift);
  480. if (invert)
  481. val = ! val;
  482. ucontrol->value.integer.value[0] = (val & (1<<shift)) != 0;
  483. return 0;
  484. }
  485. static int ak4xxx_switch_put(struct snd_kcontrol *kcontrol,
  486. struct snd_ctl_elem_value *ucontrol)
  487. {
  488. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  489. int chip = AK_GET_CHIP(kcontrol->private_value);
  490. int addr = AK_GET_ADDR(kcontrol->private_value);
  491. int shift = AK_GET_SHIFT(kcontrol->private_value);
  492. int invert = AK_GET_INVERT(kcontrol->private_value);
  493. long flag = ucontrol->value.integer.value[0];
  494. unsigned char val, oval;
  495. int change;
  496. if (invert)
  497. flag = ! flag;
  498. oval = snd_akm4xxx_get(ak, chip, addr);
  499. if (flag)
  500. val = oval | (1<<shift);
  501. else
  502. val = oval & ~(1<<shift);
  503. change = (oval != val);
  504. if (change)
  505. snd_akm4xxx_write(ak, chip, addr, val);
  506. return change;
  507. }
  508. #define AK5365_NUM_INPUTS 5
  509. static int ak4xxx_capture_num_inputs(struct snd_akm4xxx *ak, int mixer_ch)
  510. {
  511. int num_names;
  512. const char **input_names;
  513. input_names = ak->adc_info[mixer_ch].input_names;
  514. num_names = 0;
  515. while (num_names < AK5365_NUM_INPUTS && input_names[num_names])
  516. ++num_names;
  517. return num_names;
  518. }
  519. static int ak4xxx_capture_source_info(struct snd_kcontrol *kcontrol,
  520. struct snd_ctl_elem_info *uinfo)
  521. {
  522. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  523. int mixer_ch = AK_GET_SHIFT(kcontrol->private_value);
  524. const char **input_names;
  525. int num_names, idx;
  526. num_names = ak4xxx_capture_num_inputs(ak, mixer_ch);
  527. if (!num_names)
  528. return -EINVAL;
  529. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  530. uinfo->count = 1;
  531. uinfo->value.enumerated.items = num_names;
  532. idx = uinfo->value.enumerated.item;
  533. if (idx >= num_names)
  534. return -EINVAL;
  535. input_names = ak->adc_info[mixer_ch].input_names;
  536. strncpy(uinfo->value.enumerated.name, input_names[idx],
  537. sizeof(uinfo->value.enumerated.name));
  538. return 0;
  539. }
  540. static int ak4xxx_capture_source_get(struct snd_kcontrol *kcontrol,
  541. struct snd_ctl_elem_value *ucontrol)
  542. {
  543. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  544. int chip = AK_GET_CHIP(kcontrol->private_value);
  545. int addr = AK_GET_ADDR(kcontrol->private_value);
  546. int mask = AK_GET_MASK(kcontrol->private_value);
  547. unsigned char val;
  548. val = snd_akm4xxx_get(ak, chip, addr) & mask;
  549. ucontrol->value.enumerated.item[0] = val;
  550. return 0;
  551. }
  552. static int ak4xxx_capture_source_put(struct snd_kcontrol *kcontrol,
  553. struct snd_ctl_elem_value *ucontrol)
  554. {
  555. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  556. int mixer_ch = AK_GET_SHIFT(kcontrol->private_value);
  557. int chip = AK_GET_CHIP(kcontrol->private_value);
  558. int addr = AK_GET_ADDR(kcontrol->private_value);
  559. int mask = AK_GET_MASK(kcontrol->private_value);
  560. unsigned char oval, val;
  561. int num_names = ak4xxx_capture_num_inputs(ak, mixer_ch);
  562. if (ucontrol->value.enumerated.item[0] >= num_names)
  563. return -EINVAL;
  564. oval = snd_akm4xxx_get(ak, chip, addr);
  565. val = oval & ~mask;
  566. val |= ucontrol->value.enumerated.item[0] & mask;
  567. if (val != oval) {
  568. snd_akm4xxx_write(ak, chip, addr, val);
  569. return 1;
  570. }
  571. return 0;
  572. }
  573. /*
  574. * build AK4xxx controls
  575. */
  576. static int build_dac_controls(struct snd_akm4xxx *ak)
  577. {
  578. int idx, err, mixer_ch, num_stereo;
  579. struct snd_kcontrol_new knew;
  580. mixer_ch = 0;
  581. for (idx = 0; idx < ak->num_dacs; ) {
  582. /* mute control for Revolution 7.1 - AK4381 */
  583. if (ak->type == SND_AK4381
  584. && ak->dac_info[mixer_ch].switch_name) {
  585. memset(&knew, 0, sizeof(knew));
  586. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  587. knew.count = 1;
  588. knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
  589. knew.name = ak->dac_info[mixer_ch].switch_name;
  590. knew.info = ak4xxx_switch_info;
  591. knew.get = ak4xxx_switch_get;
  592. knew.put = ak4xxx_switch_put;
  593. knew.access = 0;
  594. /* register 1, bit 0 (SMUTE): 0 = normal operation,
  595. 1 = mute */
  596. knew.private_value =
  597. AK_COMPOSE(idx/2, 1, 0, 0) | AK_INVERT;
  598. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  599. if (err < 0)
  600. return err;
  601. }
  602. memset(&knew, 0, sizeof(knew));
  603. if (! ak->dac_info || ! ak->dac_info[mixer_ch].name) {
  604. knew.name = "DAC Volume";
  605. knew.index = mixer_ch + ak->idx_offset * 2;
  606. num_stereo = 1;
  607. } else {
  608. knew.name = ak->dac_info[mixer_ch].name;
  609. num_stereo = ak->dac_info[mixer_ch].num_channels;
  610. }
  611. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  612. knew.count = 1;
  613. knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  614. SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  615. if (num_stereo == 2) {
  616. knew.info = snd_akm4xxx_stereo_volume_info;
  617. knew.get = snd_akm4xxx_stereo_volume_get;
  618. knew.put = snd_akm4xxx_stereo_volume_put;
  619. } else {
  620. knew.info = snd_akm4xxx_volume_info;
  621. knew.get = snd_akm4xxx_volume_get;
  622. knew.put = snd_akm4xxx_volume_put;
  623. }
  624. switch (ak->type) {
  625. case SND_AK4524:
  626. /* register 6 & 7 */
  627. knew.private_value =
  628. AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127) |
  629. AK_VOL_CVT;
  630. knew.tlv.p = db_scale_vol_datt;
  631. break;
  632. case SND_AK4528:
  633. /* register 4 & 5 */
  634. knew.private_value =
  635. AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127) |
  636. AK_VOL_CVT;
  637. knew.tlv.p = db_scale_vol_datt;
  638. break;
  639. case SND_AK4529: {
  640. /* registers 2-7 and b,c */
  641. int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb;
  642. knew.private_value =
  643. AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
  644. knew.tlv.p = db_scale_8bit;
  645. break;
  646. }
  647. case SND_AK4355:
  648. /* register 4-9, chip #0 only */
  649. knew.private_value = AK_COMPOSE(0, idx + 4, 0, 255);
  650. knew.tlv.p = db_scale_8bit;
  651. break;
  652. case SND_AK4358: {
  653. /* register 4-9 and 11-12, chip #0 only */
  654. int addr = idx < 6 ? idx + 4 : idx + 5;
  655. knew.private_value =
  656. AK_COMPOSE(0, addr, 0, 127) | AK_NEEDSMSB;
  657. knew.tlv.p = db_scale_7bit;
  658. break;
  659. }
  660. case SND_AK4381:
  661. /* register 3 & 4 */
  662. knew.private_value =
  663. AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255);
  664. knew.tlv.p = db_scale_linear;
  665. break;
  666. case SND_AK4620:
  667. /* register 6 & 7 */
  668. knew.private_value =
  669. AK_COMPOSE(idx/2, (idx%2) + 6, 0, 255);
  670. knew.tlv.p = db_scale_linear;
  671. break;
  672. default:
  673. return -EINVAL;
  674. }
  675. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  676. if (err < 0)
  677. return err;
  678. idx += num_stereo;
  679. mixer_ch++;
  680. }
  681. return 0;
  682. }
  683. static int build_adc_controls(struct snd_akm4xxx *ak)
  684. {
  685. int idx, err, mixer_ch, num_stereo, max_steps;
  686. struct snd_kcontrol_new knew;
  687. mixer_ch = 0;
  688. if (ak->type == SND_AK4528)
  689. return 0; /* no controls */
  690. for (idx = 0; idx < ak->num_adcs;) {
  691. memset(&knew, 0, sizeof(knew));
  692. if (! ak->adc_info || ! ak->adc_info[mixer_ch].name) {
  693. knew.name = "ADC Volume";
  694. knew.index = mixer_ch + ak->idx_offset * 2;
  695. num_stereo = 1;
  696. } else {
  697. knew.name = ak->adc_info[mixer_ch].name;
  698. num_stereo = ak->adc_info[mixer_ch].num_channels;
  699. }
  700. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  701. knew.count = 1;
  702. knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  703. SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  704. if (num_stereo == 2) {
  705. knew.info = snd_akm4xxx_stereo_volume_info;
  706. knew.get = snd_akm4xxx_stereo_volume_get;
  707. knew.put = snd_akm4xxx_stereo_volume_put;
  708. } else {
  709. knew.info = snd_akm4xxx_volume_info;
  710. knew.get = snd_akm4xxx_volume_get;
  711. knew.put = snd_akm4xxx_volume_put;
  712. }
  713. /* register 4 & 5 */
  714. if (ak->type == SND_AK5365)
  715. max_steps = 152;
  716. else
  717. max_steps = 164;
  718. knew.private_value =
  719. AK_COMPOSE(idx/2, (idx%2) + 4, 0, max_steps) |
  720. AK_VOL_CVT | AK_IPGA;
  721. knew.tlv.p = db_scale_vol_datt;
  722. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  723. if (err < 0)
  724. return err;
  725. if (ak->type == SND_AK5365 && (idx % 2) == 0) {
  726. if (! ak->adc_info ||
  727. ! ak->adc_info[mixer_ch].switch_name) {
  728. knew.name = "Capture Switch";
  729. knew.index = mixer_ch + ak->idx_offset * 2;
  730. } else
  731. knew.name = ak->adc_info[mixer_ch].switch_name;
  732. knew.info = ak4xxx_switch_info;
  733. knew.get = ak4xxx_switch_get;
  734. knew.put = ak4xxx_switch_put;
  735. knew.access = 0;
  736. /* register 2, bit 0 (SMUTE): 0 = normal operation,
  737. 1 = mute */
  738. knew.private_value =
  739. AK_COMPOSE(idx/2, 2, 0, 0) | AK_INVERT;
  740. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  741. if (err < 0)
  742. return err;
  743. memset(&knew, 0, sizeof(knew));
  744. knew.name = ak->adc_info[mixer_ch].selector_name;
  745. if (!knew.name) {
  746. knew.name = "Capture Channel";
  747. knew.index = mixer_ch + ak->idx_offset * 2;
  748. }
  749. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  750. knew.info = ak4xxx_capture_source_info;
  751. knew.get = ak4xxx_capture_source_get;
  752. knew.put = ak4xxx_capture_source_put;
  753. knew.access = 0;
  754. /* input selector control: reg. 1, bits 0-2.
  755. * mis-use 'shift' to pass mixer_ch */
  756. knew.private_value
  757. = AK_COMPOSE(idx/2, 1, mixer_ch, 0x07);
  758. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  759. if (err < 0)
  760. return err;
  761. }
  762. idx += num_stereo;
  763. mixer_ch++;
  764. }
  765. return 0;
  766. }
  767. static int build_deemphasis(struct snd_akm4xxx *ak, int num_emphs)
  768. {
  769. int idx, err;
  770. struct snd_kcontrol_new knew;
  771. for (idx = 0; idx < num_emphs; idx++) {
  772. memset(&knew, 0, sizeof(knew));
  773. knew.name = "Deemphasis";
  774. knew.index = idx + ak->idx_offset;
  775. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  776. knew.count = 1;
  777. knew.info = snd_akm4xxx_deemphasis_info;
  778. knew.get = snd_akm4xxx_deemphasis_get;
  779. knew.put = snd_akm4xxx_deemphasis_put;
  780. switch (ak->type) {
  781. case SND_AK4524:
  782. case SND_AK4528:
  783. case SND_AK4620:
  784. /* register 3 */
  785. knew.private_value = AK_COMPOSE(idx, 3, 0, 0);
  786. break;
  787. case SND_AK4529: {
  788. int shift = idx == 3 ? 6 : (2 - idx) * 2;
  789. /* register 8 with shift */
  790. knew.private_value = AK_COMPOSE(0, 8, shift, 0);
  791. break;
  792. }
  793. case SND_AK4355:
  794. case SND_AK4358:
  795. knew.private_value = AK_COMPOSE(idx, 3, 0, 0);
  796. break;
  797. case SND_AK4381:
  798. knew.private_value = AK_COMPOSE(idx, 1, 1, 0);
  799. break;
  800. default:
  801. return -EINVAL;
  802. }
  803. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  804. if (err < 0)
  805. return err;
  806. }
  807. return 0;
  808. }
  809. #ifdef CONFIG_PROC_FS
  810. static void proc_regs_read(struct snd_info_entry *entry,
  811. struct snd_info_buffer *buffer)
  812. {
  813. struct snd_akm4xxx *ak = entry->private_data;
  814. int reg, val, chip;
  815. for (chip = 0; chip < ak->num_chips; chip++) {
  816. for (reg = 0; reg < ak->total_regs; reg++) {
  817. val = snd_akm4xxx_get(ak, chip, reg);
  818. snd_iprintf(buffer, "chip %d: 0x%02x = 0x%02x\n", chip,
  819. reg, val);
  820. }
  821. }
  822. }
  823. static int proc_init(struct snd_akm4xxx *ak)
  824. {
  825. struct snd_info_entry *entry;
  826. int err;
  827. err = snd_card_proc_new(ak->card, ak->name, &entry);
  828. if (err < 0)
  829. return err;
  830. snd_info_set_text_ops(entry, ak, proc_regs_read);
  831. return 0;
  832. }
  833. #else /* !CONFIG_PROC_FS */
  834. static int proc_init(struct snd_akm4xxx *ak) { return 0; }
  835. #endif
  836. int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak)
  837. {
  838. int err, num_emphs;
  839. err = build_dac_controls(ak);
  840. if (err < 0)
  841. return err;
  842. err = build_adc_controls(ak);
  843. if (err < 0)
  844. return err;
  845. if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
  846. num_emphs = 1;
  847. else if (ak->type == SND_AK4620)
  848. num_emphs = 0;
  849. else
  850. num_emphs = ak->num_dacs / 2;
  851. err = build_deemphasis(ak, num_emphs);
  852. if (err < 0)
  853. return err;
  854. err = proc_init(ak);
  855. if (err < 0)
  856. return err;
  857. return 0;
  858. }
  859. EXPORT_SYMBOL(snd_akm4xxx_build_controls);
  860. static int __init alsa_akm4xxx_module_init(void)
  861. {
  862. return 0;
  863. }
  864. static void __exit alsa_akm4xxx_module_exit(void)
  865. {
  866. }
  867. module_init(alsa_akm4xxx_module_init)
  868. module_exit(alsa_akm4xxx_module_exit)