readahead.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /*
  2. * mm/readahead.c - address_space-level file readahead.
  3. *
  4. * Copyright (C) 2002, Linus Torvalds
  5. *
  6. * 09Apr2002 Andrew Morton
  7. * Initial version.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/fs.h>
  11. #include <linux/gfp.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/task_io_accounting_ops.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/pagemap.h>
  19. /*
  20. * Initialise a struct file's readahead state. Assumes that the caller has
  21. * memset *ra to zero.
  22. */
  23. void
  24. file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  25. {
  26. ra->ra_pages = mapping->backing_dev_info->ra_pages;
  27. ra->prev_pos = -1;
  28. }
  29. EXPORT_SYMBOL_GPL(file_ra_state_init);
  30. #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
  31. /*
  32. * see if a page needs releasing upon read_cache_pages() failure
  33. * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  34. * before calling, such as the NFS fs marking pages that are cached locally
  35. * on disk, thus we need to give the fs a chance to clean up in the event of
  36. * an error
  37. */
  38. static void read_cache_pages_invalidate_page(struct address_space *mapping,
  39. struct page *page)
  40. {
  41. if (page_has_private(page)) {
  42. if (!trylock_page(page))
  43. BUG();
  44. page->mapping = mapping;
  45. do_invalidatepage(page, 0);
  46. page->mapping = NULL;
  47. unlock_page(page);
  48. }
  49. page_cache_release(page);
  50. }
  51. /*
  52. * release a list of pages, invalidating them first if need be
  53. */
  54. static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  55. struct list_head *pages)
  56. {
  57. struct page *victim;
  58. while (!list_empty(pages)) {
  59. victim = list_to_page(pages);
  60. list_del(&victim->lru);
  61. read_cache_pages_invalidate_page(mapping, victim);
  62. }
  63. }
  64. /**
  65. * read_cache_pages - populate an address space with some pages & start reads against them
  66. * @mapping: the address_space
  67. * @pages: The address of a list_head which contains the target pages. These
  68. * pages have their ->index populated and are otherwise uninitialised.
  69. * @filler: callback routine for filling a single page.
  70. * @data: private data for the callback routine.
  71. *
  72. * Hides the details of the LRU cache etc from the filesystems.
  73. */
  74. int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  75. int (*filler)(void *, struct page *), void *data)
  76. {
  77. struct page *page;
  78. int ret = 0;
  79. while (!list_empty(pages)) {
  80. page = list_to_page(pages);
  81. list_del(&page->lru);
  82. if (add_to_page_cache_lru(page, mapping,
  83. page->index, GFP_KERNEL)) {
  84. read_cache_pages_invalidate_page(mapping, page);
  85. continue;
  86. }
  87. page_cache_release(page);
  88. ret = filler(data, page);
  89. if (unlikely(ret)) {
  90. read_cache_pages_invalidate_pages(mapping, pages);
  91. break;
  92. }
  93. task_io_account_read(PAGE_CACHE_SIZE);
  94. }
  95. return ret;
  96. }
  97. EXPORT_SYMBOL(read_cache_pages);
  98. static int read_pages(struct address_space *mapping, struct file *filp,
  99. struct list_head *pages, unsigned nr_pages)
  100. {
  101. struct blk_plug plug;
  102. unsigned page_idx;
  103. int ret;
  104. blk_start_plug(&plug);
  105. if (mapping->a_ops->readpages) {
  106. ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
  107. /* Clean up the remaining pages */
  108. put_pages_list(pages);
  109. goto out;
  110. }
  111. for (page_idx = 0; page_idx < nr_pages; page_idx++) {
  112. struct page *page = list_to_page(pages);
  113. list_del(&page->lru);
  114. if (!add_to_page_cache_lru(page, mapping,
  115. page->index, GFP_KERNEL)) {
  116. mapping->a_ops->readpage(filp, page);
  117. }
  118. page_cache_release(page);
  119. }
  120. ret = 0;
  121. out:
  122. blk_finish_plug(&plug);
  123. return ret;
  124. }
  125. /*
  126. * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
  127. * the pages first, then submits them all for I/O. This avoids the very bad
  128. * behaviour which would occur if page allocations are causing VM writeback.
  129. * We really don't want to intermingle reads and writes like that.
  130. *
  131. * Returns the number of pages requested, or the maximum amount of I/O allowed.
  132. */
  133. static int
  134. __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
  135. pgoff_t offset, unsigned long nr_to_read,
  136. unsigned long lookahead_size)
  137. {
  138. struct inode *inode = mapping->host;
  139. struct page *page;
  140. unsigned long end_index; /* The last page we want to read */
  141. LIST_HEAD(page_pool);
  142. int page_idx;
  143. int ret = 0;
  144. loff_t isize = i_size_read(inode);
  145. if (isize == 0)
  146. goto out;
  147. end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  148. /*
  149. * Preallocate as many pages as we will need.
  150. */
  151. for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
  152. pgoff_t page_offset = offset + page_idx;
  153. if (page_offset > end_index)
  154. break;
  155. rcu_read_lock();
  156. page = radix_tree_lookup(&mapping->page_tree, page_offset);
  157. rcu_read_unlock();
  158. if (page)
  159. continue;
  160. page = page_cache_alloc_readahead(mapping);
  161. if (!page)
  162. break;
  163. page->index = page_offset;
  164. list_add(&page->lru, &page_pool);
  165. if (page_idx == nr_to_read - lookahead_size)
  166. SetPageReadahead(page);
  167. ret++;
  168. }
  169. /*
  170. * Now start the IO. We ignore I/O errors - if the page is not
  171. * uptodate then the caller will launch readpage again, and
  172. * will then handle the error.
  173. */
  174. if (ret)
  175. read_pages(mapping, filp, &page_pool, ret);
  176. BUG_ON(!list_empty(&page_pool));
  177. out:
  178. return ret;
  179. }
  180. /*
  181. * Chunk the readahead into 2 megabyte units, so that we don't pin too much
  182. * memory at once.
  183. */
  184. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  185. pgoff_t offset, unsigned long nr_to_read)
  186. {
  187. int ret = 0;
  188. if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
  189. return -EINVAL;
  190. nr_to_read = max_sane_readahead(nr_to_read);
  191. while (nr_to_read) {
  192. int err;
  193. unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
  194. if (this_chunk > nr_to_read)
  195. this_chunk = nr_to_read;
  196. err = __do_page_cache_readahead(mapping, filp,
  197. offset, this_chunk, 0);
  198. if (err < 0) {
  199. ret = err;
  200. break;
  201. }
  202. ret += err;
  203. offset += this_chunk;
  204. nr_to_read -= this_chunk;
  205. }
  206. return ret;
  207. }
  208. /*
  209. * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
  210. * sensible upper limit.
  211. */
  212. unsigned long max_sane_readahead(unsigned long nr)
  213. {
  214. return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
  215. + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
  216. }
  217. /*
  218. * Submit IO for the read-ahead request in file_ra_state.
  219. */
  220. unsigned long ra_submit(struct file_ra_state *ra,
  221. struct address_space *mapping, struct file *filp)
  222. {
  223. int actual;
  224. actual = __do_page_cache_readahead(mapping, filp,
  225. ra->start, ra->size, ra->async_size);
  226. return actual;
  227. }
  228. /*
  229. * Set the initial window size, round to next power of 2 and square
  230. * for small size, x 4 for medium, and x 2 for large
  231. * for 128k (32 page) max ra
  232. * 1-8 page = 32k initial, > 8 page = 128k initial
  233. */
  234. static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
  235. {
  236. unsigned long newsize = roundup_pow_of_two(size);
  237. if (newsize <= max / 32)
  238. newsize = newsize * 4;
  239. else if (newsize <= max / 4)
  240. newsize = newsize * 2;
  241. else
  242. newsize = max;
  243. return newsize;
  244. }
  245. /*
  246. * Get the previous window size, ramp it up, and
  247. * return it as the new window size.
  248. */
  249. static unsigned long get_next_ra_size(struct file_ra_state *ra,
  250. unsigned long max)
  251. {
  252. unsigned long cur = ra->size;
  253. unsigned long newsize;
  254. if (cur < max / 16)
  255. newsize = 4 * cur;
  256. else
  257. newsize = 2 * cur;
  258. return min(newsize, max);
  259. }
  260. /*
  261. * On-demand readahead design.
  262. *
  263. * The fields in struct file_ra_state represent the most-recently-executed
  264. * readahead attempt:
  265. *
  266. * |<----- async_size ---------|
  267. * |------------------- size -------------------->|
  268. * |==================#===========================|
  269. * ^start ^page marked with PG_readahead
  270. *
  271. * To overlap application thinking time and disk I/O time, we do
  272. * `readahead pipelining': Do not wait until the application consumed all
  273. * readahead pages and stalled on the missing page at readahead_index;
  274. * Instead, submit an asynchronous readahead I/O as soon as there are
  275. * only async_size pages left in the readahead window. Normally async_size
  276. * will be equal to size, for maximum pipelining.
  277. *
  278. * In interleaved sequential reads, concurrent streams on the same fd can
  279. * be invalidating each other's readahead state. So we flag the new readahead
  280. * page at (start+size-async_size) with PG_readahead, and use it as readahead
  281. * indicator. The flag won't be set on already cached pages, to avoid the
  282. * readahead-for-nothing fuss, saving pointless page cache lookups.
  283. *
  284. * prev_pos tracks the last visited byte in the _previous_ read request.
  285. * It should be maintained by the caller, and will be used for detecting
  286. * small random reads. Note that the readahead algorithm checks loosely
  287. * for sequential patterns. Hence interleaved reads might be served as
  288. * sequential ones.
  289. *
  290. * There is a special-case: if the first page which the application tries to
  291. * read happens to be the first page of the file, it is assumed that a linear
  292. * read is about to happen and the window is immediately set to the initial size
  293. * based on I/O request size and the max_readahead.
  294. *
  295. * The code ramps up the readahead size aggressively at first, but slow down as
  296. * it approaches max_readhead.
  297. */
  298. /*
  299. * Count contiguously cached pages from @offset-1 to @offset-@max,
  300. * this count is a conservative estimation of
  301. * - length of the sequential read sequence, or
  302. * - thrashing threshold in memory tight systems
  303. */
  304. static pgoff_t count_history_pages(struct address_space *mapping,
  305. struct file_ra_state *ra,
  306. pgoff_t offset, unsigned long max)
  307. {
  308. pgoff_t head;
  309. rcu_read_lock();
  310. head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
  311. rcu_read_unlock();
  312. return offset - 1 - head;
  313. }
  314. /*
  315. * page cache context based read-ahead
  316. */
  317. static int try_context_readahead(struct address_space *mapping,
  318. struct file_ra_state *ra,
  319. pgoff_t offset,
  320. unsigned long req_size,
  321. unsigned long max)
  322. {
  323. pgoff_t size;
  324. size = count_history_pages(mapping, ra, offset, max);
  325. /*
  326. * no history pages:
  327. * it could be a random read
  328. */
  329. if (!size)
  330. return 0;
  331. /*
  332. * starts from beginning of file:
  333. * it is a strong indication of long-run stream (or whole-file-read)
  334. */
  335. if (size >= offset)
  336. size *= 2;
  337. ra->start = offset;
  338. ra->size = get_init_ra_size(size + req_size, max);
  339. ra->async_size = ra->size;
  340. return 1;
  341. }
  342. /*
  343. * A minimal readahead algorithm for trivial sequential/random reads.
  344. */
  345. static unsigned long
  346. ondemand_readahead(struct address_space *mapping,
  347. struct file_ra_state *ra, struct file *filp,
  348. bool hit_readahead_marker, pgoff_t offset,
  349. unsigned long req_size)
  350. {
  351. unsigned long max = max_sane_readahead(ra->ra_pages);
  352. /*
  353. * start of file
  354. */
  355. if (!offset)
  356. goto initial_readahead;
  357. /*
  358. * It's the expected callback offset, assume sequential access.
  359. * Ramp up sizes, and push forward the readahead window.
  360. */
  361. if ((offset == (ra->start + ra->size - ra->async_size) ||
  362. offset == (ra->start + ra->size))) {
  363. ra->start += ra->size;
  364. ra->size = get_next_ra_size(ra, max);
  365. ra->async_size = ra->size;
  366. goto readit;
  367. }
  368. /*
  369. * Hit a marked page without valid readahead state.
  370. * E.g. interleaved reads.
  371. * Query the pagecache for async_size, which normally equals to
  372. * readahead size. Ramp it up and use it as the new readahead size.
  373. */
  374. if (hit_readahead_marker) {
  375. pgoff_t start;
  376. rcu_read_lock();
  377. start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
  378. rcu_read_unlock();
  379. if (!start || start - offset > max)
  380. return 0;
  381. ra->start = start;
  382. ra->size = start - offset; /* old async_size */
  383. ra->size += req_size;
  384. ra->size = get_next_ra_size(ra, max);
  385. ra->async_size = ra->size;
  386. goto readit;
  387. }
  388. /*
  389. * oversize read
  390. */
  391. if (req_size > max)
  392. goto initial_readahead;
  393. /*
  394. * sequential cache miss
  395. */
  396. if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
  397. goto initial_readahead;
  398. /*
  399. * Query the page cache and look for the traces(cached history pages)
  400. * that a sequential stream would leave behind.
  401. */
  402. if (try_context_readahead(mapping, ra, offset, req_size, max))
  403. goto readit;
  404. /*
  405. * standalone, small random read
  406. * Read as is, and do not pollute the readahead state.
  407. */
  408. return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
  409. initial_readahead:
  410. ra->start = offset;
  411. ra->size = get_init_ra_size(req_size, max);
  412. ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
  413. readit:
  414. /*
  415. * Will this read hit the readahead marker made by itself?
  416. * If so, trigger the readahead marker hit now, and merge
  417. * the resulted next readahead window into the current one.
  418. */
  419. if (offset == ra->start && ra->size == ra->async_size) {
  420. ra->async_size = get_next_ra_size(ra, max);
  421. ra->size += ra->async_size;
  422. }
  423. return ra_submit(ra, mapping, filp);
  424. }
  425. /**
  426. * page_cache_sync_readahead - generic file readahead
  427. * @mapping: address_space which holds the pagecache and I/O vectors
  428. * @ra: file_ra_state which holds the readahead state
  429. * @filp: passed on to ->readpage() and ->readpages()
  430. * @offset: start offset into @mapping, in pagecache page-sized units
  431. * @req_size: hint: total size of the read which the caller is performing in
  432. * pagecache pages
  433. *
  434. * page_cache_sync_readahead() should be called when a cache miss happened:
  435. * it will submit the read. The readahead logic may decide to piggyback more
  436. * pages onto the read request if access patterns suggest it will improve
  437. * performance.
  438. */
  439. void page_cache_sync_readahead(struct address_space *mapping,
  440. struct file_ra_state *ra, struct file *filp,
  441. pgoff_t offset, unsigned long req_size)
  442. {
  443. /* no read-ahead */
  444. if (!ra->ra_pages)
  445. return;
  446. /* be dumb */
  447. if (filp && (filp->f_mode & FMODE_RANDOM)) {
  448. force_page_cache_readahead(mapping, filp, offset, req_size);
  449. return;
  450. }
  451. /* do read-ahead */
  452. ondemand_readahead(mapping, ra, filp, false, offset, req_size);
  453. }
  454. EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
  455. /**
  456. * page_cache_async_readahead - file readahead for marked pages
  457. * @mapping: address_space which holds the pagecache and I/O vectors
  458. * @ra: file_ra_state which holds the readahead state
  459. * @filp: passed on to ->readpage() and ->readpages()
  460. * @page: the page at @offset which has the PG_readahead flag set
  461. * @offset: start offset into @mapping, in pagecache page-sized units
  462. * @req_size: hint: total size of the read which the caller is performing in
  463. * pagecache pages
  464. *
  465. * page_cache_async_readahead() should be called when a page is used which
  466. * has the PG_readahead flag; this is a marker to suggest that the application
  467. * has used up enough of the readahead window that we should start pulling in
  468. * more pages.
  469. */
  470. void
  471. page_cache_async_readahead(struct address_space *mapping,
  472. struct file_ra_state *ra, struct file *filp,
  473. struct page *page, pgoff_t offset,
  474. unsigned long req_size)
  475. {
  476. /* no read-ahead */
  477. if (!ra->ra_pages)
  478. return;
  479. /*
  480. * Same bit is used for PG_readahead and PG_reclaim.
  481. */
  482. if (PageWriteback(page))
  483. return;
  484. ClearPageReadahead(page);
  485. /*
  486. * Defer asynchronous read-ahead on IO congestion.
  487. */
  488. if (bdi_read_congested(mapping->backing_dev_info))
  489. return;
  490. /* do read-ahead */
  491. ondemand_readahead(mapping, ra, filp, true, offset, req_size);
  492. }
  493. EXPORT_SYMBOL_GPL(page_cache_async_readahead);