dn_neigh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/slab.h>
  31. #include <linux/if_ether.h>
  32. #include <linux/init.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/string.h>
  35. #include <linux/netfilter_decnet.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/rcupdate.h>
  39. #include <linux/jhash.h>
  40. #include <asm/atomic.h>
  41. #include <net/net_namespace.h>
  42. #include <net/neighbour.h>
  43. #include <net/dst.h>
  44. #include <net/flow.h>
  45. #include <net/dn.h>
  46. #include <net/dn_dev.h>
  47. #include <net/dn_neigh.h>
  48. #include <net/dn_route.h>
  49. static int dn_neigh_construct(struct neighbour *);
  50. static void dn_long_error_report(struct neighbour *, struct sk_buff *);
  51. static void dn_short_error_report(struct neighbour *, struct sk_buff *);
  52. static int dn_long_output(struct sk_buff *);
  53. static int dn_short_output(struct sk_buff *);
  54. static int dn_phase3_output(struct sk_buff *);
  55. /*
  56. * For talking to broadcast devices: Ethernet & PPP
  57. */
  58. static const struct neigh_ops dn_long_ops = {
  59. .family = AF_DECnet,
  60. .error_report = dn_long_error_report,
  61. .output = dn_long_output,
  62. .connected_output = dn_long_output,
  63. .hh_output = dev_queue_xmit,
  64. .queue_xmit = dev_queue_xmit,
  65. };
  66. /*
  67. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  68. */
  69. static const struct neigh_ops dn_short_ops = {
  70. .family = AF_DECnet,
  71. .error_report = dn_short_error_report,
  72. .output = dn_short_output,
  73. .connected_output = dn_short_output,
  74. .hh_output = dev_queue_xmit,
  75. .queue_xmit = dev_queue_xmit,
  76. };
  77. /*
  78. * For talking to DECnet phase III nodes
  79. */
  80. static const struct neigh_ops dn_phase3_ops = {
  81. .family = AF_DECnet,
  82. .error_report = dn_short_error_report, /* Can use short version here */
  83. .output = dn_phase3_output,
  84. .connected_output = dn_phase3_output,
  85. .hh_output = dev_queue_xmit,
  86. .queue_xmit = dev_queue_xmit
  87. };
  88. static u32 dn_neigh_hash(const void *pkey,
  89. const struct net_device *dev,
  90. __u32 hash_rnd)
  91. {
  92. return jhash_2words(*(__u16 *)pkey, 0, hash_rnd);
  93. }
  94. struct neigh_table dn_neigh_table = {
  95. .family = PF_DECnet,
  96. .entry_size = sizeof(struct dn_neigh),
  97. .key_len = sizeof(__le16),
  98. .hash = dn_neigh_hash,
  99. .constructor = dn_neigh_construct,
  100. .id = "dn_neigh_cache",
  101. .parms ={
  102. .tbl = &dn_neigh_table,
  103. .base_reachable_time = 30 * HZ,
  104. .retrans_time = 1 * HZ,
  105. .gc_staletime = 60 * HZ,
  106. .reachable_time = 30 * HZ,
  107. .delay_probe_time = 5 * HZ,
  108. .queue_len = 3,
  109. .ucast_probes = 0,
  110. .app_probes = 0,
  111. .mcast_probes = 0,
  112. .anycast_delay = 0,
  113. .proxy_delay = 0,
  114. .proxy_qlen = 0,
  115. .locktime = 1 * HZ,
  116. },
  117. .gc_interval = 30 * HZ,
  118. .gc_thresh1 = 128,
  119. .gc_thresh2 = 512,
  120. .gc_thresh3 = 1024,
  121. };
  122. static int dn_neigh_construct(struct neighbour *neigh)
  123. {
  124. struct net_device *dev = neigh->dev;
  125. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  126. struct dn_dev *dn_db;
  127. struct neigh_parms *parms;
  128. rcu_read_lock();
  129. dn_db = rcu_dereference(dev->dn_ptr);
  130. if (dn_db == NULL) {
  131. rcu_read_unlock();
  132. return -EINVAL;
  133. }
  134. parms = dn_db->neigh_parms;
  135. if (!parms) {
  136. rcu_read_unlock();
  137. return -EINVAL;
  138. }
  139. __neigh_parms_put(neigh->parms);
  140. neigh->parms = neigh_parms_clone(parms);
  141. if (dn_db->use_long)
  142. neigh->ops = &dn_long_ops;
  143. else
  144. neigh->ops = &dn_short_ops;
  145. rcu_read_unlock();
  146. if (dn->flags & DN_NDFLAG_P3)
  147. neigh->ops = &dn_phase3_ops;
  148. neigh->nud_state = NUD_NOARP;
  149. neigh->output = neigh->ops->connected_output;
  150. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  151. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  152. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  153. dn_dn2eth(neigh->ha, dn->addr);
  154. else {
  155. if (net_ratelimit())
  156. printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
  157. return -EINVAL;
  158. }
  159. /*
  160. * Make an estimate of the remote block size by assuming that its
  161. * two less then the device mtu, which it true for ethernet (and
  162. * other things which support long format headers) since there is
  163. * an extra length field (of 16 bits) which isn't part of the
  164. * ethernet headers and which the DECnet specs won't admit is part
  165. * of the DECnet routing headers either.
  166. *
  167. * If we over estimate here its no big deal, the NSP negotiations
  168. * will prevent us from sending packets which are too large for the
  169. * remote node to handle. In any case this figure is normally updated
  170. * by a hello message in most cases.
  171. */
  172. dn->blksize = dev->mtu - 2;
  173. return 0;
  174. }
  175. static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
  176. {
  177. printk(KERN_DEBUG "dn_long_error_report: called\n");
  178. kfree_skb(skb);
  179. }
  180. static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
  181. {
  182. printk(KERN_DEBUG "dn_short_error_report: called\n");
  183. kfree_skb(skb);
  184. }
  185. static int dn_neigh_output_packet(struct sk_buff *skb)
  186. {
  187. struct dst_entry *dst = skb_dst(skb);
  188. struct dn_route *rt = (struct dn_route *)dst;
  189. struct neighbour *neigh = dst_get_neighbour(dst);
  190. struct net_device *dev = neigh->dev;
  191. char mac_addr[ETH_ALEN];
  192. dn_dn2eth(mac_addr, rt->rt_local_src);
  193. if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
  194. mac_addr, skb->len) >= 0)
  195. return neigh->ops->queue_xmit(skb);
  196. if (net_ratelimit())
  197. printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
  198. kfree_skb(skb);
  199. return -EINVAL;
  200. }
  201. static int dn_long_output(struct sk_buff *skb)
  202. {
  203. struct dst_entry *dst = skb_dst(skb);
  204. struct neighbour *neigh = dst_get_neighbour(dst);
  205. struct net_device *dev = neigh->dev;
  206. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  207. unsigned char *data;
  208. struct dn_long_packet *lp;
  209. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  210. if (skb_headroom(skb) < headroom) {
  211. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  212. if (skb2 == NULL) {
  213. if (net_ratelimit())
  214. printk(KERN_CRIT "dn_long_output: no memory\n");
  215. kfree_skb(skb);
  216. return -ENOBUFS;
  217. }
  218. kfree_skb(skb);
  219. skb = skb2;
  220. if (net_ratelimit())
  221. printk(KERN_INFO "dn_long_output: Increasing headroom\n");
  222. }
  223. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  224. lp = (struct dn_long_packet *)(data+3);
  225. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  226. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  227. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  228. lp->d_area = lp->d_subarea = 0;
  229. dn_dn2eth(lp->d_id, cb->dst);
  230. lp->s_area = lp->s_subarea = 0;
  231. dn_dn2eth(lp->s_id, cb->src);
  232. lp->nl2 = 0;
  233. lp->visit_ct = cb->hops & 0x3f;
  234. lp->s_class = 0;
  235. lp->pt = 0;
  236. skb_reset_network_header(skb);
  237. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  238. neigh->dev, dn_neigh_output_packet);
  239. }
  240. static int dn_short_output(struct sk_buff *skb)
  241. {
  242. struct dst_entry *dst = skb_dst(skb);
  243. struct neighbour *neigh = dst_get_neighbour(dst);
  244. struct net_device *dev = neigh->dev;
  245. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  246. struct dn_short_packet *sp;
  247. unsigned char *data;
  248. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  249. if (skb_headroom(skb) < headroom) {
  250. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  251. if (skb2 == NULL) {
  252. if (net_ratelimit())
  253. printk(KERN_CRIT "dn_short_output: no memory\n");
  254. kfree_skb(skb);
  255. return -ENOBUFS;
  256. }
  257. kfree_skb(skb);
  258. skb = skb2;
  259. if (net_ratelimit())
  260. printk(KERN_INFO "dn_short_output: Increasing headroom\n");
  261. }
  262. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  263. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  264. sp = (struct dn_short_packet *)(data+2);
  265. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  266. sp->dstnode = cb->dst;
  267. sp->srcnode = cb->src;
  268. sp->forward = cb->hops & 0x3f;
  269. skb_reset_network_header(skb);
  270. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  271. neigh->dev, dn_neigh_output_packet);
  272. }
  273. /*
  274. * Phase 3 output is the same is short output, execpt that
  275. * it clears the area bits before transmission.
  276. */
  277. static int dn_phase3_output(struct sk_buff *skb)
  278. {
  279. struct dst_entry *dst = skb_dst(skb);
  280. struct neighbour *neigh = dst_get_neighbour(dst);
  281. struct net_device *dev = neigh->dev;
  282. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  283. struct dn_short_packet *sp;
  284. unsigned char *data;
  285. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  286. if (skb_headroom(skb) < headroom) {
  287. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  288. if (skb2 == NULL) {
  289. if (net_ratelimit())
  290. printk(KERN_CRIT "dn_phase3_output: no memory\n");
  291. kfree_skb(skb);
  292. return -ENOBUFS;
  293. }
  294. kfree_skb(skb);
  295. skb = skb2;
  296. if (net_ratelimit())
  297. printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
  298. }
  299. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  300. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  301. sp = (struct dn_short_packet *)(data + 2);
  302. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  303. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  304. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  305. sp->forward = cb->hops & 0x3f;
  306. skb_reset_network_header(skb);
  307. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  308. neigh->dev, dn_neigh_output_packet);
  309. }
  310. /*
  311. * Unfortunately, the neighbour code uses the device in its hash
  312. * function, so we don't get any advantage from it. This function
  313. * basically does a neigh_lookup(), but without comparing the device
  314. * field. This is required for the On-Ethernet cache
  315. */
  316. /*
  317. * Pointopoint link receives a hello message
  318. */
  319. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  320. {
  321. kfree_skb(skb);
  322. }
  323. /*
  324. * Ethernet router hello message received
  325. */
  326. int dn_neigh_router_hello(struct sk_buff *skb)
  327. {
  328. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  329. struct neighbour *neigh;
  330. struct dn_neigh *dn;
  331. struct dn_dev *dn_db;
  332. __le16 src;
  333. src = dn_eth2dn(msg->id);
  334. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  335. dn = (struct dn_neigh *)neigh;
  336. if (neigh) {
  337. write_lock(&neigh->lock);
  338. neigh->used = jiffies;
  339. dn_db = rcu_dereference(neigh->dev->dn_ptr);
  340. if (!(neigh->nud_state & NUD_PERMANENT)) {
  341. neigh->updated = jiffies;
  342. if (neigh->dev->type == ARPHRD_ETHER)
  343. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  344. dn->blksize = le16_to_cpu(msg->blksize);
  345. dn->priority = msg->priority;
  346. dn->flags &= ~DN_NDFLAG_P3;
  347. switch(msg->iinfo & DN_RT_INFO_TYPE) {
  348. case DN_RT_INFO_L1RT:
  349. dn->flags &=~DN_NDFLAG_R2;
  350. dn->flags |= DN_NDFLAG_R1;
  351. break;
  352. case DN_RT_INFO_L2RT:
  353. dn->flags |= DN_NDFLAG_R2;
  354. }
  355. }
  356. /* Only use routers in our area */
  357. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  358. if (!dn_db->router) {
  359. dn_db->router = neigh_clone(neigh);
  360. } else {
  361. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  362. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  363. }
  364. }
  365. write_unlock(&neigh->lock);
  366. neigh_release(neigh);
  367. }
  368. kfree_skb(skb);
  369. return 0;
  370. }
  371. /*
  372. * Endnode hello message received
  373. */
  374. int dn_neigh_endnode_hello(struct sk_buff *skb)
  375. {
  376. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  377. struct neighbour *neigh;
  378. struct dn_neigh *dn;
  379. __le16 src;
  380. src = dn_eth2dn(msg->id);
  381. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  382. dn = (struct dn_neigh *)neigh;
  383. if (neigh) {
  384. write_lock(&neigh->lock);
  385. neigh->used = jiffies;
  386. if (!(neigh->nud_state & NUD_PERMANENT)) {
  387. neigh->updated = jiffies;
  388. if (neigh->dev->type == ARPHRD_ETHER)
  389. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  390. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  391. dn->blksize = le16_to_cpu(msg->blksize);
  392. dn->priority = 0;
  393. }
  394. write_unlock(&neigh->lock);
  395. neigh_release(neigh);
  396. }
  397. kfree_skb(skb);
  398. return 0;
  399. }
  400. static char *dn_find_slot(char *base, int max, int priority)
  401. {
  402. int i;
  403. unsigned char *min = NULL;
  404. base += 6; /* skip first id */
  405. for(i = 0; i < max; i++) {
  406. if (!min || (*base < *min))
  407. min = base;
  408. base += 7; /* find next priority */
  409. }
  410. if (!min)
  411. return NULL;
  412. return (*min < priority) ? (min - 6) : NULL;
  413. }
  414. struct elist_cb_state {
  415. struct net_device *dev;
  416. unsigned char *ptr;
  417. unsigned char *rs;
  418. int t, n;
  419. };
  420. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  421. {
  422. struct elist_cb_state *s = _info;
  423. struct dn_neigh *dn;
  424. if (neigh->dev != s->dev)
  425. return;
  426. dn = (struct dn_neigh *) neigh;
  427. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  428. return;
  429. if (s->t == s->n)
  430. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  431. else
  432. s->t++;
  433. if (s->rs == NULL)
  434. return;
  435. dn_dn2eth(s->rs, dn->addr);
  436. s->rs += 6;
  437. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  438. *(s->rs) |= dn->priority;
  439. s->rs++;
  440. }
  441. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  442. {
  443. struct elist_cb_state state;
  444. state.dev = dev;
  445. state.t = 0;
  446. state.n = n;
  447. state.ptr = ptr;
  448. state.rs = ptr;
  449. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  450. return state.t;
  451. }
  452. #ifdef CONFIG_PROC_FS
  453. static inline void dn_neigh_format_entry(struct seq_file *seq,
  454. struct neighbour *n)
  455. {
  456. struct dn_neigh *dn = (struct dn_neigh *) n;
  457. char buf[DN_ASCBUF_LEN];
  458. read_lock(&n->lock);
  459. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  460. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  461. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  462. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  463. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  464. dn->n.nud_state,
  465. atomic_read(&dn->n.refcnt),
  466. dn->blksize,
  467. (dn->n.dev) ? dn->n.dev->name : "?");
  468. read_unlock(&n->lock);
  469. }
  470. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  471. {
  472. if (v == SEQ_START_TOKEN) {
  473. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  474. } else {
  475. dn_neigh_format_entry(seq, v);
  476. }
  477. return 0;
  478. }
  479. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  480. {
  481. return neigh_seq_start(seq, pos, &dn_neigh_table,
  482. NEIGH_SEQ_NEIGH_ONLY);
  483. }
  484. static const struct seq_operations dn_neigh_seq_ops = {
  485. .start = dn_neigh_seq_start,
  486. .next = neigh_seq_next,
  487. .stop = neigh_seq_stop,
  488. .show = dn_neigh_seq_show,
  489. };
  490. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  491. {
  492. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  493. sizeof(struct neigh_seq_state));
  494. }
  495. static const struct file_operations dn_neigh_seq_fops = {
  496. .owner = THIS_MODULE,
  497. .open = dn_neigh_seq_open,
  498. .read = seq_read,
  499. .llseek = seq_lseek,
  500. .release = seq_release_net,
  501. };
  502. #endif
  503. void __init dn_neigh_init(void)
  504. {
  505. neigh_table_init(&dn_neigh_table);
  506. proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
  507. }
  508. void __exit dn_neigh_cleanup(void)
  509. {
  510. proc_net_remove(&init_net, "decnet_neigh");
  511. neigh_table_clear(&dn_neigh_table);
  512. }