ip_fragment.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP fragmentation functionality.
  7. *
  8. * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
  9. * Alan Cox <alan@lxorguk.ukuu.org.uk>
  10. *
  11. * Fixes:
  12. * Alan Cox : Split from ip.c , see ip_input.c for history.
  13. * David S. Miller : Begin massive cleanup...
  14. * Andi Kleen : Add sysctls.
  15. * xxxx : Overlapfrag bug.
  16. * Ultima : ip_expire() kernel panic.
  17. * Bill Hawes : Frag accounting and evictor fixes.
  18. * John McDonald : 0 length frag bug.
  19. * Alexey Kuznetsov: SMP races, threading, cleanup.
  20. * Patrick McHardy : LRU queue of frag heads for evictor.
  21. */
  22. #include <linux/compiler.h>
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/mm.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/skbuff.h>
  28. #include <linux/list.h>
  29. #include <linux/ip.h>
  30. #include <linux/icmp.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/jhash.h>
  33. #include <linux/random.h>
  34. #include <linux/slab.h>
  35. #include <net/route.h>
  36. #include <net/dst.h>
  37. #include <net/sock.h>
  38. #include <net/ip.h>
  39. #include <net/icmp.h>
  40. #include <net/checksum.h>
  41. #include <net/inetpeer.h>
  42. #include <net/inet_frag.h>
  43. #include <linux/tcp.h>
  44. #include <linux/udp.h>
  45. #include <linux/inet.h>
  46. #include <linux/netfilter_ipv4.h>
  47. #include <net/inet_ecn.h>
  48. /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
  49. * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
  50. * as well. Or notify me, at least. --ANK
  51. */
  52. static int sysctl_ipfrag_max_dist __read_mostly = 64;
  53. struct ipfrag_skb_cb
  54. {
  55. struct inet_skb_parm h;
  56. int offset;
  57. };
  58. #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
  59. /* Describe an entry in the "incomplete datagrams" queue. */
  60. struct ipq {
  61. struct inet_frag_queue q;
  62. u32 user;
  63. __be32 saddr;
  64. __be32 daddr;
  65. __be16 id;
  66. u8 protocol;
  67. u8 ecn; /* RFC3168 support */
  68. int iif;
  69. unsigned int rid;
  70. struct inet_peer *peer;
  71. };
  72. /* RFC 3168 support :
  73. * We want to check ECN values of all fragments, do detect invalid combinations.
  74. * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value.
  75. */
  76. #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */
  77. #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */
  78. #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */
  79. #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */
  80. static inline u8 ip4_frag_ecn(u8 tos)
  81. {
  82. return 1 << (tos & INET_ECN_MASK);
  83. }
  84. /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
  85. * Value : 0xff if frame should be dropped.
  86. * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field
  87. */
  88. static const u8 ip4_frag_ecn_table[16] = {
  89. /* at least one fragment had CE, and others ECT_0 or ECT_1 */
  90. [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE,
  91. [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
  92. [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE,
  93. /* invalid combinations : drop frame */
  94. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
  95. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
  96. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
  97. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
  98. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
  99. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
  100. [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
  101. };
  102. static struct inet_frags ip4_frags;
  103. int ip_frag_nqueues(struct net *net)
  104. {
  105. return net->ipv4.frags.nqueues;
  106. }
  107. int ip_frag_mem(struct net *net)
  108. {
  109. return atomic_read(&net->ipv4.frags.mem);
  110. }
  111. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  112. struct net_device *dev);
  113. struct ip4_create_arg {
  114. struct iphdr *iph;
  115. u32 user;
  116. };
  117. static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
  118. {
  119. return jhash_3words((__force u32)id << 16 | prot,
  120. (__force u32)saddr, (__force u32)daddr,
  121. ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
  122. }
  123. static unsigned int ip4_hashfn(struct inet_frag_queue *q)
  124. {
  125. struct ipq *ipq;
  126. ipq = container_of(q, struct ipq, q);
  127. return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
  128. }
  129. static int ip4_frag_match(struct inet_frag_queue *q, void *a)
  130. {
  131. struct ipq *qp;
  132. struct ip4_create_arg *arg = a;
  133. qp = container_of(q, struct ipq, q);
  134. return qp->id == arg->iph->id &&
  135. qp->saddr == arg->iph->saddr &&
  136. qp->daddr == arg->iph->daddr &&
  137. qp->protocol == arg->iph->protocol &&
  138. qp->user == arg->user;
  139. }
  140. /* Memory Tracking Functions. */
  141. static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
  142. {
  143. atomic_sub(skb->truesize, &nf->mem);
  144. kfree_skb(skb);
  145. }
  146. static void ip4_frag_init(struct inet_frag_queue *q, void *a)
  147. {
  148. struct ipq *qp = container_of(q, struct ipq, q);
  149. struct ip4_create_arg *arg = a;
  150. qp->protocol = arg->iph->protocol;
  151. qp->id = arg->iph->id;
  152. qp->ecn = ip4_frag_ecn(arg->iph->tos);
  153. qp->saddr = arg->iph->saddr;
  154. qp->daddr = arg->iph->daddr;
  155. qp->user = arg->user;
  156. qp->peer = sysctl_ipfrag_max_dist ?
  157. inet_getpeer_v4(arg->iph->saddr, 1) : NULL;
  158. }
  159. static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
  160. {
  161. struct ipq *qp;
  162. qp = container_of(q, struct ipq, q);
  163. if (qp->peer)
  164. inet_putpeer(qp->peer);
  165. }
  166. /* Destruction primitives. */
  167. static __inline__ void ipq_put(struct ipq *ipq)
  168. {
  169. inet_frag_put(&ipq->q, &ip4_frags);
  170. }
  171. /* Kill ipq entry. It is not destroyed immediately,
  172. * because caller (and someone more) holds reference count.
  173. */
  174. static void ipq_kill(struct ipq *ipq)
  175. {
  176. inet_frag_kill(&ipq->q, &ip4_frags);
  177. }
  178. /* Memory limiting on fragments. Evictor trashes the oldest
  179. * fragment queue until we are back under the threshold.
  180. */
  181. static void ip_evictor(struct net *net)
  182. {
  183. int evicted;
  184. evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
  185. if (evicted)
  186. IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
  187. }
  188. /*
  189. * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
  190. */
  191. static void ip_expire(unsigned long arg)
  192. {
  193. struct ipq *qp;
  194. struct net *net;
  195. qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
  196. net = container_of(qp->q.net, struct net, ipv4.frags);
  197. spin_lock(&qp->q.lock);
  198. if (qp->q.last_in & INET_FRAG_COMPLETE)
  199. goto out;
  200. ipq_kill(qp);
  201. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
  202. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  203. if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
  204. struct sk_buff *head = qp->q.fragments;
  205. const struct iphdr *iph;
  206. int err;
  207. rcu_read_lock();
  208. head->dev = dev_get_by_index_rcu(net, qp->iif);
  209. if (!head->dev)
  210. goto out_rcu_unlock;
  211. /* skb dst is stale, drop it, and perform route lookup again */
  212. skb_dst_drop(head);
  213. iph = ip_hdr(head);
  214. err = ip_route_input_noref(head, iph->daddr, iph->saddr,
  215. iph->tos, head->dev);
  216. if (err)
  217. goto out_rcu_unlock;
  218. /*
  219. * Only an end host needs to send an ICMP
  220. * "Fragment Reassembly Timeout" message, per RFC792.
  221. */
  222. if (qp->user == IP_DEFRAG_CONNTRACK_IN &&
  223. skb_rtable(head)->rt_type != RTN_LOCAL)
  224. goto out_rcu_unlock;
  225. /* Send an ICMP "Fragment Reassembly Timeout" message. */
  226. icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
  227. out_rcu_unlock:
  228. rcu_read_unlock();
  229. }
  230. out:
  231. spin_unlock(&qp->q.lock);
  232. ipq_put(qp);
  233. }
  234. /* Find the correct entry in the "incomplete datagrams" queue for
  235. * this IP datagram, and create new one, if nothing is found.
  236. */
  237. static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
  238. {
  239. struct inet_frag_queue *q;
  240. struct ip4_create_arg arg;
  241. unsigned int hash;
  242. arg.iph = iph;
  243. arg.user = user;
  244. read_lock(&ip4_frags.lock);
  245. hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
  246. q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
  247. if (q == NULL)
  248. goto out_nomem;
  249. return container_of(q, struct ipq, q);
  250. out_nomem:
  251. LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
  252. return NULL;
  253. }
  254. /* Is the fragment too far ahead to be part of ipq? */
  255. static inline int ip_frag_too_far(struct ipq *qp)
  256. {
  257. struct inet_peer *peer = qp->peer;
  258. unsigned int max = sysctl_ipfrag_max_dist;
  259. unsigned int start, end;
  260. int rc;
  261. if (!peer || !max)
  262. return 0;
  263. start = qp->rid;
  264. end = atomic_inc_return(&peer->rid);
  265. qp->rid = end;
  266. rc = qp->q.fragments && (end - start) > max;
  267. if (rc) {
  268. struct net *net;
  269. net = container_of(qp->q.net, struct net, ipv4.frags);
  270. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  271. }
  272. return rc;
  273. }
  274. static int ip_frag_reinit(struct ipq *qp)
  275. {
  276. struct sk_buff *fp;
  277. if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
  278. atomic_inc(&qp->q.refcnt);
  279. return -ETIMEDOUT;
  280. }
  281. fp = qp->q.fragments;
  282. do {
  283. struct sk_buff *xp = fp->next;
  284. frag_kfree_skb(qp->q.net, fp);
  285. fp = xp;
  286. } while (fp);
  287. qp->q.last_in = 0;
  288. qp->q.len = 0;
  289. qp->q.meat = 0;
  290. qp->q.fragments = NULL;
  291. qp->q.fragments_tail = NULL;
  292. qp->iif = 0;
  293. qp->ecn = 0;
  294. return 0;
  295. }
  296. /* Add new segment to existing queue. */
  297. static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
  298. {
  299. struct sk_buff *prev, *next;
  300. struct net_device *dev;
  301. int flags, offset;
  302. int ihl, end;
  303. int err = -ENOENT;
  304. u8 ecn;
  305. if (qp->q.last_in & INET_FRAG_COMPLETE)
  306. goto err;
  307. if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
  308. unlikely(ip_frag_too_far(qp)) &&
  309. unlikely(err = ip_frag_reinit(qp))) {
  310. ipq_kill(qp);
  311. goto err;
  312. }
  313. ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
  314. offset = ntohs(ip_hdr(skb)->frag_off);
  315. flags = offset & ~IP_OFFSET;
  316. offset &= IP_OFFSET;
  317. offset <<= 3; /* offset is in 8-byte chunks */
  318. ihl = ip_hdrlen(skb);
  319. /* Determine the position of this fragment. */
  320. end = offset + skb->len - ihl;
  321. err = -EINVAL;
  322. /* Is this the final fragment? */
  323. if ((flags & IP_MF) == 0) {
  324. /* If we already have some bits beyond end
  325. * or have different end, the segment is corrrupted.
  326. */
  327. if (end < qp->q.len ||
  328. ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
  329. goto err;
  330. qp->q.last_in |= INET_FRAG_LAST_IN;
  331. qp->q.len = end;
  332. } else {
  333. if (end&7) {
  334. end &= ~7;
  335. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  336. skb->ip_summed = CHECKSUM_NONE;
  337. }
  338. if (end > qp->q.len) {
  339. /* Some bits beyond end -> corruption. */
  340. if (qp->q.last_in & INET_FRAG_LAST_IN)
  341. goto err;
  342. qp->q.len = end;
  343. }
  344. }
  345. if (end == offset)
  346. goto err;
  347. err = -ENOMEM;
  348. if (pskb_pull(skb, ihl) == NULL)
  349. goto err;
  350. err = pskb_trim_rcsum(skb, end - offset);
  351. if (err)
  352. goto err;
  353. /* Find out which fragments are in front and at the back of us
  354. * in the chain of fragments so far. We must know where to put
  355. * this fragment, right?
  356. */
  357. prev = qp->q.fragments_tail;
  358. if (!prev || FRAG_CB(prev)->offset < offset) {
  359. next = NULL;
  360. goto found;
  361. }
  362. prev = NULL;
  363. for (next = qp->q.fragments; next != NULL; next = next->next) {
  364. if (FRAG_CB(next)->offset >= offset)
  365. break; /* bingo! */
  366. prev = next;
  367. }
  368. found:
  369. /* We found where to put this one. Check for overlap with
  370. * preceding fragment, and, if needed, align things so that
  371. * any overlaps are eliminated.
  372. */
  373. if (prev) {
  374. int i = (FRAG_CB(prev)->offset + prev->len) - offset;
  375. if (i > 0) {
  376. offset += i;
  377. err = -EINVAL;
  378. if (end <= offset)
  379. goto err;
  380. err = -ENOMEM;
  381. if (!pskb_pull(skb, i))
  382. goto err;
  383. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  384. skb->ip_summed = CHECKSUM_NONE;
  385. }
  386. }
  387. err = -ENOMEM;
  388. while (next && FRAG_CB(next)->offset < end) {
  389. int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
  390. if (i < next->len) {
  391. /* Eat head of the next overlapped fragment
  392. * and leave the loop. The next ones cannot overlap.
  393. */
  394. if (!pskb_pull(next, i))
  395. goto err;
  396. FRAG_CB(next)->offset += i;
  397. qp->q.meat -= i;
  398. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  399. next->ip_summed = CHECKSUM_NONE;
  400. break;
  401. } else {
  402. struct sk_buff *free_it = next;
  403. /* Old fragment is completely overridden with
  404. * new one drop it.
  405. */
  406. next = next->next;
  407. if (prev)
  408. prev->next = next;
  409. else
  410. qp->q.fragments = next;
  411. qp->q.meat -= free_it->len;
  412. frag_kfree_skb(qp->q.net, free_it);
  413. }
  414. }
  415. FRAG_CB(skb)->offset = offset;
  416. /* Insert this fragment in the chain of fragments. */
  417. skb->next = next;
  418. if (!next)
  419. qp->q.fragments_tail = skb;
  420. if (prev)
  421. prev->next = skb;
  422. else
  423. qp->q.fragments = skb;
  424. dev = skb->dev;
  425. if (dev) {
  426. qp->iif = dev->ifindex;
  427. skb->dev = NULL;
  428. }
  429. qp->q.stamp = skb->tstamp;
  430. qp->q.meat += skb->len;
  431. qp->ecn |= ecn;
  432. atomic_add(skb->truesize, &qp->q.net->mem);
  433. if (offset == 0)
  434. qp->q.last_in |= INET_FRAG_FIRST_IN;
  435. if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
  436. qp->q.meat == qp->q.len)
  437. return ip_frag_reasm(qp, prev, dev);
  438. write_lock(&ip4_frags.lock);
  439. list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
  440. write_unlock(&ip4_frags.lock);
  441. return -EINPROGRESS;
  442. err:
  443. kfree_skb(skb);
  444. return err;
  445. }
  446. /* Build a new IP datagram from all its fragments. */
  447. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  448. struct net_device *dev)
  449. {
  450. struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
  451. struct iphdr *iph;
  452. struct sk_buff *fp, *head = qp->q.fragments;
  453. int len;
  454. int ihlen;
  455. int err;
  456. u8 ecn;
  457. ipq_kill(qp);
  458. ecn = ip4_frag_ecn_table[qp->ecn];
  459. if (unlikely(ecn == 0xff)) {
  460. err = -EINVAL;
  461. goto out_fail;
  462. }
  463. /* Make the one we just received the head. */
  464. if (prev) {
  465. head = prev->next;
  466. fp = skb_clone(head, GFP_ATOMIC);
  467. if (!fp)
  468. goto out_nomem;
  469. fp->next = head->next;
  470. if (!fp->next)
  471. qp->q.fragments_tail = fp;
  472. prev->next = fp;
  473. skb_morph(head, qp->q.fragments);
  474. head->next = qp->q.fragments->next;
  475. kfree_skb(qp->q.fragments);
  476. qp->q.fragments = head;
  477. }
  478. WARN_ON(head == NULL);
  479. WARN_ON(FRAG_CB(head)->offset != 0);
  480. /* Allocate a new buffer for the datagram. */
  481. ihlen = ip_hdrlen(head);
  482. len = ihlen + qp->q.len;
  483. err = -E2BIG;
  484. if (len > 65535)
  485. goto out_oversize;
  486. /* Head of list must not be cloned. */
  487. if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
  488. goto out_nomem;
  489. /* If the first fragment is fragmented itself, we split
  490. * it to two chunks: the first with data and paged part
  491. * and the second, holding only fragments. */
  492. if (skb_has_frag_list(head)) {
  493. struct sk_buff *clone;
  494. int i, plen = 0;
  495. if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
  496. goto out_nomem;
  497. clone->next = head->next;
  498. head->next = clone;
  499. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  500. skb_frag_list_init(head);
  501. for (i=0; i<skb_shinfo(head)->nr_frags; i++)
  502. plen += skb_shinfo(head)->frags[i].size;
  503. clone->len = clone->data_len = head->data_len - plen;
  504. head->data_len -= clone->len;
  505. head->len -= clone->len;
  506. clone->csum = 0;
  507. clone->ip_summed = head->ip_summed;
  508. atomic_add(clone->truesize, &qp->q.net->mem);
  509. }
  510. skb_shinfo(head)->frag_list = head->next;
  511. skb_push(head, head->data - skb_network_header(head));
  512. for (fp=head->next; fp; fp = fp->next) {
  513. head->data_len += fp->len;
  514. head->len += fp->len;
  515. if (head->ip_summed != fp->ip_summed)
  516. head->ip_summed = CHECKSUM_NONE;
  517. else if (head->ip_summed == CHECKSUM_COMPLETE)
  518. head->csum = csum_add(head->csum, fp->csum);
  519. head->truesize += fp->truesize;
  520. }
  521. atomic_sub(head->truesize, &qp->q.net->mem);
  522. head->next = NULL;
  523. head->dev = dev;
  524. head->tstamp = qp->q.stamp;
  525. iph = ip_hdr(head);
  526. iph->frag_off = 0;
  527. iph->tot_len = htons(len);
  528. iph->tos |= ecn;
  529. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
  530. qp->q.fragments = NULL;
  531. qp->q.fragments_tail = NULL;
  532. return 0;
  533. out_nomem:
  534. LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
  535. "queue %p\n", qp);
  536. err = -ENOMEM;
  537. goto out_fail;
  538. out_oversize:
  539. if (net_ratelimit())
  540. printk(KERN_INFO "Oversized IP packet from %pI4.\n",
  541. &qp->saddr);
  542. out_fail:
  543. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  544. return err;
  545. }
  546. /* Process an incoming IP datagram fragment. */
  547. int ip_defrag(struct sk_buff *skb, u32 user)
  548. {
  549. struct ipq *qp;
  550. struct net *net;
  551. net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
  552. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
  553. /* Start by cleaning up the memory. */
  554. if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
  555. ip_evictor(net);
  556. /* Lookup (or create) queue header */
  557. if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
  558. int ret;
  559. spin_lock(&qp->q.lock);
  560. ret = ip_frag_queue(qp, skb);
  561. spin_unlock(&qp->q.lock);
  562. ipq_put(qp);
  563. return ret;
  564. }
  565. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  566. kfree_skb(skb);
  567. return -ENOMEM;
  568. }
  569. EXPORT_SYMBOL(ip_defrag);
  570. #ifdef CONFIG_SYSCTL
  571. static int zero;
  572. static struct ctl_table ip4_frags_ns_ctl_table[] = {
  573. {
  574. .procname = "ipfrag_high_thresh",
  575. .data = &init_net.ipv4.frags.high_thresh,
  576. .maxlen = sizeof(int),
  577. .mode = 0644,
  578. .proc_handler = proc_dointvec
  579. },
  580. {
  581. .procname = "ipfrag_low_thresh",
  582. .data = &init_net.ipv4.frags.low_thresh,
  583. .maxlen = sizeof(int),
  584. .mode = 0644,
  585. .proc_handler = proc_dointvec
  586. },
  587. {
  588. .procname = "ipfrag_time",
  589. .data = &init_net.ipv4.frags.timeout,
  590. .maxlen = sizeof(int),
  591. .mode = 0644,
  592. .proc_handler = proc_dointvec_jiffies,
  593. },
  594. { }
  595. };
  596. static struct ctl_table ip4_frags_ctl_table[] = {
  597. {
  598. .procname = "ipfrag_secret_interval",
  599. .data = &ip4_frags.secret_interval,
  600. .maxlen = sizeof(int),
  601. .mode = 0644,
  602. .proc_handler = proc_dointvec_jiffies,
  603. },
  604. {
  605. .procname = "ipfrag_max_dist",
  606. .data = &sysctl_ipfrag_max_dist,
  607. .maxlen = sizeof(int),
  608. .mode = 0644,
  609. .proc_handler = proc_dointvec_minmax,
  610. .extra1 = &zero
  611. },
  612. { }
  613. };
  614. static int __net_init ip4_frags_ns_ctl_register(struct net *net)
  615. {
  616. struct ctl_table *table;
  617. struct ctl_table_header *hdr;
  618. table = ip4_frags_ns_ctl_table;
  619. if (!net_eq(net, &init_net)) {
  620. table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
  621. if (table == NULL)
  622. goto err_alloc;
  623. table[0].data = &net->ipv4.frags.high_thresh;
  624. table[1].data = &net->ipv4.frags.low_thresh;
  625. table[2].data = &net->ipv4.frags.timeout;
  626. }
  627. hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
  628. if (hdr == NULL)
  629. goto err_reg;
  630. net->ipv4.frags_hdr = hdr;
  631. return 0;
  632. err_reg:
  633. if (!net_eq(net, &init_net))
  634. kfree(table);
  635. err_alloc:
  636. return -ENOMEM;
  637. }
  638. static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
  639. {
  640. struct ctl_table *table;
  641. table = net->ipv4.frags_hdr->ctl_table_arg;
  642. unregister_net_sysctl_table(net->ipv4.frags_hdr);
  643. kfree(table);
  644. }
  645. static void ip4_frags_ctl_register(void)
  646. {
  647. register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
  648. }
  649. #else
  650. static inline int ip4_frags_ns_ctl_register(struct net *net)
  651. {
  652. return 0;
  653. }
  654. static inline void ip4_frags_ns_ctl_unregister(struct net *net)
  655. {
  656. }
  657. static inline void ip4_frags_ctl_register(void)
  658. {
  659. }
  660. #endif
  661. static int __net_init ipv4_frags_init_net(struct net *net)
  662. {
  663. /*
  664. * Fragment cache limits. We will commit 256K at one time. Should we
  665. * cross that limit we will prune down to 192K. This should cope with
  666. * even the most extreme cases without allowing an attacker to
  667. * measurably harm machine performance.
  668. */
  669. net->ipv4.frags.high_thresh = 256 * 1024;
  670. net->ipv4.frags.low_thresh = 192 * 1024;
  671. /*
  672. * Important NOTE! Fragment queue must be destroyed before MSL expires.
  673. * RFC791 is wrong proposing to prolongate timer each fragment arrival
  674. * by TTL.
  675. */
  676. net->ipv4.frags.timeout = IP_FRAG_TIME;
  677. inet_frags_init_net(&net->ipv4.frags);
  678. return ip4_frags_ns_ctl_register(net);
  679. }
  680. static void __net_exit ipv4_frags_exit_net(struct net *net)
  681. {
  682. ip4_frags_ns_ctl_unregister(net);
  683. inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
  684. }
  685. static struct pernet_operations ip4_frags_ops = {
  686. .init = ipv4_frags_init_net,
  687. .exit = ipv4_frags_exit_net,
  688. };
  689. void __init ipfrag_init(void)
  690. {
  691. ip4_frags_ctl_register();
  692. register_pernet_subsys(&ip4_frags_ops);
  693. ip4_frags.hashfn = ip4_hashfn;
  694. ip4_frags.constructor = ip4_frag_init;
  695. ip4_frags.destructor = ip4_frag_free;
  696. ip4_frags.skb_free = NULL;
  697. ip4_frags.qsize = sizeof(struct ipq);
  698. ip4_frags.match = ip4_frag_match;
  699. ip4_frags.frag_expire = ip_expire;
  700. ip4_frags.secret_interval = 10 * 60 * HZ;
  701. inet_frags_init(&ip4_frags);
  702. }