page_alloc.c 159 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/div64.h>
  61. #include "internal.h"
  62. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  63. DEFINE_PER_CPU(int, numa_node);
  64. EXPORT_PER_CPU_SYMBOL(numa_node);
  65. #endif
  66. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  67. /*
  68. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  69. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  70. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  71. * defined in <linux/topology.h>.
  72. */
  73. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  74. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  75. #endif
  76. /*
  77. * Array of node states.
  78. */
  79. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  80. [N_POSSIBLE] = NODE_MASK_ALL,
  81. [N_ONLINE] = { { [0] = 1UL } },
  82. #ifndef CONFIG_NUMA
  83. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  84. #ifdef CONFIG_HIGHMEM
  85. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  86. #endif
  87. [N_CPU] = { { [0] = 1UL } },
  88. #endif /* NUMA */
  89. };
  90. EXPORT_SYMBOL(node_states);
  91. unsigned long totalram_pages __read_mostly;
  92. unsigned long totalreserve_pages __read_mostly;
  93. int percpu_pagelist_fraction;
  94. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  95. #ifdef CONFIG_PM_SLEEP
  96. /*
  97. * The following functions are used by the suspend/hibernate code to temporarily
  98. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  99. * while devices are suspended. To avoid races with the suspend/hibernate code,
  100. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  101. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  102. * guaranteed not to run in parallel with that modification).
  103. */
  104. static gfp_t saved_gfp_mask;
  105. void pm_restore_gfp_mask(void)
  106. {
  107. WARN_ON(!mutex_is_locked(&pm_mutex));
  108. if (saved_gfp_mask) {
  109. gfp_allowed_mask = saved_gfp_mask;
  110. saved_gfp_mask = 0;
  111. }
  112. }
  113. void pm_restrict_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. WARN_ON(saved_gfp_mask);
  117. saved_gfp_mask = gfp_allowed_mask;
  118. gfp_allowed_mask &= ~GFP_IOFS;
  119. }
  120. static bool pm_suspending(void)
  121. {
  122. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  123. return false;
  124. return true;
  125. }
  126. #else
  127. static bool pm_suspending(void)
  128. {
  129. return false;
  130. }
  131. #endif /* CONFIG_PM_SLEEP */
  132. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  133. int pageblock_order __read_mostly;
  134. #endif
  135. static void __free_pages_ok(struct page *page, unsigned int order);
  136. /*
  137. * results with 256, 32 in the lowmem_reserve sysctl:
  138. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  139. * 1G machine -> (16M dma, 784M normal, 224M high)
  140. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  141. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  142. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  143. *
  144. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  145. * don't need any ZONE_NORMAL reservation
  146. */
  147. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  148. #ifdef CONFIG_ZONE_DMA
  149. 256,
  150. #endif
  151. #ifdef CONFIG_ZONE_DMA32
  152. 256,
  153. #endif
  154. #ifdef CONFIG_HIGHMEM
  155. 32,
  156. #endif
  157. 32,
  158. };
  159. EXPORT_SYMBOL(totalram_pages);
  160. static char * const zone_names[MAX_NR_ZONES] = {
  161. #ifdef CONFIG_ZONE_DMA
  162. "DMA",
  163. #endif
  164. #ifdef CONFIG_ZONE_DMA32
  165. "DMA32",
  166. #endif
  167. "Normal",
  168. #ifdef CONFIG_HIGHMEM
  169. "HighMem",
  170. #endif
  171. "Movable",
  172. };
  173. int min_free_kbytes = 1024;
  174. int min_free_order_shift = 1;
  175. static unsigned long __meminitdata nr_kernel_pages;
  176. static unsigned long __meminitdata nr_all_pages;
  177. static unsigned long __meminitdata dma_reserve;
  178. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  179. /*
  180. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  181. * ranges of memory (RAM) that may be registered with add_active_range().
  182. * Ranges passed to add_active_range() will be merged if possible
  183. * so the number of times add_active_range() can be called is
  184. * related to the number of nodes and the number of holes
  185. */
  186. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  187. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  188. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  189. #else
  190. #if MAX_NUMNODES >= 32
  191. /* If there can be many nodes, allow up to 50 holes per node */
  192. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  193. #else
  194. /* By default, allow up to 256 distinct regions */
  195. #define MAX_ACTIVE_REGIONS 256
  196. #endif
  197. #endif
  198. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  199. static int __meminitdata nr_nodemap_entries;
  200. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  201. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  202. static unsigned long __initdata required_kernelcore;
  203. static unsigned long __initdata required_movablecore;
  204. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  205. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  206. int movable_zone;
  207. EXPORT_SYMBOL(movable_zone);
  208. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  209. #if MAX_NUMNODES > 1
  210. int nr_node_ids __read_mostly = MAX_NUMNODES;
  211. int nr_online_nodes __read_mostly = 1;
  212. EXPORT_SYMBOL(nr_node_ids);
  213. EXPORT_SYMBOL(nr_online_nodes);
  214. #endif
  215. int page_group_by_mobility_disabled __read_mostly;
  216. static void set_pageblock_migratetype(struct page *page, int migratetype)
  217. {
  218. if (unlikely(page_group_by_mobility_disabled))
  219. migratetype = MIGRATE_UNMOVABLE;
  220. set_pageblock_flags_group(page, (unsigned long)migratetype,
  221. PB_migrate, PB_migrate_end);
  222. }
  223. bool oom_killer_disabled __read_mostly;
  224. #ifdef CONFIG_DEBUG_VM
  225. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  226. {
  227. int ret = 0;
  228. unsigned seq;
  229. unsigned long pfn = page_to_pfn(page);
  230. do {
  231. seq = zone_span_seqbegin(zone);
  232. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  233. ret = 1;
  234. else if (pfn < zone->zone_start_pfn)
  235. ret = 1;
  236. } while (zone_span_seqretry(zone, seq));
  237. return ret;
  238. }
  239. static int page_is_consistent(struct zone *zone, struct page *page)
  240. {
  241. if (!pfn_valid_within(page_to_pfn(page)))
  242. return 0;
  243. if (zone != page_zone(page))
  244. return 0;
  245. return 1;
  246. }
  247. /*
  248. * Temporary debugging check for pages not lying within a given zone.
  249. */
  250. static int bad_range(struct zone *zone, struct page *page)
  251. {
  252. if (page_outside_zone_boundaries(zone, page))
  253. return 1;
  254. if (!page_is_consistent(zone, page))
  255. return 1;
  256. return 0;
  257. }
  258. #else
  259. static inline int bad_range(struct zone *zone, struct page *page)
  260. {
  261. return 0;
  262. }
  263. #endif
  264. static void bad_page(struct page *page)
  265. {
  266. static unsigned long resume;
  267. static unsigned long nr_shown;
  268. static unsigned long nr_unshown;
  269. /* Don't complain about poisoned pages */
  270. if (PageHWPoison(page)) {
  271. reset_page_mapcount(page); /* remove PageBuddy */
  272. return;
  273. }
  274. /*
  275. * Allow a burst of 60 reports, then keep quiet for that minute;
  276. * or allow a steady drip of one report per second.
  277. */
  278. if (nr_shown == 60) {
  279. if (time_before(jiffies, resume)) {
  280. nr_unshown++;
  281. goto out;
  282. }
  283. if (nr_unshown) {
  284. printk(KERN_ALERT
  285. "BUG: Bad page state: %lu messages suppressed\n",
  286. nr_unshown);
  287. nr_unshown = 0;
  288. }
  289. nr_shown = 0;
  290. }
  291. if (nr_shown++ == 0)
  292. resume = jiffies + 60 * HZ;
  293. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  294. current->comm, page_to_pfn(page));
  295. dump_page(page);
  296. dump_stack();
  297. out:
  298. /* Leave bad fields for debug, except PageBuddy could make trouble */
  299. reset_page_mapcount(page); /* remove PageBuddy */
  300. add_taint(TAINT_BAD_PAGE);
  301. }
  302. /*
  303. * Higher-order pages are called "compound pages". They are structured thusly:
  304. *
  305. * The first PAGE_SIZE page is called the "head page".
  306. *
  307. * The remaining PAGE_SIZE pages are called "tail pages".
  308. *
  309. * All pages have PG_compound set. All pages have their ->private pointing at
  310. * the head page (even the head page has this).
  311. *
  312. * The first tail page's ->lru.next holds the address of the compound page's
  313. * put_page() function. Its ->lru.prev holds the order of allocation.
  314. * This usage means that zero-order pages may not be compound.
  315. */
  316. static void free_compound_page(struct page *page)
  317. {
  318. __free_pages_ok(page, compound_order(page));
  319. }
  320. void prep_compound_page(struct page *page, unsigned long order)
  321. {
  322. int i;
  323. int nr_pages = 1 << order;
  324. set_compound_page_dtor(page, free_compound_page);
  325. set_compound_order(page, order);
  326. __SetPageHead(page);
  327. for (i = 1; i < nr_pages; i++) {
  328. struct page *p = page + i;
  329. __SetPageTail(p);
  330. set_page_count(p, 0);
  331. p->first_page = page;
  332. }
  333. }
  334. /* update __split_huge_page_refcount if you change this function */
  335. static int destroy_compound_page(struct page *page, unsigned long order)
  336. {
  337. int i;
  338. int nr_pages = 1 << order;
  339. int bad = 0;
  340. if (unlikely(compound_order(page) != order) ||
  341. unlikely(!PageHead(page))) {
  342. bad_page(page);
  343. bad++;
  344. }
  345. __ClearPageHead(page);
  346. for (i = 1; i < nr_pages; i++) {
  347. struct page *p = page + i;
  348. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  349. bad_page(page);
  350. bad++;
  351. }
  352. __ClearPageTail(p);
  353. }
  354. return bad;
  355. }
  356. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  357. {
  358. int i;
  359. /*
  360. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  361. * and __GFP_HIGHMEM from hard or soft interrupt context.
  362. */
  363. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  364. for (i = 0; i < (1 << order); i++)
  365. clear_highpage(page + i);
  366. }
  367. static inline void set_page_order(struct page *page, int order)
  368. {
  369. set_page_private(page, order);
  370. __SetPageBuddy(page);
  371. }
  372. static inline void rmv_page_order(struct page *page)
  373. {
  374. __ClearPageBuddy(page);
  375. set_page_private(page, 0);
  376. }
  377. /*
  378. * Locate the struct page for both the matching buddy in our
  379. * pair (buddy1) and the combined O(n+1) page they form (page).
  380. *
  381. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  382. * the following equation:
  383. * B2 = B1 ^ (1 << O)
  384. * For example, if the starting buddy (buddy2) is #8 its order
  385. * 1 buddy is #10:
  386. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  387. *
  388. * 2) Any buddy B will have an order O+1 parent P which
  389. * satisfies the following equation:
  390. * P = B & ~(1 << O)
  391. *
  392. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  393. */
  394. static inline unsigned long
  395. __find_buddy_index(unsigned long page_idx, unsigned int order)
  396. {
  397. return page_idx ^ (1 << order);
  398. }
  399. /*
  400. * This function checks whether a page is free && is the buddy
  401. * we can do coalesce a page and its buddy if
  402. * (a) the buddy is not in a hole &&
  403. * (b) the buddy is in the buddy system &&
  404. * (c) a page and its buddy have the same order &&
  405. * (d) a page and its buddy are in the same zone.
  406. *
  407. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  408. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  409. *
  410. * For recording page's order, we use page_private(page).
  411. */
  412. static inline int page_is_buddy(struct page *page, struct page *buddy,
  413. int order)
  414. {
  415. if (!pfn_valid_within(page_to_pfn(buddy)))
  416. return 0;
  417. if (page_zone_id(page) != page_zone_id(buddy))
  418. return 0;
  419. if (PageBuddy(buddy) && page_order(buddy) == order) {
  420. VM_BUG_ON(page_count(buddy) != 0);
  421. return 1;
  422. }
  423. return 0;
  424. }
  425. /*
  426. * Freeing function for a buddy system allocator.
  427. *
  428. * The concept of a buddy system is to maintain direct-mapped table
  429. * (containing bit values) for memory blocks of various "orders".
  430. * The bottom level table contains the map for the smallest allocatable
  431. * units of memory (here, pages), and each level above it describes
  432. * pairs of units from the levels below, hence, "buddies".
  433. * At a high level, all that happens here is marking the table entry
  434. * at the bottom level available, and propagating the changes upward
  435. * as necessary, plus some accounting needed to play nicely with other
  436. * parts of the VM system.
  437. * At each level, we keep a list of pages, which are heads of continuous
  438. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  439. * order is recorded in page_private(page) field.
  440. * So when we are allocating or freeing one, we can derive the state of the
  441. * other. That is, if we allocate a small block, and both were
  442. * free, the remainder of the region must be split into blocks.
  443. * If a block is freed, and its buddy is also free, then this
  444. * triggers coalescing into a block of larger size.
  445. *
  446. * -- wli
  447. */
  448. static inline void __free_one_page(struct page *page,
  449. struct zone *zone, unsigned int order,
  450. int migratetype)
  451. {
  452. unsigned long page_idx;
  453. unsigned long combined_idx;
  454. unsigned long uninitialized_var(buddy_idx);
  455. struct page *buddy;
  456. if (unlikely(PageCompound(page)))
  457. if (unlikely(destroy_compound_page(page, order)))
  458. return;
  459. VM_BUG_ON(migratetype == -1);
  460. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  461. VM_BUG_ON(page_idx & ((1 << order) - 1));
  462. VM_BUG_ON(bad_range(zone, page));
  463. while (order < MAX_ORDER-1) {
  464. buddy_idx = __find_buddy_index(page_idx, order);
  465. buddy = page + (buddy_idx - page_idx);
  466. if (!page_is_buddy(page, buddy, order))
  467. break;
  468. /* Our buddy is free, merge with it and move up one order. */
  469. list_del(&buddy->lru);
  470. zone->free_area[order].nr_free--;
  471. rmv_page_order(buddy);
  472. combined_idx = buddy_idx & page_idx;
  473. page = page + (combined_idx - page_idx);
  474. page_idx = combined_idx;
  475. order++;
  476. }
  477. set_page_order(page, order);
  478. /*
  479. * If this is not the largest possible page, check if the buddy
  480. * of the next-highest order is free. If it is, it's possible
  481. * that pages are being freed that will coalesce soon. In case,
  482. * that is happening, add the free page to the tail of the list
  483. * so it's less likely to be used soon and more likely to be merged
  484. * as a higher order page
  485. */
  486. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  487. struct page *higher_page, *higher_buddy;
  488. combined_idx = buddy_idx & page_idx;
  489. higher_page = page + (combined_idx - page_idx);
  490. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  491. higher_buddy = page + (buddy_idx - combined_idx);
  492. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  493. list_add_tail(&page->lru,
  494. &zone->free_area[order].free_list[migratetype]);
  495. goto out;
  496. }
  497. }
  498. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  499. out:
  500. zone->free_area[order].nr_free++;
  501. }
  502. /*
  503. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  504. * Page should not be on lru, so no need to fix that up.
  505. * free_pages_check() will verify...
  506. */
  507. static inline void free_page_mlock(struct page *page)
  508. {
  509. __dec_zone_page_state(page, NR_MLOCK);
  510. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  511. }
  512. static inline int free_pages_check(struct page *page)
  513. {
  514. if (unlikely(page_mapcount(page) |
  515. (page->mapping != NULL) |
  516. (atomic_read(&page->_count) != 0) |
  517. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  518. (mem_cgroup_bad_page_check(page)))) {
  519. bad_page(page);
  520. return 1;
  521. }
  522. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  523. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  524. return 0;
  525. }
  526. /*
  527. * Frees a number of pages from the PCP lists
  528. * Assumes all pages on list are in same zone, and of same order.
  529. * count is the number of pages to free.
  530. *
  531. * If the zone was previously in an "all pages pinned" state then look to
  532. * see if this freeing clears that state.
  533. *
  534. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  535. * pinned" detection logic.
  536. */
  537. static void free_pcppages_bulk(struct zone *zone, int count,
  538. struct per_cpu_pages *pcp)
  539. {
  540. int migratetype = 0;
  541. int batch_free = 0;
  542. int to_free = count;
  543. spin_lock(&zone->lock);
  544. zone->all_unreclaimable = 0;
  545. zone->pages_scanned = 0;
  546. while (to_free) {
  547. struct page *page;
  548. struct list_head *list;
  549. /*
  550. * Remove pages from lists in a round-robin fashion. A
  551. * batch_free count is maintained that is incremented when an
  552. * empty list is encountered. This is so more pages are freed
  553. * off fuller lists instead of spinning excessively around empty
  554. * lists
  555. */
  556. do {
  557. batch_free++;
  558. if (++migratetype == MIGRATE_PCPTYPES)
  559. migratetype = 0;
  560. list = &pcp->lists[migratetype];
  561. } while (list_empty(list));
  562. /* This is the only non-empty list. Free them all. */
  563. if (batch_free == MIGRATE_PCPTYPES)
  564. batch_free = to_free;
  565. do {
  566. page = list_entry(list->prev, struct page, lru);
  567. /* must delete as __free_one_page list manipulates */
  568. list_del(&page->lru);
  569. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  570. __free_one_page(page, zone, 0, page_private(page));
  571. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  572. } while (--to_free && --batch_free && !list_empty(list));
  573. }
  574. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  575. spin_unlock(&zone->lock);
  576. }
  577. static void free_one_page(struct zone *zone, struct page *page, int order,
  578. int migratetype)
  579. {
  580. spin_lock(&zone->lock);
  581. zone->all_unreclaimable = 0;
  582. zone->pages_scanned = 0;
  583. __free_one_page(page, zone, order, migratetype);
  584. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  585. spin_unlock(&zone->lock);
  586. }
  587. static bool free_pages_prepare(struct page *page, unsigned int order)
  588. {
  589. int i;
  590. int bad = 0;
  591. trace_mm_page_free_direct(page, order);
  592. kmemcheck_free_shadow(page, order);
  593. if (PageAnon(page))
  594. page->mapping = NULL;
  595. for (i = 0; i < (1 << order); i++)
  596. bad += free_pages_check(page + i);
  597. if (bad)
  598. return false;
  599. if (!PageHighMem(page)) {
  600. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  601. debug_check_no_obj_freed(page_address(page),
  602. PAGE_SIZE << order);
  603. }
  604. arch_free_page(page, order);
  605. kernel_map_pages(page, 1 << order, 0);
  606. return true;
  607. }
  608. static void __free_pages_ok(struct page *page, unsigned int order)
  609. {
  610. unsigned long flags;
  611. int wasMlocked = __TestClearPageMlocked(page);
  612. if (!free_pages_prepare(page, order))
  613. return;
  614. local_irq_save(flags);
  615. if (unlikely(wasMlocked))
  616. free_page_mlock(page);
  617. __count_vm_events(PGFREE, 1 << order);
  618. free_one_page(page_zone(page), page, order,
  619. get_pageblock_migratetype(page));
  620. local_irq_restore(flags);
  621. }
  622. /*
  623. * permit the bootmem allocator to evade page validation on high-order frees
  624. */
  625. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  626. {
  627. if (order == 0) {
  628. __ClearPageReserved(page);
  629. set_page_count(page, 0);
  630. set_page_refcounted(page);
  631. __free_page(page);
  632. } else {
  633. int loop;
  634. prefetchw(page);
  635. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  636. struct page *p = &page[loop];
  637. if (loop + 1 < BITS_PER_LONG)
  638. prefetchw(p + 1);
  639. __ClearPageReserved(p);
  640. set_page_count(p, 0);
  641. }
  642. set_page_refcounted(page);
  643. __free_pages(page, order);
  644. }
  645. }
  646. /*
  647. * The order of subdivision here is critical for the IO subsystem.
  648. * Please do not alter this order without good reasons and regression
  649. * testing. Specifically, as large blocks of memory are subdivided,
  650. * the order in which smaller blocks are delivered depends on the order
  651. * they're subdivided in this function. This is the primary factor
  652. * influencing the order in which pages are delivered to the IO
  653. * subsystem according to empirical testing, and this is also justified
  654. * by considering the behavior of a buddy system containing a single
  655. * large block of memory acted on by a series of small allocations.
  656. * This behavior is a critical factor in sglist merging's success.
  657. *
  658. * -- wli
  659. */
  660. static inline void expand(struct zone *zone, struct page *page,
  661. int low, int high, struct free_area *area,
  662. int migratetype)
  663. {
  664. unsigned long size = 1 << high;
  665. while (high > low) {
  666. area--;
  667. high--;
  668. size >>= 1;
  669. VM_BUG_ON(bad_range(zone, &page[size]));
  670. list_add(&page[size].lru, &area->free_list[migratetype]);
  671. area->nr_free++;
  672. set_page_order(&page[size], high);
  673. }
  674. }
  675. /*
  676. * This page is about to be returned from the page allocator
  677. */
  678. static inline int check_new_page(struct page *page)
  679. {
  680. if (unlikely(page_mapcount(page) |
  681. (page->mapping != NULL) |
  682. (atomic_read(&page->_count) != 0) |
  683. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  684. (mem_cgroup_bad_page_check(page)))) {
  685. bad_page(page);
  686. return 1;
  687. }
  688. return 0;
  689. }
  690. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  691. {
  692. int i;
  693. for (i = 0; i < (1 << order); i++) {
  694. struct page *p = page + i;
  695. if (unlikely(check_new_page(p)))
  696. return 1;
  697. }
  698. set_page_private(page, 0);
  699. set_page_refcounted(page);
  700. arch_alloc_page(page, order);
  701. kernel_map_pages(page, 1 << order, 1);
  702. if (gfp_flags & __GFP_ZERO)
  703. prep_zero_page(page, order, gfp_flags);
  704. if (order && (gfp_flags & __GFP_COMP))
  705. prep_compound_page(page, order);
  706. return 0;
  707. }
  708. /*
  709. * Go through the free lists for the given migratetype and remove
  710. * the smallest available page from the freelists
  711. */
  712. static inline
  713. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  714. int migratetype)
  715. {
  716. unsigned int current_order;
  717. struct free_area * area;
  718. struct page *page;
  719. /* Find a page of the appropriate size in the preferred list */
  720. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  721. area = &(zone->free_area[current_order]);
  722. if (list_empty(&area->free_list[migratetype]))
  723. continue;
  724. page = list_entry(area->free_list[migratetype].next,
  725. struct page, lru);
  726. list_del(&page->lru);
  727. rmv_page_order(page);
  728. area->nr_free--;
  729. expand(zone, page, order, current_order, area, migratetype);
  730. return page;
  731. }
  732. return NULL;
  733. }
  734. /*
  735. * This array describes the order lists are fallen back to when
  736. * the free lists for the desirable migrate type are depleted
  737. */
  738. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  739. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  740. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  741. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  742. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  743. };
  744. /*
  745. * Move the free pages in a range to the free lists of the requested type.
  746. * Note that start_page and end_pages are not aligned on a pageblock
  747. * boundary. If alignment is required, use move_freepages_block()
  748. */
  749. static int move_freepages(struct zone *zone,
  750. struct page *start_page, struct page *end_page,
  751. int migratetype)
  752. {
  753. struct page *page;
  754. unsigned long order;
  755. int pages_moved = 0;
  756. #ifndef CONFIG_HOLES_IN_ZONE
  757. /*
  758. * page_zone is not safe to call in this context when
  759. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  760. * anyway as we check zone boundaries in move_freepages_block().
  761. * Remove at a later date when no bug reports exist related to
  762. * grouping pages by mobility
  763. */
  764. BUG_ON(page_zone(start_page) != page_zone(end_page));
  765. #endif
  766. for (page = start_page; page <= end_page;) {
  767. /* Make sure we are not inadvertently changing nodes */
  768. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  769. if (!pfn_valid_within(page_to_pfn(page))) {
  770. page++;
  771. continue;
  772. }
  773. if (!PageBuddy(page)) {
  774. page++;
  775. continue;
  776. }
  777. order = page_order(page);
  778. list_move(&page->lru,
  779. &zone->free_area[order].free_list[migratetype]);
  780. page += 1 << order;
  781. pages_moved += 1 << order;
  782. }
  783. return pages_moved;
  784. }
  785. static int move_freepages_block(struct zone *zone, struct page *page,
  786. int migratetype)
  787. {
  788. unsigned long start_pfn, end_pfn;
  789. struct page *start_page, *end_page;
  790. start_pfn = page_to_pfn(page);
  791. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  792. start_page = pfn_to_page(start_pfn);
  793. end_page = start_page + pageblock_nr_pages - 1;
  794. end_pfn = start_pfn + pageblock_nr_pages - 1;
  795. /* Do not cross zone boundaries */
  796. if (start_pfn < zone->zone_start_pfn)
  797. start_page = page;
  798. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  799. return 0;
  800. return move_freepages(zone, start_page, end_page, migratetype);
  801. }
  802. static void change_pageblock_range(struct page *pageblock_page,
  803. int start_order, int migratetype)
  804. {
  805. int nr_pageblocks = 1 << (start_order - pageblock_order);
  806. while (nr_pageblocks--) {
  807. set_pageblock_migratetype(pageblock_page, migratetype);
  808. pageblock_page += pageblock_nr_pages;
  809. }
  810. }
  811. /* Remove an element from the buddy allocator from the fallback list */
  812. static inline struct page *
  813. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  814. {
  815. struct free_area * area;
  816. int current_order;
  817. struct page *page;
  818. int migratetype, i;
  819. /* Find the largest possible block of pages in the other list */
  820. for (current_order = MAX_ORDER-1; current_order >= order;
  821. --current_order) {
  822. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  823. migratetype = fallbacks[start_migratetype][i];
  824. /* MIGRATE_RESERVE handled later if necessary */
  825. if (migratetype == MIGRATE_RESERVE)
  826. continue;
  827. area = &(zone->free_area[current_order]);
  828. if (list_empty(&area->free_list[migratetype]))
  829. continue;
  830. page = list_entry(area->free_list[migratetype].next,
  831. struct page, lru);
  832. area->nr_free--;
  833. /*
  834. * If breaking a large block of pages, move all free
  835. * pages to the preferred allocation list. If falling
  836. * back for a reclaimable kernel allocation, be more
  837. * aggressive about taking ownership of free pages
  838. */
  839. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  840. start_migratetype == MIGRATE_RECLAIMABLE ||
  841. page_group_by_mobility_disabled) {
  842. unsigned long pages;
  843. pages = move_freepages_block(zone, page,
  844. start_migratetype);
  845. /* Claim the whole block if over half of it is free */
  846. if (pages >= (1 << (pageblock_order-1)) ||
  847. page_group_by_mobility_disabled)
  848. set_pageblock_migratetype(page,
  849. start_migratetype);
  850. migratetype = start_migratetype;
  851. }
  852. /* Remove the page from the freelists */
  853. list_del(&page->lru);
  854. rmv_page_order(page);
  855. /* Take ownership for orders >= pageblock_order */
  856. if (current_order >= pageblock_order)
  857. change_pageblock_range(page, current_order,
  858. start_migratetype);
  859. expand(zone, page, order, current_order, area, migratetype);
  860. trace_mm_page_alloc_extfrag(page, order, current_order,
  861. start_migratetype, migratetype);
  862. return page;
  863. }
  864. }
  865. return NULL;
  866. }
  867. /*
  868. * Do the hard work of removing an element from the buddy allocator.
  869. * Call me with the zone->lock already held.
  870. */
  871. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  872. int migratetype)
  873. {
  874. struct page *page;
  875. retry_reserve:
  876. page = __rmqueue_smallest(zone, order, migratetype);
  877. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  878. page = __rmqueue_fallback(zone, order, migratetype);
  879. /*
  880. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  881. * is used because __rmqueue_smallest is an inline function
  882. * and we want just one call site
  883. */
  884. if (!page) {
  885. migratetype = MIGRATE_RESERVE;
  886. goto retry_reserve;
  887. }
  888. }
  889. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  890. return page;
  891. }
  892. /*
  893. * Obtain a specified number of elements from the buddy allocator, all under
  894. * a single hold of the lock, for efficiency. Add them to the supplied list.
  895. * Returns the number of new pages which were placed at *list.
  896. */
  897. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  898. unsigned long count, struct list_head *list,
  899. int migratetype, int cold)
  900. {
  901. int i;
  902. spin_lock(&zone->lock);
  903. for (i = 0; i < count; ++i) {
  904. struct page *page = __rmqueue(zone, order, migratetype);
  905. if (unlikely(page == NULL))
  906. break;
  907. /*
  908. * Split buddy pages returned by expand() are received here
  909. * in physical page order. The page is added to the callers and
  910. * list and the list head then moves forward. From the callers
  911. * perspective, the linked list is ordered by page number in
  912. * some conditions. This is useful for IO devices that can
  913. * merge IO requests if the physical pages are ordered
  914. * properly.
  915. */
  916. if (likely(cold == 0))
  917. list_add(&page->lru, list);
  918. else
  919. list_add_tail(&page->lru, list);
  920. set_page_private(page, migratetype);
  921. list = &page->lru;
  922. }
  923. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  924. spin_unlock(&zone->lock);
  925. return i;
  926. }
  927. #ifdef CONFIG_NUMA
  928. /*
  929. * Called from the vmstat counter updater to drain pagesets of this
  930. * currently executing processor on remote nodes after they have
  931. * expired.
  932. *
  933. * Note that this function must be called with the thread pinned to
  934. * a single processor.
  935. */
  936. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  937. {
  938. unsigned long flags;
  939. int to_drain;
  940. local_irq_save(flags);
  941. if (pcp->count >= pcp->batch)
  942. to_drain = pcp->batch;
  943. else
  944. to_drain = pcp->count;
  945. free_pcppages_bulk(zone, to_drain, pcp);
  946. pcp->count -= to_drain;
  947. local_irq_restore(flags);
  948. }
  949. #endif
  950. /*
  951. * Drain pages of the indicated processor.
  952. *
  953. * The processor must either be the current processor and the
  954. * thread pinned to the current processor or a processor that
  955. * is not online.
  956. */
  957. static void drain_pages(unsigned int cpu)
  958. {
  959. unsigned long flags;
  960. struct zone *zone;
  961. for_each_populated_zone(zone) {
  962. struct per_cpu_pageset *pset;
  963. struct per_cpu_pages *pcp;
  964. local_irq_save(flags);
  965. pset = per_cpu_ptr(zone->pageset, cpu);
  966. pcp = &pset->pcp;
  967. if (pcp->count) {
  968. free_pcppages_bulk(zone, pcp->count, pcp);
  969. pcp->count = 0;
  970. }
  971. local_irq_restore(flags);
  972. }
  973. }
  974. /*
  975. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  976. */
  977. void drain_local_pages(void *arg)
  978. {
  979. drain_pages(smp_processor_id());
  980. }
  981. /*
  982. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  983. */
  984. void drain_all_pages(void)
  985. {
  986. on_each_cpu(drain_local_pages, NULL, 1);
  987. }
  988. #ifdef CONFIG_HIBERNATION
  989. void mark_free_pages(struct zone *zone)
  990. {
  991. unsigned long pfn, max_zone_pfn;
  992. unsigned long flags;
  993. int order, t;
  994. struct list_head *curr;
  995. if (!zone->spanned_pages)
  996. return;
  997. spin_lock_irqsave(&zone->lock, flags);
  998. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  999. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1000. if (pfn_valid(pfn)) {
  1001. struct page *page = pfn_to_page(pfn);
  1002. if (!swsusp_page_is_forbidden(page))
  1003. swsusp_unset_page_free(page);
  1004. }
  1005. for_each_migratetype_order(order, t) {
  1006. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1007. unsigned long i;
  1008. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1009. for (i = 0; i < (1UL << order); i++)
  1010. swsusp_set_page_free(pfn_to_page(pfn + i));
  1011. }
  1012. }
  1013. spin_unlock_irqrestore(&zone->lock, flags);
  1014. }
  1015. #endif /* CONFIG_PM */
  1016. /*
  1017. * Free a 0-order page
  1018. * cold == 1 ? free a cold page : free a hot page
  1019. */
  1020. void free_hot_cold_page(struct page *page, int cold)
  1021. {
  1022. struct zone *zone = page_zone(page);
  1023. struct per_cpu_pages *pcp;
  1024. unsigned long flags;
  1025. int migratetype;
  1026. int wasMlocked = __TestClearPageMlocked(page);
  1027. if (!free_pages_prepare(page, 0))
  1028. return;
  1029. migratetype = get_pageblock_migratetype(page);
  1030. set_page_private(page, migratetype);
  1031. local_irq_save(flags);
  1032. if (unlikely(wasMlocked))
  1033. free_page_mlock(page);
  1034. __count_vm_event(PGFREE);
  1035. /*
  1036. * We only track unmovable, reclaimable and movable on pcp lists.
  1037. * Free ISOLATE pages back to the allocator because they are being
  1038. * offlined but treat RESERVE as movable pages so we can get those
  1039. * areas back if necessary. Otherwise, we may have to free
  1040. * excessively into the page allocator
  1041. */
  1042. if (migratetype >= MIGRATE_PCPTYPES) {
  1043. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1044. free_one_page(zone, page, 0, migratetype);
  1045. goto out;
  1046. }
  1047. migratetype = MIGRATE_MOVABLE;
  1048. }
  1049. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1050. if (cold)
  1051. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1052. else
  1053. list_add(&page->lru, &pcp->lists[migratetype]);
  1054. pcp->count++;
  1055. if (pcp->count >= pcp->high) {
  1056. free_pcppages_bulk(zone, pcp->batch, pcp);
  1057. pcp->count -= pcp->batch;
  1058. }
  1059. out:
  1060. local_irq_restore(flags);
  1061. }
  1062. /*
  1063. * split_page takes a non-compound higher-order page, and splits it into
  1064. * n (1<<order) sub-pages: page[0..n]
  1065. * Each sub-page must be freed individually.
  1066. *
  1067. * Note: this is probably too low level an operation for use in drivers.
  1068. * Please consult with lkml before using this in your driver.
  1069. */
  1070. void split_page(struct page *page, unsigned int order)
  1071. {
  1072. int i;
  1073. VM_BUG_ON(PageCompound(page));
  1074. VM_BUG_ON(!page_count(page));
  1075. #ifdef CONFIG_KMEMCHECK
  1076. /*
  1077. * Split shadow pages too, because free(page[0]) would
  1078. * otherwise free the whole shadow.
  1079. */
  1080. if (kmemcheck_page_is_tracked(page))
  1081. split_page(virt_to_page(page[0].shadow), order);
  1082. #endif
  1083. for (i = 1; i < (1 << order); i++)
  1084. set_page_refcounted(page + i);
  1085. }
  1086. /*
  1087. * Similar to split_page except the page is already free. As this is only
  1088. * being used for migration, the migratetype of the block also changes.
  1089. * As this is called with interrupts disabled, the caller is responsible
  1090. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1091. * are enabled.
  1092. *
  1093. * Note: this is probably too low level an operation for use in drivers.
  1094. * Please consult with lkml before using this in your driver.
  1095. */
  1096. int split_free_page(struct page *page)
  1097. {
  1098. unsigned int order;
  1099. unsigned long watermark;
  1100. struct zone *zone;
  1101. BUG_ON(!PageBuddy(page));
  1102. zone = page_zone(page);
  1103. order = page_order(page);
  1104. /* Obey watermarks as if the page was being allocated */
  1105. watermark = low_wmark_pages(zone) + (1 << order);
  1106. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1107. return 0;
  1108. /* Remove page from free list */
  1109. list_del(&page->lru);
  1110. zone->free_area[order].nr_free--;
  1111. rmv_page_order(page);
  1112. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1113. /* Split into individual pages */
  1114. set_page_refcounted(page);
  1115. split_page(page, order);
  1116. if (order >= pageblock_order - 1) {
  1117. struct page *endpage = page + (1 << order) - 1;
  1118. for (; page < endpage; page += pageblock_nr_pages)
  1119. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1120. }
  1121. return 1 << order;
  1122. }
  1123. /*
  1124. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1125. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1126. * or two.
  1127. */
  1128. static inline
  1129. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1130. struct zone *zone, int order, gfp_t gfp_flags,
  1131. int migratetype)
  1132. {
  1133. unsigned long flags;
  1134. struct page *page;
  1135. int cold = !!(gfp_flags & __GFP_COLD);
  1136. again:
  1137. if (likely(order == 0)) {
  1138. struct per_cpu_pages *pcp;
  1139. struct list_head *list;
  1140. local_irq_save(flags);
  1141. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1142. list = &pcp->lists[migratetype];
  1143. if (list_empty(list)) {
  1144. pcp->count += rmqueue_bulk(zone, 0,
  1145. pcp->batch, list,
  1146. migratetype, cold);
  1147. if (unlikely(list_empty(list)))
  1148. goto failed;
  1149. }
  1150. if (cold)
  1151. page = list_entry(list->prev, struct page, lru);
  1152. else
  1153. page = list_entry(list->next, struct page, lru);
  1154. list_del(&page->lru);
  1155. pcp->count--;
  1156. } else {
  1157. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1158. /*
  1159. * __GFP_NOFAIL is not to be used in new code.
  1160. *
  1161. * All __GFP_NOFAIL callers should be fixed so that they
  1162. * properly detect and handle allocation failures.
  1163. *
  1164. * We most definitely don't want callers attempting to
  1165. * allocate greater than order-1 page units with
  1166. * __GFP_NOFAIL.
  1167. */
  1168. WARN_ON_ONCE(order > 1);
  1169. }
  1170. spin_lock_irqsave(&zone->lock, flags);
  1171. page = __rmqueue(zone, order, migratetype);
  1172. spin_unlock(&zone->lock);
  1173. if (!page)
  1174. goto failed;
  1175. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1176. }
  1177. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1178. zone_statistics(preferred_zone, zone, gfp_flags);
  1179. local_irq_restore(flags);
  1180. VM_BUG_ON(bad_range(zone, page));
  1181. if (prep_new_page(page, order, gfp_flags))
  1182. goto again;
  1183. return page;
  1184. failed:
  1185. local_irq_restore(flags);
  1186. return NULL;
  1187. }
  1188. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1189. #define ALLOC_WMARK_MIN WMARK_MIN
  1190. #define ALLOC_WMARK_LOW WMARK_LOW
  1191. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1192. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1193. /* Mask to get the watermark bits */
  1194. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1195. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1196. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1197. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1198. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1199. static struct fail_page_alloc_attr {
  1200. struct fault_attr attr;
  1201. u32 ignore_gfp_highmem;
  1202. u32 ignore_gfp_wait;
  1203. u32 min_order;
  1204. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1205. struct dentry *ignore_gfp_highmem_file;
  1206. struct dentry *ignore_gfp_wait_file;
  1207. struct dentry *min_order_file;
  1208. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1209. } fail_page_alloc = {
  1210. .attr = FAULT_ATTR_INITIALIZER,
  1211. .ignore_gfp_wait = 1,
  1212. .ignore_gfp_highmem = 1,
  1213. .min_order = 1,
  1214. };
  1215. static int __init setup_fail_page_alloc(char *str)
  1216. {
  1217. return setup_fault_attr(&fail_page_alloc.attr, str);
  1218. }
  1219. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1220. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1221. {
  1222. if (order < fail_page_alloc.min_order)
  1223. return 0;
  1224. if (gfp_mask & __GFP_NOFAIL)
  1225. return 0;
  1226. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1227. return 0;
  1228. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1229. return 0;
  1230. return should_fail(&fail_page_alloc.attr, 1 << order);
  1231. }
  1232. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1233. static int __init fail_page_alloc_debugfs(void)
  1234. {
  1235. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1236. struct dentry *dir;
  1237. int err;
  1238. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1239. "fail_page_alloc");
  1240. if (err)
  1241. return err;
  1242. dir = fail_page_alloc.attr.dentries.dir;
  1243. fail_page_alloc.ignore_gfp_wait_file =
  1244. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1245. &fail_page_alloc.ignore_gfp_wait);
  1246. fail_page_alloc.ignore_gfp_highmem_file =
  1247. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1248. &fail_page_alloc.ignore_gfp_highmem);
  1249. fail_page_alloc.min_order_file =
  1250. debugfs_create_u32("min-order", mode, dir,
  1251. &fail_page_alloc.min_order);
  1252. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1253. !fail_page_alloc.ignore_gfp_highmem_file ||
  1254. !fail_page_alloc.min_order_file) {
  1255. err = -ENOMEM;
  1256. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1257. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1258. debugfs_remove(fail_page_alloc.min_order_file);
  1259. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1260. }
  1261. return err;
  1262. }
  1263. late_initcall(fail_page_alloc_debugfs);
  1264. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1265. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1266. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1267. {
  1268. return 0;
  1269. }
  1270. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1271. /*
  1272. * Return true if free pages are above 'mark'. This takes into account the order
  1273. * of the allocation.
  1274. */
  1275. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1276. int classzone_idx, int alloc_flags, long free_pages)
  1277. {
  1278. /* free_pages my go negative - that's OK */
  1279. long min = mark;
  1280. int o;
  1281. free_pages -= (1 << order) + 1;
  1282. if (alloc_flags & ALLOC_HIGH)
  1283. min -= min / 2;
  1284. if (alloc_flags & ALLOC_HARDER)
  1285. min -= min / 4;
  1286. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1287. return false;
  1288. for (o = 0; o < order; o++) {
  1289. /* At the next order, this order's pages become unavailable */
  1290. free_pages -= z->free_area[o].nr_free << o;
  1291. /* Require fewer higher order pages to be free */
  1292. min >>= min_free_order_shift;
  1293. if (free_pages <= min)
  1294. return false;
  1295. }
  1296. return true;
  1297. }
  1298. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1299. int classzone_idx, int alloc_flags)
  1300. {
  1301. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1302. zone_page_state(z, NR_FREE_PAGES));
  1303. }
  1304. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1305. int classzone_idx, int alloc_flags)
  1306. {
  1307. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1308. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1309. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1310. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1311. free_pages);
  1312. }
  1313. #ifdef CONFIG_NUMA
  1314. /*
  1315. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1316. * skip over zones that are not allowed by the cpuset, or that have
  1317. * been recently (in last second) found to be nearly full. See further
  1318. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1319. * that have to skip over a lot of full or unallowed zones.
  1320. *
  1321. * If the zonelist cache is present in the passed in zonelist, then
  1322. * returns a pointer to the allowed node mask (either the current
  1323. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1324. *
  1325. * If the zonelist cache is not available for this zonelist, does
  1326. * nothing and returns NULL.
  1327. *
  1328. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1329. * a second since last zap'd) then we zap it out (clear its bits.)
  1330. *
  1331. * We hold off even calling zlc_setup, until after we've checked the
  1332. * first zone in the zonelist, on the theory that most allocations will
  1333. * be satisfied from that first zone, so best to examine that zone as
  1334. * quickly as we can.
  1335. */
  1336. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1337. {
  1338. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1339. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1340. zlc = zonelist->zlcache_ptr;
  1341. if (!zlc)
  1342. return NULL;
  1343. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1344. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1345. zlc->last_full_zap = jiffies;
  1346. }
  1347. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1348. &cpuset_current_mems_allowed :
  1349. &node_states[N_HIGH_MEMORY];
  1350. return allowednodes;
  1351. }
  1352. /*
  1353. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1354. * if it is worth looking at further for free memory:
  1355. * 1) Check that the zone isn't thought to be full (doesn't have its
  1356. * bit set in the zonelist_cache fullzones BITMAP).
  1357. * 2) Check that the zones node (obtained from the zonelist_cache
  1358. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1359. * Return true (non-zero) if zone is worth looking at further, or
  1360. * else return false (zero) if it is not.
  1361. *
  1362. * This check -ignores- the distinction between various watermarks,
  1363. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1364. * found to be full for any variation of these watermarks, it will
  1365. * be considered full for up to one second by all requests, unless
  1366. * we are so low on memory on all allowed nodes that we are forced
  1367. * into the second scan of the zonelist.
  1368. *
  1369. * In the second scan we ignore this zonelist cache and exactly
  1370. * apply the watermarks to all zones, even it is slower to do so.
  1371. * We are low on memory in the second scan, and should leave no stone
  1372. * unturned looking for a free page.
  1373. */
  1374. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1375. nodemask_t *allowednodes)
  1376. {
  1377. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1378. int i; /* index of *z in zonelist zones */
  1379. int n; /* node that zone *z is on */
  1380. zlc = zonelist->zlcache_ptr;
  1381. if (!zlc)
  1382. return 1;
  1383. i = z - zonelist->_zonerefs;
  1384. n = zlc->z_to_n[i];
  1385. /* This zone is worth trying if it is allowed but not full */
  1386. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1387. }
  1388. /*
  1389. * Given 'z' scanning a zonelist, set the corresponding bit in
  1390. * zlc->fullzones, so that subsequent attempts to allocate a page
  1391. * from that zone don't waste time re-examining it.
  1392. */
  1393. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1394. {
  1395. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1396. int i; /* index of *z in zonelist zones */
  1397. zlc = zonelist->zlcache_ptr;
  1398. if (!zlc)
  1399. return;
  1400. i = z - zonelist->_zonerefs;
  1401. set_bit(i, zlc->fullzones);
  1402. }
  1403. /*
  1404. * clear all zones full, called after direct reclaim makes progress so that
  1405. * a zone that was recently full is not skipped over for up to a second
  1406. */
  1407. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1408. {
  1409. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1410. zlc = zonelist->zlcache_ptr;
  1411. if (!zlc)
  1412. return;
  1413. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1414. }
  1415. #else /* CONFIG_NUMA */
  1416. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1417. {
  1418. return NULL;
  1419. }
  1420. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1421. nodemask_t *allowednodes)
  1422. {
  1423. return 1;
  1424. }
  1425. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1426. {
  1427. }
  1428. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1429. {
  1430. }
  1431. #endif /* CONFIG_NUMA */
  1432. /*
  1433. * get_page_from_freelist goes through the zonelist trying to allocate
  1434. * a page.
  1435. */
  1436. static struct page *
  1437. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1438. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1439. struct zone *preferred_zone, int migratetype)
  1440. {
  1441. struct zoneref *z;
  1442. struct page *page = NULL;
  1443. int classzone_idx;
  1444. struct zone *zone;
  1445. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1446. int zlc_active = 0; /* set if using zonelist_cache */
  1447. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1448. classzone_idx = zone_idx(preferred_zone);
  1449. zonelist_scan:
  1450. /*
  1451. * Scan zonelist, looking for a zone with enough free.
  1452. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1453. */
  1454. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1455. high_zoneidx, nodemask) {
  1456. if (NUMA_BUILD && zlc_active &&
  1457. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1458. continue;
  1459. if ((alloc_flags & ALLOC_CPUSET) &&
  1460. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1461. continue;
  1462. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1463. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1464. unsigned long mark;
  1465. int ret;
  1466. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1467. if (zone_watermark_ok(zone, order, mark,
  1468. classzone_idx, alloc_flags))
  1469. goto try_this_zone;
  1470. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1471. /*
  1472. * we do zlc_setup if there are multiple nodes
  1473. * and before considering the first zone allowed
  1474. * by the cpuset.
  1475. */
  1476. allowednodes = zlc_setup(zonelist, alloc_flags);
  1477. zlc_active = 1;
  1478. did_zlc_setup = 1;
  1479. }
  1480. if (zone_reclaim_mode == 0)
  1481. goto this_zone_full;
  1482. /*
  1483. * As we may have just activated ZLC, check if the first
  1484. * eligible zone has failed zone_reclaim recently.
  1485. */
  1486. if (NUMA_BUILD && zlc_active &&
  1487. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1488. continue;
  1489. ret = zone_reclaim(zone, gfp_mask, order);
  1490. switch (ret) {
  1491. case ZONE_RECLAIM_NOSCAN:
  1492. /* did not scan */
  1493. continue;
  1494. case ZONE_RECLAIM_FULL:
  1495. /* scanned but unreclaimable */
  1496. continue;
  1497. default:
  1498. /* did we reclaim enough */
  1499. if (!zone_watermark_ok(zone, order, mark,
  1500. classzone_idx, alloc_flags))
  1501. goto this_zone_full;
  1502. }
  1503. }
  1504. try_this_zone:
  1505. page = buffered_rmqueue(preferred_zone, zone, order,
  1506. gfp_mask, migratetype);
  1507. if (page)
  1508. break;
  1509. this_zone_full:
  1510. if (NUMA_BUILD)
  1511. zlc_mark_zone_full(zonelist, z);
  1512. }
  1513. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1514. /* Disable zlc cache for second zonelist scan */
  1515. zlc_active = 0;
  1516. goto zonelist_scan;
  1517. }
  1518. return page;
  1519. }
  1520. /*
  1521. * Large machines with many possible nodes should not always dump per-node
  1522. * meminfo in irq context.
  1523. */
  1524. static inline bool should_suppress_show_mem(void)
  1525. {
  1526. bool ret = false;
  1527. #if NODES_SHIFT > 8
  1528. ret = in_interrupt();
  1529. #endif
  1530. return ret;
  1531. }
  1532. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1533. DEFAULT_RATELIMIT_INTERVAL,
  1534. DEFAULT_RATELIMIT_BURST);
  1535. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1536. {
  1537. va_list args;
  1538. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1539. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  1540. return;
  1541. /*
  1542. * This documents exceptions given to allocations in certain
  1543. * contexts that are allowed to allocate outside current's set
  1544. * of allowed nodes.
  1545. */
  1546. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1547. if (test_thread_flag(TIF_MEMDIE) ||
  1548. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1549. filter &= ~SHOW_MEM_FILTER_NODES;
  1550. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1551. filter &= ~SHOW_MEM_FILTER_NODES;
  1552. if (fmt) {
  1553. printk(KERN_WARNING);
  1554. va_start(args, fmt);
  1555. vprintk(fmt, args);
  1556. va_end(args);
  1557. }
  1558. pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
  1559. current->comm, order, gfp_mask);
  1560. dump_stack();
  1561. if (!should_suppress_show_mem())
  1562. show_mem(filter);
  1563. }
  1564. static inline int
  1565. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1566. unsigned long pages_reclaimed)
  1567. {
  1568. /* Do not loop if specifically requested */
  1569. if (gfp_mask & __GFP_NORETRY)
  1570. return 0;
  1571. /*
  1572. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1573. * means __GFP_NOFAIL, but that may not be true in other
  1574. * implementations.
  1575. */
  1576. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1577. return 1;
  1578. /*
  1579. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1580. * specified, then we retry until we no longer reclaim any pages
  1581. * (above), or we've reclaimed an order of pages at least as
  1582. * large as the allocation's order. In both cases, if the
  1583. * allocation still fails, we stop retrying.
  1584. */
  1585. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1586. return 1;
  1587. /*
  1588. * Don't let big-order allocations loop unless the caller
  1589. * explicitly requests that.
  1590. */
  1591. if (gfp_mask & __GFP_NOFAIL)
  1592. return 1;
  1593. return 0;
  1594. }
  1595. static inline struct page *
  1596. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1597. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1598. nodemask_t *nodemask, struct zone *preferred_zone,
  1599. int migratetype)
  1600. {
  1601. struct page *page;
  1602. /* Acquire the OOM killer lock for the zones in zonelist */
  1603. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1604. schedule_timeout_uninterruptible(1);
  1605. return NULL;
  1606. }
  1607. /*
  1608. * Go through the zonelist yet one more time, keep very high watermark
  1609. * here, this is only to catch a parallel oom killing, we must fail if
  1610. * we're still under heavy pressure.
  1611. */
  1612. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1613. order, zonelist, high_zoneidx,
  1614. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1615. preferred_zone, migratetype);
  1616. if (page)
  1617. goto out;
  1618. if (!(gfp_mask & __GFP_NOFAIL)) {
  1619. /* The OOM killer will not help higher order allocs */
  1620. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1621. goto out;
  1622. /* The OOM killer does not needlessly kill tasks for lowmem */
  1623. if (high_zoneidx < ZONE_NORMAL)
  1624. goto out;
  1625. /*
  1626. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1627. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1628. * The caller should handle page allocation failure by itself if
  1629. * it specifies __GFP_THISNODE.
  1630. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1631. */
  1632. if (gfp_mask & __GFP_THISNODE)
  1633. goto out;
  1634. }
  1635. /* Exhausted what can be done so it's blamo time */
  1636. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1637. out:
  1638. clear_zonelist_oom(zonelist, gfp_mask);
  1639. return page;
  1640. }
  1641. #ifdef CONFIG_COMPACTION
  1642. /* Try memory compaction for high-order allocations before reclaim */
  1643. static struct page *
  1644. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1645. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1646. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1647. int migratetype, unsigned long *did_some_progress,
  1648. bool sync_migration)
  1649. {
  1650. struct page *page;
  1651. if (!order || compaction_deferred(preferred_zone))
  1652. return NULL;
  1653. current->flags |= PF_MEMALLOC;
  1654. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1655. nodemask, sync_migration);
  1656. current->flags &= ~PF_MEMALLOC;
  1657. if (*did_some_progress != COMPACT_SKIPPED) {
  1658. /* Page migration frees to the PCP lists but we want merging */
  1659. drain_pages(get_cpu());
  1660. put_cpu();
  1661. page = get_page_from_freelist(gfp_mask, nodemask,
  1662. order, zonelist, high_zoneidx,
  1663. alloc_flags, preferred_zone,
  1664. migratetype);
  1665. if (page) {
  1666. preferred_zone->compact_considered = 0;
  1667. preferred_zone->compact_defer_shift = 0;
  1668. count_vm_event(COMPACTSUCCESS);
  1669. return page;
  1670. }
  1671. /*
  1672. * It's bad if compaction run occurs and fails.
  1673. * The most likely reason is that pages exist,
  1674. * but not enough to satisfy watermarks.
  1675. */
  1676. count_vm_event(COMPACTFAIL);
  1677. defer_compaction(preferred_zone);
  1678. cond_resched();
  1679. }
  1680. return NULL;
  1681. }
  1682. #else
  1683. static inline struct page *
  1684. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1685. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1686. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1687. int migratetype, unsigned long *did_some_progress,
  1688. bool sync_migration)
  1689. {
  1690. return NULL;
  1691. }
  1692. #endif /* CONFIG_COMPACTION */
  1693. /* The really slow allocator path where we enter direct reclaim */
  1694. static inline struct page *
  1695. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1696. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1697. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1698. int migratetype, unsigned long *did_some_progress)
  1699. {
  1700. struct page *page = NULL;
  1701. struct reclaim_state reclaim_state;
  1702. bool drained = false;
  1703. cond_resched();
  1704. /* We now go into synchronous reclaim */
  1705. cpuset_memory_pressure_bump();
  1706. current->flags |= PF_MEMALLOC;
  1707. lockdep_set_current_reclaim_state(gfp_mask);
  1708. reclaim_state.reclaimed_slab = 0;
  1709. current->reclaim_state = &reclaim_state;
  1710. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1711. current->reclaim_state = NULL;
  1712. lockdep_clear_current_reclaim_state();
  1713. current->flags &= ~PF_MEMALLOC;
  1714. cond_resched();
  1715. if (unlikely(!(*did_some_progress)))
  1716. return NULL;
  1717. /* After successful reclaim, reconsider all zones for allocation */
  1718. if (NUMA_BUILD)
  1719. zlc_clear_zones_full(zonelist);
  1720. retry:
  1721. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1722. zonelist, high_zoneidx,
  1723. alloc_flags, preferred_zone,
  1724. migratetype);
  1725. /*
  1726. * If an allocation failed after direct reclaim, it could be because
  1727. * pages are pinned on the per-cpu lists. Drain them and try again
  1728. */
  1729. if (!page && !drained) {
  1730. drain_all_pages();
  1731. drained = true;
  1732. goto retry;
  1733. }
  1734. return page;
  1735. }
  1736. /*
  1737. * This is called in the allocator slow-path if the allocation request is of
  1738. * sufficient urgency to ignore watermarks and take other desperate measures
  1739. */
  1740. static inline struct page *
  1741. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1742. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1743. nodemask_t *nodemask, struct zone *preferred_zone,
  1744. int migratetype)
  1745. {
  1746. struct page *page;
  1747. do {
  1748. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1749. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1750. preferred_zone, migratetype);
  1751. if (!page && gfp_mask & __GFP_NOFAIL)
  1752. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1753. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1754. return page;
  1755. }
  1756. static inline
  1757. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1758. enum zone_type high_zoneidx,
  1759. enum zone_type classzone_idx)
  1760. {
  1761. struct zoneref *z;
  1762. struct zone *zone;
  1763. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1764. wakeup_kswapd(zone, order, classzone_idx);
  1765. }
  1766. static inline int
  1767. gfp_to_alloc_flags(gfp_t gfp_mask)
  1768. {
  1769. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1770. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1771. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1772. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1773. /*
  1774. * The caller may dip into page reserves a bit more if the caller
  1775. * cannot run direct reclaim, or if the caller has realtime scheduling
  1776. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1777. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1778. */
  1779. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1780. if (!wait) {
  1781. /*
  1782. * Not worth trying to allocate harder for
  1783. * __GFP_NOMEMALLOC even if it can't schedule.
  1784. */
  1785. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1786. alloc_flags |= ALLOC_HARDER;
  1787. /*
  1788. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1789. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1790. */
  1791. alloc_flags &= ~ALLOC_CPUSET;
  1792. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1793. alloc_flags |= ALLOC_HARDER;
  1794. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1795. if (!in_interrupt() &&
  1796. ((current->flags & PF_MEMALLOC) ||
  1797. unlikely(test_thread_flag(TIF_MEMDIE))))
  1798. alloc_flags |= ALLOC_NO_WATERMARKS;
  1799. }
  1800. return alloc_flags;
  1801. }
  1802. static inline struct page *
  1803. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1804. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1805. nodemask_t *nodemask, struct zone *preferred_zone,
  1806. int migratetype)
  1807. {
  1808. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1809. struct page *page = NULL;
  1810. int alloc_flags;
  1811. unsigned long pages_reclaimed = 0;
  1812. unsigned long did_some_progress;
  1813. bool sync_migration = false;
  1814. /*
  1815. * In the slowpath, we sanity check order to avoid ever trying to
  1816. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1817. * be using allocators in order of preference for an area that is
  1818. * too large.
  1819. */
  1820. if (order >= MAX_ORDER) {
  1821. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1822. return NULL;
  1823. }
  1824. /*
  1825. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1826. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1827. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1828. * using a larger set of nodes after it has established that the
  1829. * allowed per node queues are empty and that nodes are
  1830. * over allocated.
  1831. */
  1832. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1833. goto nopage;
  1834. restart:
  1835. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1836. wake_all_kswapd(order, zonelist, high_zoneidx,
  1837. zone_idx(preferred_zone));
  1838. /*
  1839. * OK, we're below the kswapd watermark and have kicked background
  1840. * reclaim. Now things get more complex, so set up alloc_flags according
  1841. * to how we want to proceed.
  1842. */
  1843. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1844. /*
  1845. * Find the true preferred zone if the allocation is unconstrained by
  1846. * cpusets.
  1847. */
  1848. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1849. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1850. &preferred_zone);
  1851. rebalance:
  1852. /* This is the last chance, in general, before the goto nopage. */
  1853. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1854. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1855. preferred_zone, migratetype);
  1856. if (page)
  1857. goto got_pg;
  1858. /* Allocate without watermarks if the context allows */
  1859. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1860. page = __alloc_pages_high_priority(gfp_mask, order,
  1861. zonelist, high_zoneidx, nodemask,
  1862. preferred_zone, migratetype);
  1863. if (page)
  1864. goto got_pg;
  1865. }
  1866. /* Atomic allocations - we can't balance anything */
  1867. if (!wait)
  1868. goto nopage;
  1869. /* Avoid recursion of direct reclaim */
  1870. if (current->flags & PF_MEMALLOC)
  1871. goto nopage;
  1872. /* Avoid allocations with no watermarks from looping endlessly */
  1873. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1874. goto nopage;
  1875. /*
  1876. * Try direct compaction. The first pass is asynchronous. Subsequent
  1877. * attempts after direct reclaim are synchronous
  1878. */
  1879. page = __alloc_pages_direct_compact(gfp_mask, order,
  1880. zonelist, high_zoneidx,
  1881. nodemask,
  1882. alloc_flags, preferred_zone,
  1883. migratetype, &did_some_progress,
  1884. sync_migration);
  1885. if (page)
  1886. goto got_pg;
  1887. sync_migration = true;
  1888. /* Try direct reclaim and then allocating */
  1889. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1890. zonelist, high_zoneidx,
  1891. nodemask,
  1892. alloc_flags, preferred_zone,
  1893. migratetype, &did_some_progress);
  1894. if (page)
  1895. goto got_pg;
  1896. /*
  1897. * If we failed to make any progress reclaiming, then we are
  1898. * running out of options and have to consider going OOM
  1899. */
  1900. if (!did_some_progress) {
  1901. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1902. if (oom_killer_disabled)
  1903. goto nopage;
  1904. page = __alloc_pages_may_oom(gfp_mask, order,
  1905. zonelist, high_zoneidx,
  1906. nodemask, preferred_zone,
  1907. migratetype);
  1908. if (page)
  1909. goto got_pg;
  1910. if (!(gfp_mask & __GFP_NOFAIL)) {
  1911. /*
  1912. * The oom killer is not called for high-order
  1913. * allocations that may fail, so if no progress
  1914. * is being made, there are no other options and
  1915. * retrying is unlikely to help.
  1916. */
  1917. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1918. goto nopage;
  1919. /*
  1920. * The oom killer is not called for lowmem
  1921. * allocations to prevent needlessly killing
  1922. * innocent tasks.
  1923. */
  1924. if (high_zoneidx < ZONE_NORMAL)
  1925. goto nopage;
  1926. }
  1927. goto restart;
  1928. }
  1929. /*
  1930. * Suspend converts GFP_KERNEL to __GFP_WAIT which can
  1931. * prevent reclaim making forward progress without
  1932. * invoking OOM. Bail if we are suspending
  1933. */
  1934. if (pm_suspending())
  1935. goto nopage;
  1936. }
  1937. /* Check if we should retry the allocation */
  1938. pages_reclaimed += did_some_progress;
  1939. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1940. /* Wait for some write requests to complete then retry */
  1941. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1942. goto rebalance;
  1943. } else {
  1944. /*
  1945. * High-order allocations do not necessarily loop after
  1946. * direct reclaim and reclaim/compaction depends on compaction
  1947. * being called after reclaim so call directly if necessary
  1948. */
  1949. page = __alloc_pages_direct_compact(gfp_mask, order,
  1950. zonelist, high_zoneidx,
  1951. nodemask,
  1952. alloc_flags, preferred_zone,
  1953. migratetype, &did_some_progress,
  1954. sync_migration);
  1955. if (page)
  1956. goto got_pg;
  1957. }
  1958. nopage:
  1959. warn_alloc_failed(gfp_mask, order, NULL);
  1960. return page;
  1961. got_pg:
  1962. if (kmemcheck_enabled)
  1963. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1964. return page;
  1965. }
  1966. /*
  1967. * This is the 'heart' of the zoned buddy allocator.
  1968. */
  1969. struct page *
  1970. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1971. struct zonelist *zonelist, nodemask_t *nodemask)
  1972. {
  1973. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1974. struct zone *preferred_zone;
  1975. struct page *page;
  1976. int migratetype = allocflags_to_migratetype(gfp_mask);
  1977. gfp_mask &= gfp_allowed_mask;
  1978. lockdep_trace_alloc(gfp_mask);
  1979. might_sleep_if(gfp_mask & __GFP_WAIT);
  1980. if (should_fail_alloc_page(gfp_mask, order))
  1981. return NULL;
  1982. /*
  1983. * Check the zones suitable for the gfp_mask contain at least one
  1984. * valid zone. It's possible to have an empty zonelist as a result
  1985. * of GFP_THISNODE and a memoryless node
  1986. */
  1987. if (unlikely(!zonelist->_zonerefs->zone))
  1988. return NULL;
  1989. get_mems_allowed();
  1990. /* The preferred zone is used for statistics later */
  1991. first_zones_zonelist(zonelist, high_zoneidx,
  1992. nodemask ? : &cpuset_current_mems_allowed,
  1993. &preferred_zone);
  1994. if (!preferred_zone) {
  1995. put_mems_allowed();
  1996. return NULL;
  1997. }
  1998. /* First allocation attempt */
  1999. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2000. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  2001. preferred_zone, migratetype);
  2002. if (unlikely(!page))
  2003. page = __alloc_pages_slowpath(gfp_mask, order,
  2004. zonelist, high_zoneidx, nodemask,
  2005. preferred_zone, migratetype);
  2006. put_mems_allowed();
  2007. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2008. return page;
  2009. }
  2010. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2011. /*
  2012. * Common helper functions.
  2013. */
  2014. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2015. {
  2016. struct page *page;
  2017. /*
  2018. * __get_free_pages() returns a 32-bit address, which cannot represent
  2019. * a highmem page
  2020. */
  2021. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2022. page = alloc_pages(gfp_mask, order);
  2023. if (!page)
  2024. return 0;
  2025. return (unsigned long) page_address(page);
  2026. }
  2027. EXPORT_SYMBOL(__get_free_pages);
  2028. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2029. {
  2030. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2031. }
  2032. EXPORT_SYMBOL(get_zeroed_page);
  2033. void __pagevec_free(struct pagevec *pvec)
  2034. {
  2035. int i = pagevec_count(pvec);
  2036. while (--i >= 0) {
  2037. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  2038. free_hot_cold_page(pvec->pages[i], pvec->cold);
  2039. }
  2040. }
  2041. void __free_pages(struct page *page, unsigned int order)
  2042. {
  2043. if (put_page_testzero(page)) {
  2044. if (order == 0)
  2045. free_hot_cold_page(page, 0);
  2046. else
  2047. __free_pages_ok(page, order);
  2048. }
  2049. }
  2050. EXPORT_SYMBOL(__free_pages);
  2051. void free_pages(unsigned long addr, unsigned int order)
  2052. {
  2053. if (addr != 0) {
  2054. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2055. __free_pages(virt_to_page((void *)addr), order);
  2056. }
  2057. }
  2058. EXPORT_SYMBOL(free_pages);
  2059. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2060. {
  2061. if (addr) {
  2062. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2063. unsigned long used = addr + PAGE_ALIGN(size);
  2064. split_page(virt_to_page((void *)addr), order);
  2065. while (used < alloc_end) {
  2066. free_page(used);
  2067. used += PAGE_SIZE;
  2068. }
  2069. }
  2070. return (void *)addr;
  2071. }
  2072. /**
  2073. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2074. * @size: the number of bytes to allocate
  2075. * @gfp_mask: GFP flags for the allocation
  2076. *
  2077. * This function is similar to alloc_pages(), except that it allocates the
  2078. * minimum number of pages to satisfy the request. alloc_pages() can only
  2079. * allocate memory in power-of-two pages.
  2080. *
  2081. * This function is also limited by MAX_ORDER.
  2082. *
  2083. * Memory allocated by this function must be released by free_pages_exact().
  2084. */
  2085. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2086. {
  2087. unsigned int order = get_order(size);
  2088. unsigned long addr;
  2089. addr = __get_free_pages(gfp_mask, order);
  2090. return make_alloc_exact(addr, order, size);
  2091. }
  2092. EXPORT_SYMBOL(alloc_pages_exact);
  2093. /**
  2094. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2095. * pages on a node.
  2096. * @nid: the preferred node ID where memory should be allocated
  2097. * @size: the number of bytes to allocate
  2098. * @gfp_mask: GFP flags for the allocation
  2099. *
  2100. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2101. * back.
  2102. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2103. * but is not exact.
  2104. */
  2105. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2106. {
  2107. unsigned order = get_order(size);
  2108. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2109. if (!p)
  2110. return NULL;
  2111. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2112. }
  2113. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2114. /**
  2115. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2116. * @virt: the value returned by alloc_pages_exact.
  2117. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2118. *
  2119. * Release the memory allocated by a previous call to alloc_pages_exact.
  2120. */
  2121. void free_pages_exact(void *virt, size_t size)
  2122. {
  2123. unsigned long addr = (unsigned long)virt;
  2124. unsigned long end = addr + PAGE_ALIGN(size);
  2125. while (addr < end) {
  2126. free_page(addr);
  2127. addr += PAGE_SIZE;
  2128. }
  2129. }
  2130. EXPORT_SYMBOL(free_pages_exact);
  2131. static unsigned int nr_free_zone_pages(int offset)
  2132. {
  2133. struct zoneref *z;
  2134. struct zone *zone;
  2135. /* Just pick one node, since fallback list is circular */
  2136. unsigned int sum = 0;
  2137. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2138. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2139. unsigned long size = zone->present_pages;
  2140. unsigned long high = high_wmark_pages(zone);
  2141. if (size > high)
  2142. sum += size - high;
  2143. }
  2144. return sum;
  2145. }
  2146. /*
  2147. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2148. */
  2149. unsigned int nr_free_buffer_pages(void)
  2150. {
  2151. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2152. }
  2153. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2154. /*
  2155. * Amount of free RAM allocatable within all zones
  2156. */
  2157. unsigned int nr_free_pagecache_pages(void)
  2158. {
  2159. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2160. }
  2161. static inline void show_node(struct zone *zone)
  2162. {
  2163. if (NUMA_BUILD)
  2164. printk("Node %d ", zone_to_nid(zone));
  2165. }
  2166. void si_meminfo(struct sysinfo *val)
  2167. {
  2168. val->totalram = totalram_pages;
  2169. val->sharedram = 0;
  2170. val->freeram = global_page_state(NR_FREE_PAGES);
  2171. val->bufferram = nr_blockdev_pages();
  2172. val->totalhigh = totalhigh_pages;
  2173. val->freehigh = nr_free_highpages();
  2174. val->mem_unit = PAGE_SIZE;
  2175. }
  2176. EXPORT_SYMBOL(si_meminfo);
  2177. #ifdef CONFIG_NUMA
  2178. void si_meminfo_node(struct sysinfo *val, int nid)
  2179. {
  2180. pg_data_t *pgdat = NODE_DATA(nid);
  2181. val->totalram = pgdat->node_present_pages;
  2182. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2183. #ifdef CONFIG_HIGHMEM
  2184. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2185. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2186. NR_FREE_PAGES);
  2187. #else
  2188. val->totalhigh = 0;
  2189. val->freehigh = 0;
  2190. #endif
  2191. val->mem_unit = PAGE_SIZE;
  2192. }
  2193. #endif
  2194. /*
  2195. * Determine whether the node should be displayed or not, depending on whether
  2196. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2197. */
  2198. bool skip_free_areas_node(unsigned int flags, int nid)
  2199. {
  2200. bool ret = false;
  2201. if (!(flags & SHOW_MEM_FILTER_NODES))
  2202. goto out;
  2203. get_mems_allowed();
  2204. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2205. put_mems_allowed();
  2206. out:
  2207. return ret;
  2208. }
  2209. #define K(x) ((x) << (PAGE_SHIFT-10))
  2210. /*
  2211. * Show free area list (used inside shift_scroll-lock stuff)
  2212. * We also calculate the percentage fragmentation. We do this by counting the
  2213. * memory on each free list with the exception of the first item on the list.
  2214. * Suppresses nodes that are not allowed by current's cpuset if
  2215. * SHOW_MEM_FILTER_NODES is passed.
  2216. */
  2217. void show_free_areas(unsigned int filter)
  2218. {
  2219. int cpu;
  2220. struct zone *zone;
  2221. for_each_populated_zone(zone) {
  2222. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2223. continue;
  2224. show_node(zone);
  2225. printk("%s per-cpu:\n", zone->name);
  2226. for_each_online_cpu(cpu) {
  2227. struct per_cpu_pageset *pageset;
  2228. pageset = per_cpu_ptr(zone->pageset, cpu);
  2229. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2230. cpu, pageset->pcp.high,
  2231. pageset->pcp.batch, pageset->pcp.count);
  2232. }
  2233. }
  2234. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2235. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2236. " unevictable:%lu"
  2237. " dirty:%lu writeback:%lu unstable:%lu\n"
  2238. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2239. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2240. global_page_state(NR_ACTIVE_ANON),
  2241. global_page_state(NR_INACTIVE_ANON),
  2242. global_page_state(NR_ISOLATED_ANON),
  2243. global_page_state(NR_ACTIVE_FILE),
  2244. global_page_state(NR_INACTIVE_FILE),
  2245. global_page_state(NR_ISOLATED_FILE),
  2246. global_page_state(NR_UNEVICTABLE),
  2247. global_page_state(NR_FILE_DIRTY),
  2248. global_page_state(NR_WRITEBACK),
  2249. global_page_state(NR_UNSTABLE_NFS),
  2250. global_page_state(NR_FREE_PAGES),
  2251. global_page_state(NR_SLAB_RECLAIMABLE),
  2252. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2253. global_page_state(NR_FILE_MAPPED),
  2254. global_page_state(NR_SHMEM),
  2255. global_page_state(NR_PAGETABLE),
  2256. global_page_state(NR_BOUNCE));
  2257. for_each_populated_zone(zone) {
  2258. int i;
  2259. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2260. continue;
  2261. show_node(zone);
  2262. printk("%s"
  2263. " free:%lukB"
  2264. " min:%lukB"
  2265. " low:%lukB"
  2266. " high:%lukB"
  2267. " active_anon:%lukB"
  2268. " inactive_anon:%lukB"
  2269. " active_file:%lukB"
  2270. " inactive_file:%lukB"
  2271. " unevictable:%lukB"
  2272. " isolated(anon):%lukB"
  2273. " isolated(file):%lukB"
  2274. " present:%lukB"
  2275. " mlocked:%lukB"
  2276. " dirty:%lukB"
  2277. " writeback:%lukB"
  2278. " mapped:%lukB"
  2279. " shmem:%lukB"
  2280. " slab_reclaimable:%lukB"
  2281. " slab_unreclaimable:%lukB"
  2282. " kernel_stack:%lukB"
  2283. " pagetables:%lukB"
  2284. " unstable:%lukB"
  2285. " bounce:%lukB"
  2286. " writeback_tmp:%lukB"
  2287. " pages_scanned:%lu"
  2288. " all_unreclaimable? %s"
  2289. "\n",
  2290. zone->name,
  2291. K(zone_page_state(zone, NR_FREE_PAGES)),
  2292. K(min_wmark_pages(zone)),
  2293. K(low_wmark_pages(zone)),
  2294. K(high_wmark_pages(zone)),
  2295. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2296. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2297. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2298. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2299. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2300. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2301. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2302. K(zone->present_pages),
  2303. K(zone_page_state(zone, NR_MLOCK)),
  2304. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2305. K(zone_page_state(zone, NR_WRITEBACK)),
  2306. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2307. K(zone_page_state(zone, NR_SHMEM)),
  2308. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2309. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2310. zone_page_state(zone, NR_KERNEL_STACK) *
  2311. THREAD_SIZE / 1024,
  2312. K(zone_page_state(zone, NR_PAGETABLE)),
  2313. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2314. K(zone_page_state(zone, NR_BOUNCE)),
  2315. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2316. zone->pages_scanned,
  2317. (zone->all_unreclaimable ? "yes" : "no")
  2318. );
  2319. printk("lowmem_reserve[]:");
  2320. for (i = 0; i < MAX_NR_ZONES; i++)
  2321. printk(" %lu", zone->lowmem_reserve[i]);
  2322. printk("\n");
  2323. }
  2324. for_each_populated_zone(zone) {
  2325. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2326. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2327. continue;
  2328. show_node(zone);
  2329. printk("%s: ", zone->name);
  2330. spin_lock_irqsave(&zone->lock, flags);
  2331. for (order = 0; order < MAX_ORDER; order++) {
  2332. nr[order] = zone->free_area[order].nr_free;
  2333. total += nr[order] << order;
  2334. }
  2335. spin_unlock_irqrestore(&zone->lock, flags);
  2336. for (order = 0; order < MAX_ORDER; order++)
  2337. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2338. printk("= %lukB\n", K(total));
  2339. }
  2340. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2341. show_swap_cache_info();
  2342. }
  2343. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2344. {
  2345. zoneref->zone = zone;
  2346. zoneref->zone_idx = zone_idx(zone);
  2347. }
  2348. /*
  2349. * Builds allocation fallback zone lists.
  2350. *
  2351. * Add all populated zones of a node to the zonelist.
  2352. */
  2353. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2354. int nr_zones, enum zone_type zone_type)
  2355. {
  2356. struct zone *zone;
  2357. BUG_ON(zone_type >= MAX_NR_ZONES);
  2358. zone_type++;
  2359. do {
  2360. zone_type--;
  2361. zone = pgdat->node_zones + zone_type;
  2362. if (populated_zone(zone)) {
  2363. zoneref_set_zone(zone,
  2364. &zonelist->_zonerefs[nr_zones++]);
  2365. check_highest_zone(zone_type);
  2366. }
  2367. } while (zone_type);
  2368. return nr_zones;
  2369. }
  2370. /*
  2371. * zonelist_order:
  2372. * 0 = automatic detection of better ordering.
  2373. * 1 = order by ([node] distance, -zonetype)
  2374. * 2 = order by (-zonetype, [node] distance)
  2375. *
  2376. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2377. * the same zonelist. So only NUMA can configure this param.
  2378. */
  2379. #define ZONELIST_ORDER_DEFAULT 0
  2380. #define ZONELIST_ORDER_NODE 1
  2381. #define ZONELIST_ORDER_ZONE 2
  2382. /* zonelist order in the kernel.
  2383. * set_zonelist_order() will set this to NODE or ZONE.
  2384. */
  2385. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2386. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2387. #ifdef CONFIG_NUMA
  2388. /* The value user specified ....changed by config */
  2389. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2390. /* string for sysctl */
  2391. #define NUMA_ZONELIST_ORDER_LEN 16
  2392. char numa_zonelist_order[16] = "default";
  2393. /*
  2394. * interface for configure zonelist ordering.
  2395. * command line option "numa_zonelist_order"
  2396. * = "[dD]efault - default, automatic configuration.
  2397. * = "[nN]ode - order by node locality, then by zone within node
  2398. * = "[zZ]one - order by zone, then by locality within zone
  2399. */
  2400. static int __parse_numa_zonelist_order(char *s)
  2401. {
  2402. if (*s == 'd' || *s == 'D') {
  2403. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2404. } else if (*s == 'n' || *s == 'N') {
  2405. user_zonelist_order = ZONELIST_ORDER_NODE;
  2406. } else if (*s == 'z' || *s == 'Z') {
  2407. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2408. } else {
  2409. printk(KERN_WARNING
  2410. "Ignoring invalid numa_zonelist_order value: "
  2411. "%s\n", s);
  2412. return -EINVAL;
  2413. }
  2414. return 0;
  2415. }
  2416. static __init int setup_numa_zonelist_order(char *s)
  2417. {
  2418. int ret;
  2419. if (!s)
  2420. return 0;
  2421. ret = __parse_numa_zonelist_order(s);
  2422. if (ret == 0)
  2423. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2424. return ret;
  2425. }
  2426. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2427. /*
  2428. * sysctl handler for numa_zonelist_order
  2429. */
  2430. int numa_zonelist_order_handler(ctl_table *table, int write,
  2431. void __user *buffer, size_t *length,
  2432. loff_t *ppos)
  2433. {
  2434. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2435. int ret;
  2436. static DEFINE_MUTEX(zl_order_mutex);
  2437. mutex_lock(&zl_order_mutex);
  2438. if (write)
  2439. strcpy(saved_string, (char*)table->data);
  2440. ret = proc_dostring(table, write, buffer, length, ppos);
  2441. if (ret)
  2442. goto out;
  2443. if (write) {
  2444. int oldval = user_zonelist_order;
  2445. if (__parse_numa_zonelist_order((char*)table->data)) {
  2446. /*
  2447. * bogus value. restore saved string
  2448. */
  2449. strncpy((char*)table->data, saved_string,
  2450. NUMA_ZONELIST_ORDER_LEN);
  2451. user_zonelist_order = oldval;
  2452. } else if (oldval != user_zonelist_order) {
  2453. mutex_lock(&zonelists_mutex);
  2454. build_all_zonelists(NULL);
  2455. mutex_unlock(&zonelists_mutex);
  2456. }
  2457. }
  2458. out:
  2459. mutex_unlock(&zl_order_mutex);
  2460. return ret;
  2461. }
  2462. #define MAX_NODE_LOAD (nr_online_nodes)
  2463. static int node_load[MAX_NUMNODES];
  2464. /**
  2465. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2466. * @node: node whose fallback list we're appending
  2467. * @used_node_mask: nodemask_t of already used nodes
  2468. *
  2469. * We use a number of factors to determine which is the next node that should
  2470. * appear on a given node's fallback list. The node should not have appeared
  2471. * already in @node's fallback list, and it should be the next closest node
  2472. * according to the distance array (which contains arbitrary distance values
  2473. * from each node to each node in the system), and should also prefer nodes
  2474. * with no CPUs, since presumably they'll have very little allocation pressure
  2475. * on them otherwise.
  2476. * It returns -1 if no node is found.
  2477. */
  2478. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2479. {
  2480. int n, val;
  2481. int min_val = INT_MAX;
  2482. int best_node = -1;
  2483. const struct cpumask *tmp = cpumask_of_node(0);
  2484. /* Use the local node if we haven't already */
  2485. if (!node_isset(node, *used_node_mask)) {
  2486. node_set(node, *used_node_mask);
  2487. return node;
  2488. }
  2489. for_each_node_state(n, N_HIGH_MEMORY) {
  2490. /* Don't want a node to appear more than once */
  2491. if (node_isset(n, *used_node_mask))
  2492. continue;
  2493. /* Use the distance array to find the distance */
  2494. val = node_distance(node, n);
  2495. /* Penalize nodes under us ("prefer the next node") */
  2496. val += (n < node);
  2497. /* Give preference to headless and unused nodes */
  2498. tmp = cpumask_of_node(n);
  2499. if (!cpumask_empty(tmp))
  2500. val += PENALTY_FOR_NODE_WITH_CPUS;
  2501. /* Slight preference for less loaded node */
  2502. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2503. val += node_load[n];
  2504. if (val < min_val) {
  2505. min_val = val;
  2506. best_node = n;
  2507. }
  2508. }
  2509. if (best_node >= 0)
  2510. node_set(best_node, *used_node_mask);
  2511. return best_node;
  2512. }
  2513. /*
  2514. * Build zonelists ordered by node and zones within node.
  2515. * This results in maximum locality--normal zone overflows into local
  2516. * DMA zone, if any--but risks exhausting DMA zone.
  2517. */
  2518. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2519. {
  2520. int j;
  2521. struct zonelist *zonelist;
  2522. zonelist = &pgdat->node_zonelists[0];
  2523. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2524. ;
  2525. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2526. MAX_NR_ZONES - 1);
  2527. zonelist->_zonerefs[j].zone = NULL;
  2528. zonelist->_zonerefs[j].zone_idx = 0;
  2529. }
  2530. /*
  2531. * Build gfp_thisnode zonelists
  2532. */
  2533. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2534. {
  2535. int j;
  2536. struct zonelist *zonelist;
  2537. zonelist = &pgdat->node_zonelists[1];
  2538. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2539. zonelist->_zonerefs[j].zone = NULL;
  2540. zonelist->_zonerefs[j].zone_idx = 0;
  2541. }
  2542. /*
  2543. * Build zonelists ordered by zone and nodes within zones.
  2544. * This results in conserving DMA zone[s] until all Normal memory is
  2545. * exhausted, but results in overflowing to remote node while memory
  2546. * may still exist in local DMA zone.
  2547. */
  2548. static int node_order[MAX_NUMNODES];
  2549. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2550. {
  2551. int pos, j, node;
  2552. int zone_type; /* needs to be signed */
  2553. struct zone *z;
  2554. struct zonelist *zonelist;
  2555. zonelist = &pgdat->node_zonelists[0];
  2556. pos = 0;
  2557. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2558. for (j = 0; j < nr_nodes; j++) {
  2559. node = node_order[j];
  2560. z = &NODE_DATA(node)->node_zones[zone_type];
  2561. if (populated_zone(z)) {
  2562. zoneref_set_zone(z,
  2563. &zonelist->_zonerefs[pos++]);
  2564. check_highest_zone(zone_type);
  2565. }
  2566. }
  2567. }
  2568. zonelist->_zonerefs[pos].zone = NULL;
  2569. zonelist->_zonerefs[pos].zone_idx = 0;
  2570. }
  2571. static int default_zonelist_order(void)
  2572. {
  2573. int nid, zone_type;
  2574. unsigned long low_kmem_size,total_size;
  2575. struct zone *z;
  2576. int average_size;
  2577. /*
  2578. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2579. * If they are really small and used heavily, the system can fall
  2580. * into OOM very easily.
  2581. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2582. */
  2583. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2584. low_kmem_size = 0;
  2585. total_size = 0;
  2586. for_each_online_node(nid) {
  2587. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2588. z = &NODE_DATA(nid)->node_zones[zone_type];
  2589. if (populated_zone(z)) {
  2590. if (zone_type < ZONE_NORMAL)
  2591. low_kmem_size += z->present_pages;
  2592. total_size += z->present_pages;
  2593. } else if (zone_type == ZONE_NORMAL) {
  2594. /*
  2595. * If any node has only lowmem, then node order
  2596. * is preferred to allow kernel allocations
  2597. * locally; otherwise, they can easily infringe
  2598. * on other nodes when there is an abundance of
  2599. * lowmem available to allocate from.
  2600. */
  2601. return ZONELIST_ORDER_NODE;
  2602. }
  2603. }
  2604. }
  2605. if (!low_kmem_size || /* there are no DMA area. */
  2606. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2607. return ZONELIST_ORDER_NODE;
  2608. /*
  2609. * look into each node's config.
  2610. * If there is a node whose DMA/DMA32 memory is very big area on
  2611. * local memory, NODE_ORDER may be suitable.
  2612. */
  2613. average_size = total_size /
  2614. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2615. for_each_online_node(nid) {
  2616. low_kmem_size = 0;
  2617. total_size = 0;
  2618. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2619. z = &NODE_DATA(nid)->node_zones[zone_type];
  2620. if (populated_zone(z)) {
  2621. if (zone_type < ZONE_NORMAL)
  2622. low_kmem_size += z->present_pages;
  2623. total_size += z->present_pages;
  2624. }
  2625. }
  2626. if (low_kmem_size &&
  2627. total_size > average_size && /* ignore small node */
  2628. low_kmem_size > total_size * 70/100)
  2629. return ZONELIST_ORDER_NODE;
  2630. }
  2631. return ZONELIST_ORDER_ZONE;
  2632. }
  2633. static void set_zonelist_order(void)
  2634. {
  2635. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2636. current_zonelist_order = default_zonelist_order();
  2637. else
  2638. current_zonelist_order = user_zonelist_order;
  2639. }
  2640. static void build_zonelists(pg_data_t *pgdat)
  2641. {
  2642. int j, node, load;
  2643. enum zone_type i;
  2644. nodemask_t used_mask;
  2645. int local_node, prev_node;
  2646. struct zonelist *zonelist;
  2647. int order = current_zonelist_order;
  2648. /* initialize zonelists */
  2649. for (i = 0; i < MAX_ZONELISTS; i++) {
  2650. zonelist = pgdat->node_zonelists + i;
  2651. zonelist->_zonerefs[0].zone = NULL;
  2652. zonelist->_zonerefs[0].zone_idx = 0;
  2653. }
  2654. /* NUMA-aware ordering of nodes */
  2655. local_node = pgdat->node_id;
  2656. load = nr_online_nodes;
  2657. prev_node = local_node;
  2658. nodes_clear(used_mask);
  2659. memset(node_order, 0, sizeof(node_order));
  2660. j = 0;
  2661. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2662. int distance = node_distance(local_node, node);
  2663. /*
  2664. * If another node is sufficiently far away then it is better
  2665. * to reclaim pages in a zone before going off node.
  2666. */
  2667. if (distance > RECLAIM_DISTANCE)
  2668. zone_reclaim_mode = 1;
  2669. /*
  2670. * We don't want to pressure a particular node.
  2671. * So adding penalty to the first node in same
  2672. * distance group to make it round-robin.
  2673. */
  2674. if (distance != node_distance(local_node, prev_node))
  2675. node_load[node] = load;
  2676. prev_node = node;
  2677. load--;
  2678. if (order == ZONELIST_ORDER_NODE)
  2679. build_zonelists_in_node_order(pgdat, node);
  2680. else
  2681. node_order[j++] = node; /* remember order */
  2682. }
  2683. if (order == ZONELIST_ORDER_ZONE) {
  2684. /* calculate node order -- i.e., DMA last! */
  2685. build_zonelists_in_zone_order(pgdat, j);
  2686. }
  2687. build_thisnode_zonelists(pgdat);
  2688. }
  2689. /* Construct the zonelist performance cache - see further mmzone.h */
  2690. static void build_zonelist_cache(pg_data_t *pgdat)
  2691. {
  2692. struct zonelist *zonelist;
  2693. struct zonelist_cache *zlc;
  2694. struct zoneref *z;
  2695. zonelist = &pgdat->node_zonelists[0];
  2696. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2697. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2698. for (z = zonelist->_zonerefs; z->zone; z++)
  2699. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2700. }
  2701. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2702. /*
  2703. * Return node id of node used for "local" allocations.
  2704. * I.e., first node id of first zone in arg node's generic zonelist.
  2705. * Used for initializing percpu 'numa_mem', which is used primarily
  2706. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2707. */
  2708. int local_memory_node(int node)
  2709. {
  2710. struct zone *zone;
  2711. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2712. gfp_zone(GFP_KERNEL),
  2713. NULL,
  2714. &zone);
  2715. return zone->node;
  2716. }
  2717. #endif
  2718. #else /* CONFIG_NUMA */
  2719. static void set_zonelist_order(void)
  2720. {
  2721. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2722. }
  2723. static void build_zonelists(pg_data_t *pgdat)
  2724. {
  2725. int node, local_node;
  2726. enum zone_type j;
  2727. struct zonelist *zonelist;
  2728. local_node = pgdat->node_id;
  2729. zonelist = &pgdat->node_zonelists[0];
  2730. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2731. /*
  2732. * Now we build the zonelist so that it contains the zones
  2733. * of all the other nodes.
  2734. * We don't want to pressure a particular node, so when
  2735. * building the zones for node N, we make sure that the
  2736. * zones coming right after the local ones are those from
  2737. * node N+1 (modulo N)
  2738. */
  2739. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2740. if (!node_online(node))
  2741. continue;
  2742. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2743. MAX_NR_ZONES - 1);
  2744. }
  2745. for (node = 0; node < local_node; node++) {
  2746. if (!node_online(node))
  2747. continue;
  2748. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2749. MAX_NR_ZONES - 1);
  2750. }
  2751. zonelist->_zonerefs[j].zone = NULL;
  2752. zonelist->_zonerefs[j].zone_idx = 0;
  2753. }
  2754. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2755. static void build_zonelist_cache(pg_data_t *pgdat)
  2756. {
  2757. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2758. }
  2759. #endif /* CONFIG_NUMA */
  2760. /*
  2761. * Boot pageset table. One per cpu which is going to be used for all
  2762. * zones and all nodes. The parameters will be set in such a way
  2763. * that an item put on a list will immediately be handed over to
  2764. * the buddy list. This is safe since pageset manipulation is done
  2765. * with interrupts disabled.
  2766. *
  2767. * The boot_pagesets must be kept even after bootup is complete for
  2768. * unused processors and/or zones. They do play a role for bootstrapping
  2769. * hotplugged processors.
  2770. *
  2771. * zoneinfo_show() and maybe other functions do
  2772. * not check if the processor is online before following the pageset pointer.
  2773. * Other parts of the kernel may not check if the zone is available.
  2774. */
  2775. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2776. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2777. static void setup_zone_pageset(struct zone *zone);
  2778. /*
  2779. * Global mutex to protect against size modification of zonelists
  2780. * as well as to serialize pageset setup for the new populated zone.
  2781. */
  2782. DEFINE_MUTEX(zonelists_mutex);
  2783. /* return values int ....just for stop_machine() */
  2784. static __init_refok int __build_all_zonelists(void *data)
  2785. {
  2786. int nid;
  2787. int cpu;
  2788. #ifdef CONFIG_NUMA
  2789. memset(node_load, 0, sizeof(node_load));
  2790. #endif
  2791. for_each_online_node(nid) {
  2792. pg_data_t *pgdat = NODE_DATA(nid);
  2793. build_zonelists(pgdat);
  2794. build_zonelist_cache(pgdat);
  2795. }
  2796. /*
  2797. * Initialize the boot_pagesets that are going to be used
  2798. * for bootstrapping processors. The real pagesets for
  2799. * each zone will be allocated later when the per cpu
  2800. * allocator is available.
  2801. *
  2802. * boot_pagesets are used also for bootstrapping offline
  2803. * cpus if the system is already booted because the pagesets
  2804. * are needed to initialize allocators on a specific cpu too.
  2805. * F.e. the percpu allocator needs the page allocator which
  2806. * needs the percpu allocator in order to allocate its pagesets
  2807. * (a chicken-egg dilemma).
  2808. */
  2809. for_each_possible_cpu(cpu) {
  2810. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2811. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2812. /*
  2813. * We now know the "local memory node" for each node--
  2814. * i.e., the node of the first zone in the generic zonelist.
  2815. * Set up numa_mem percpu variable for on-line cpus. During
  2816. * boot, only the boot cpu should be on-line; we'll init the
  2817. * secondary cpus' numa_mem as they come on-line. During
  2818. * node/memory hotplug, we'll fixup all on-line cpus.
  2819. */
  2820. if (cpu_online(cpu))
  2821. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2822. #endif
  2823. }
  2824. return 0;
  2825. }
  2826. /*
  2827. * Called with zonelists_mutex held always
  2828. * unless system_state == SYSTEM_BOOTING.
  2829. */
  2830. void __ref build_all_zonelists(void *data)
  2831. {
  2832. set_zonelist_order();
  2833. if (system_state == SYSTEM_BOOTING) {
  2834. __build_all_zonelists(NULL);
  2835. mminit_verify_zonelist();
  2836. cpuset_init_current_mems_allowed();
  2837. } else {
  2838. /* we have to stop all cpus to guarantee there is no user
  2839. of zonelist */
  2840. #ifdef CONFIG_MEMORY_HOTPLUG
  2841. if (data)
  2842. setup_zone_pageset((struct zone *)data);
  2843. #endif
  2844. stop_machine(__build_all_zonelists, NULL, NULL);
  2845. /* cpuset refresh routine should be here */
  2846. }
  2847. vm_total_pages = nr_free_pagecache_pages();
  2848. /*
  2849. * Disable grouping by mobility if the number of pages in the
  2850. * system is too low to allow the mechanism to work. It would be
  2851. * more accurate, but expensive to check per-zone. This check is
  2852. * made on memory-hotadd so a system can start with mobility
  2853. * disabled and enable it later
  2854. */
  2855. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2856. page_group_by_mobility_disabled = 1;
  2857. else
  2858. page_group_by_mobility_disabled = 0;
  2859. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2860. "Total pages: %ld\n",
  2861. nr_online_nodes,
  2862. zonelist_order_name[current_zonelist_order],
  2863. page_group_by_mobility_disabled ? "off" : "on",
  2864. vm_total_pages);
  2865. #ifdef CONFIG_NUMA
  2866. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2867. #endif
  2868. }
  2869. /*
  2870. * Helper functions to size the waitqueue hash table.
  2871. * Essentially these want to choose hash table sizes sufficiently
  2872. * large so that collisions trying to wait on pages are rare.
  2873. * But in fact, the number of active page waitqueues on typical
  2874. * systems is ridiculously low, less than 200. So this is even
  2875. * conservative, even though it seems large.
  2876. *
  2877. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2878. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2879. */
  2880. #define PAGES_PER_WAITQUEUE 256
  2881. #ifndef CONFIG_MEMORY_HOTPLUG
  2882. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2883. {
  2884. unsigned long size = 1;
  2885. pages /= PAGES_PER_WAITQUEUE;
  2886. while (size < pages)
  2887. size <<= 1;
  2888. /*
  2889. * Once we have dozens or even hundreds of threads sleeping
  2890. * on IO we've got bigger problems than wait queue collision.
  2891. * Limit the size of the wait table to a reasonable size.
  2892. */
  2893. size = min(size, 4096UL);
  2894. return max(size, 4UL);
  2895. }
  2896. #else
  2897. /*
  2898. * A zone's size might be changed by hot-add, so it is not possible to determine
  2899. * a suitable size for its wait_table. So we use the maximum size now.
  2900. *
  2901. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2902. *
  2903. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2904. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2905. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2906. *
  2907. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2908. * or more by the traditional way. (See above). It equals:
  2909. *
  2910. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2911. * ia64(16K page size) : = ( 8G + 4M)byte.
  2912. * powerpc (64K page size) : = (32G +16M)byte.
  2913. */
  2914. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2915. {
  2916. return 4096UL;
  2917. }
  2918. #endif
  2919. /*
  2920. * This is an integer logarithm so that shifts can be used later
  2921. * to extract the more random high bits from the multiplicative
  2922. * hash function before the remainder is taken.
  2923. */
  2924. static inline unsigned long wait_table_bits(unsigned long size)
  2925. {
  2926. return ffz(~size);
  2927. }
  2928. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2929. /*
  2930. * Check if a pageblock contains reserved pages
  2931. */
  2932. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  2933. {
  2934. unsigned long pfn;
  2935. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2936. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  2937. return 1;
  2938. }
  2939. return 0;
  2940. }
  2941. /*
  2942. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2943. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2944. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2945. * higher will lead to a bigger reserve which will get freed as contiguous
  2946. * blocks as reclaim kicks in
  2947. */
  2948. static void setup_zone_migrate_reserve(struct zone *zone)
  2949. {
  2950. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  2951. struct page *page;
  2952. unsigned long block_migratetype;
  2953. int reserve;
  2954. /*
  2955. * Get the start pfn, end pfn and the number of blocks to reserve
  2956. * We have to be careful to be aligned to pageblock_nr_pages to
  2957. * make sure that we always check pfn_valid for the first page in
  2958. * the block.
  2959. */
  2960. start_pfn = zone->zone_start_pfn;
  2961. end_pfn = start_pfn + zone->spanned_pages;
  2962. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  2963. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2964. pageblock_order;
  2965. /*
  2966. * Reserve blocks are generally in place to help high-order atomic
  2967. * allocations that are short-lived. A min_free_kbytes value that
  2968. * would result in more than 2 reserve blocks for atomic allocations
  2969. * is assumed to be in place to help anti-fragmentation for the
  2970. * future allocation of hugepages at runtime.
  2971. */
  2972. reserve = min(2, reserve);
  2973. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2974. if (!pfn_valid(pfn))
  2975. continue;
  2976. page = pfn_to_page(pfn);
  2977. /* Watch out for overlapping nodes */
  2978. if (page_to_nid(page) != zone_to_nid(zone))
  2979. continue;
  2980. /* Blocks with reserved pages will never free, skip them. */
  2981. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  2982. if (pageblock_is_reserved(pfn, block_end_pfn))
  2983. continue;
  2984. block_migratetype = get_pageblock_migratetype(page);
  2985. /* If this block is reserved, account for it */
  2986. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2987. reserve--;
  2988. continue;
  2989. }
  2990. /* Suitable for reserving if this block is movable */
  2991. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2992. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2993. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2994. reserve--;
  2995. continue;
  2996. }
  2997. /*
  2998. * If the reserve is met and this is a previous reserved block,
  2999. * take it back
  3000. */
  3001. if (block_migratetype == MIGRATE_RESERVE) {
  3002. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3003. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3004. }
  3005. }
  3006. }
  3007. /*
  3008. * Initially all pages are reserved - free ones are freed
  3009. * up by free_all_bootmem() once the early boot process is
  3010. * done. Non-atomic initialization, single-pass.
  3011. */
  3012. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3013. unsigned long start_pfn, enum memmap_context context)
  3014. {
  3015. struct page *page;
  3016. unsigned long end_pfn = start_pfn + size;
  3017. unsigned long pfn;
  3018. struct zone *z;
  3019. if (highest_memmap_pfn < end_pfn - 1)
  3020. highest_memmap_pfn = end_pfn - 1;
  3021. z = &NODE_DATA(nid)->node_zones[zone];
  3022. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3023. /*
  3024. * There can be holes in boot-time mem_map[]s
  3025. * handed to this function. They do not
  3026. * exist on hotplugged memory.
  3027. */
  3028. if (context == MEMMAP_EARLY) {
  3029. if (!early_pfn_valid(pfn))
  3030. continue;
  3031. if (!early_pfn_in_nid(pfn, nid))
  3032. continue;
  3033. }
  3034. page = pfn_to_page(pfn);
  3035. set_page_links(page, zone, nid, pfn);
  3036. mminit_verify_page_links(page, zone, nid, pfn);
  3037. init_page_count(page);
  3038. reset_page_mapcount(page);
  3039. SetPageReserved(page);
  3040. /*
  3041. * Mark the block movable so that blocks are reserved for
  3042. * movable at startup. This will force kernel allocations
  3043. * to reserve their blocks rather than leaking throughout
  3044. * the address space during boot when many long-lived
  3045. * kernel allocations are made. Later some blocks near
  3046. * the start are marked MIGRATE_RESERVE by
  3047. * setup_zone_migrate_reserve()
  3048. *
  3049. * bitmap is created for zone's valid pfn range. but memmap
  3050. * can be created for invalid pages (for alignment)
  3051. * check here not to call set_pageblock_migratetype() against
  3052. * pfn out of zone.
  3053. */
  3054. if ((z->zone_start_pfn <= pfn)
  3055. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3056. && !(pfn & (pageblock_nr_pages - 1)))
  3057. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3058. INIT_LIST_HEAD(&page->lru);
  3059. #ifdef WANT_PAGE_VIRTUAL
  3060. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3061. if (!is_highmem_idx(zone))
  3062. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3063. #endif
  3064. }
  3065. }
  3066. static void __meminit zone_init_free_lists(struct zone *zone)
  3067. {
  3068. int order, t;
  3069. for_each_migratetype_order(order, t) {
  3070. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3071. zone->free_area[order].nr_free = 0;
  3072. }
  3073. }
  3074. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3075. #define memmap_init(size, nid, zone, start_pfn) \
  3076. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3077. #endif
  3078. static int zone_batchsize(struct zone *zone)
  3079. {
  3080. #ifdef CONFIG_MMU
  3081. int batch;
  3082. /*
  3083. * The per-cpu-pages pools are set to around 1000th of the
  3084. * size of the zone. But no more than 1/2 of a meg.
  3085. *
  3086. * OK, so we don't know how big the cache is. So guess.
  3087. */
  3088. batch = zone->present_pages / 1024;
  3089. if (batch * PAGE_SIZE > 512 * 1024)
  3090. batch = (512 * 1024) / PAGE_SIZE;
  3091. batch /= 4; /* We effectively *= 4 below */
  3092. if (batch < 1)
  3093. batch = 1;
  3094. /*
  3095. * Clamp the batch to a 2^n - 1 value. Having a power
  3096. * of 2 value was found to be more likely to have
  3097. * suboptimal cache aliasing properties in some cases.
  3098. *
  3099. * For example if 2 tasks are alternately allocating
  3100. * batches of pages, one task can end up with a lot
  3101. * of pages of one half of the possible page colors
  3102. * and the other with pages of the other colors.
  3103. */
  3104. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3105. return batch;
  3106. #else
  3107. /* The deferral and batching of frees should be suppressed under NOMMU
  3108. * conditions.
  3109. *
  3110. * The problem is that NOMMU needs to be able to allocate large chunks
  3111. * of contiguous memory as there's no hardware page translation to
  3112. * assemble apparent contiguous memory from discontiguous pages.
  3113. *
  3114. * Queueing large contiguous runs of pages for batching, however,
  3115. * causes the pages to actually be freed in smaller chunks. As there
  3116. * can be a significant delay between the individual batches being
  3117. * recycled, this leads to the once large chunks of space being
  3118. * fragmented and becoming unavailable for high-order allocations.
  3119. */
  3120. return 0;
  3121. #endif
  3122. }
  3123. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3124. {
  3125. struct per_cpu_pages *pcp;
  3126. int migratetype;
  3127. memset(p, 0, sizeof(*p));
  3128. pcp = &p->pcp;
  3129. pcp->count = 0;
  3130. pcp->high = 6 * batch;
  3131. pcp->batch = max(1UL, 1 * batch);
  3132. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3133. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3134. }
  3135. /*
  3136. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3137. * to the value high for the pageset p.
  3138. */
  3139. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3140. unsigned long high)
  3141. {
  3142. struct per_cpu_pages *pcp;
  3143. pcp = &p->pcp;
  3144. pcp->high = high;
  3145. pcp->batch = max(1UL, high/4);
  3146. if ((high/4) > (PAGE_SHIFT * 8))
  3147. pcp->batch = PAGE_SHIFT * 8;
  3148. }
  3149. static void setup_zone_pageset(struct zone *zone)
  3150. {
  3151. int cpu;
  3152. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3153. for_each_possible_cpu(cpu) {
  3154. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3155. setup_pageset(pcp, zone_batchsize(zone));
  3156. if (percpu_pagelist_fraction)
  3157. setup_pagelist_highmark(pcp,
  3158. (zone->present_pages /
  3159. percpu_pagelist_fraction));
  3160. }
  3161. }
  3162. /*
  3163. * Allocate per cpu pagesets and initialize them.
  3164. * Before this call only boot pagesets were available.
  3165. */
  3166. void __init setup_per_cpu_pageset(void)
  3167. {
  3168. struct zone *zone;
  3169. for_each_populated_zone(zone)
  3170. setup_zone_pageset(zone);
  3171. }
  3172. static noinline __init_refok
  3173. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3174. {
  3175. int i;
  3176. struct pglist_data *pgdat = zone->zone_pgdat;
  3177. size_t alloc_size;
  3178. /*
  3179. * The per-page waitqueue mechanism uses hashed waitqueues
  3180. * per zone.
  3181. */
  3182. zone->wait_table_hash_nr_entries =
  3183. wait_table_hash_nr_entries(zone_size_pages);
  3184. zone->wait_table_bits =
  3185. wait_table_bits(zone->wait_table_hash_nr_entries);
  3186. alloc_size = zone->wait_table_hash_nr_entries
  3187. * sizeof(wait_queue_head_t);
  3188. if (!slab_is_available()) {
  3189. zone->wait_table = (wait_queue_head_t *)
  3190. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3191. } else {
  3192. /*
  3193. * This case means that a zone whose size was 0 gets new memory
  3194. * via memory hot-add.
  3195. * But it may be the case that a new node was hot-added. In
  3196. * this case vmalloc() will not be able to use this new node's
  3197. * memory - this wait_table must be initialized to use this new
  3198. * node itself as well.
  3199. * To use this new node's memory, further consideration will be
  3200. * necessary.
  3201. */
  3202. zone->wait_table = vmalloc(alloc_size);
  3203. }
  3204. if (!zone->wait_table)
  3205. return -ENOMEM;
  3206. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3207. init_waitqueue_head(zone->wait_table + i);
  3208. return 0;
  3209. }
  3210. static int __zone_pcp_update(void *data)
  3211. {
  3212. struct zone *zone = data;
  3213. int cpu;
  3214. unsigned long batch = zone_batchsize(zone), flags;
  3215. for_each_possible_cpu(cpu) {
  3216. struct per_cpu_pageset *pset;
  3217. struct per_cpu_pages *pcp;
  3218. pset = per_cpu_ptr(zone->pageset, cpu);
  3219. pcp = &pset->pcp;
  3220. local_irq_save(flags);
  3221. free_pcppages_bulk(zone, pcp->count, pcp);
  3222. setup_pageset(pset, batch);
  3223. local_irq_restore(flags);
  3224. }
  3225. return 0;
  3226. }
  3227. void zone_pcp_update(struct zone *zone)
  3228. {
  3229. stop_machine(__zone_pcp_update, zone, NULL);
  3230. }
  3231. static __meminit void zone_pcp_init(struct zone *zone)
  3232. {
  3233. /*
  3234. * per cpu subsystem is not up at this point. The following code
  3235. * relies on the ability of the linker to provide the
  3236. * offset of a (static) per cpu variable into the per cpu area.
  3237. */
  3238. zone->pageset = &boot_pageset;
  3239. if (zone->present_pages)
  3240. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3241. zone->name, zone->present_pages,
  3242. zone_batchsize(zone));
  3243. }
  3244. __meminit int init_currently_empty_zone(struct zone *zone,
  3245. unsigned long zone_start_pfn,
  3246. unsigned long size,
  3247. enum memmap_context context)
  3248. {
  3249. struct pglist_data *pgdat = zone->zone_pgdat;
  3250. int ret;
  3251. ret = zone_wait_table_init(zone, size);
  3252. if (ret)
  3253. return ret;
  3254. pgdat->nr_zones = zone_idx(zone) + 1;
  3255. zone->zone_start_pfn = zone_start_pfn;
  3256. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3257. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3258. pgdat->node_id,
  3259. (unsigned long)zone_idx(zone),
  3260. zone_start_pfn, (zone_start_pfn + size));
  3261. zone_init_free_lists(zone);
  3262. return 0;
  3263. }
  3264. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3265. /*
  3266. * Basic iterator support. Return the first range of PFNs for a node
  3267. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3268. */
  3269. static int __meminit first_active_region_index_in_nid(int nid)
  3270. {
  3271. int i;
  3272. for (i = 0; i < nr_nodemap_entries; i++)
  3273. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3274. return i;
  3275. return -1;
  3276. }
  3277. /*
  3278. * Basic iterator support. Return the next active range of PFNs for a node
  3279. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3280. */
  3281. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3282. {
  3283. for (index = index + 1; index < nr_nodemap_entries; index++)
  3284. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3285. return index;
  3286. return -1;
  3287. }
  3288. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3289. /*
  3290. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3291. * Architectures may implement their own version but if add_active_range()
  3292. * was used and there are no special requirements, this is a convenient
  3293. * alternative
  3294. */
  3295. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3296. {
  3297. int i;
  3298. for (i = 0; i < nr_nodemap_entries; i++) {
  3299. unsigned long start_pfn = early_node_map[i].start_pfn;
  3300. unsigned long end_pfn = early_node_map[i].end_pfn;
  3301. if (start_pfn <= pfn && pfn < end_pfn)
  3302. return early_node_map[i].nid;
  3303. }
  3304. /* This is a memory hole */
  3305. return -1;
  3306. }
  3307. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3308. int __meminit early_pfn_to_nid(unsigned long pfn)
  3309. {
  3310. int nid;
  3311. nid = __early_pfn_to_nid(pfn);
  3312. if (nid >= 0)
  3313. return nid;
  3314. /* just returns 0 */
  3315. return 0;
  3316. }
  3317. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3318. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3319. {
  3320. int nid;
  3321. nid = __early_pfn_to_nid(pfn);
  3322. if (nid >= 0 && nid != node)
  3323. return false;
  3324. return true;
  3325. }
  3326. #endif
  3327. /* Basic iterator support to walk early_node_map[] */
  3328. #define for_each_active_range_index_in_nid(i, nid) \
  3329. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3330. i = next_active_region_index_in_nid(i, nid))
  3331. /**
  3332. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3333. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3334. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3335. *
  3336. * If an architecture guarantees that all ranges registered with
  3337. * add_active_ranges() contain no holes and may be freed, this
  3338. * this function may be used instead of calling free_bootmem() manually.
  3339. */
  3340. void __init free_bootmem_with_active_regions(int nid,
  3341. unsigned long max_low_pfn)
  3342. {
  3343. int i;
  3344. for_each_active_range_index_in_nid(i, nid) {
  3345. unsigned long size_pages = 0;
  3346. unsigned long end_pfn = early_node_map[i].end_pfn;
  3347. if (early_node_map[i].start_pfn >= max_low_pfn)
  3348. continue;
  3349. if (end_pfn > max_low_pfn)
  3350. end_pfn = max_low_pfn;
  3351. size_pages = end_pfn - early_node_map[i].start_pfn;
  3352. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3353. PFN_PHYS(early_node_map[i].start_pfn),
  3354. size_pages << PAGE_SHIFT);
  3355. }
  3356. }
  3357. #ifdef CONFIG_HAVE_MEMBLOCK
  3358. /*
  3359. * Basic iterator support. Return the last range of PFNs for a node
  3360. * Note: nid == MAX_NUMNODES returns last region regardless of node
  3361. */
  3362. static int __meminit last_active_region_index_in_nid(int nid)
  3363. {
  3364. int i;
  3365. for (i = nr_nodemap_entries - 1; i >= 0; i--)
  3366. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3367. return i;
  3368. return -1;
  3369. }
  3370. /*
  3371. * Basic iterator support. Return the previous active range of PFNs for a node
  3372. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3373. */
  3374. static int __meminit previous_active_region_index_in_nid(int index, int nid)
  3375. {
  3376. for (index = index - 1; index >= 0; index--)
  3377. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3378. return index;
  3379. return -1;
  3380. }
  3381. #define for_each_active_range_index_in_nid_reverse(i, nid) \
  3382. for (i = last_active_region_index_in_nid(nid); i != -1; \
  3383. i = previous_active_region_index_in_nid(i, nid))
  3384. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  3385. u64 goal, u64 limit)
  3386. {
  3387. int i;
  3388. /* Need to go over early_node_map to find out good range for node */
  3389. for_each_active_range_index_in_nid_reverse(i, nid) {
  3390. u64 addr;
  3391. u64 ei_start, ei_last;
  3392. u64 final_start, final_end;
  3393. ei_last = early_node_map[i].end_pfn;
  3394. ei_last <<= PAGE_SHIFT;
  3395. ei_start = early_node_map[i].start_pfn;
  3396. ei_start <<= PAGE_SHIFT;
  3397. final_start = max(ei_start, goal);
  3398. final_end = min(ei_last, limit);
  3399. if (final_start >= final_end)
  3400. continue;
  3401. addr = memblock_find_in_range(final_start, final_end, size, align);
  3402. if (addr == MEMBLOCK_ERROR)
  3403. continue;
  3404. return addr;
  3405. }
  3406. return MEMBLOCK_ERROR;
  3407. }
  3408. #endif
  3409. int __init add_from_early_node_map(struct range *range, int az,
  3410. int nr_range, int nid)
  3411. {
  3412. int i;
  3413. u64 start, end;
  3414. /* need to go over early_node_map to find out good range for node */
  3415. for_each_active_range_index_in_nid(i, nid) {
  3416. start = early_node_map[i].start_pfn;
  3417. end = early_node_map[i].end_pfn;
  3418. nr_range = add_range(range, az, nr_range, start, end);
  3419. }
  3420. return nr_range;
  3421. }
  3422. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3423. {
  3424. int i;
  3425. int ret;
  3426. for_each_active_range_index_in_nid(i, nid) {
  3427. ret = work_fn(early_node_map[i].start_pfn,
  3428. early_node_map[i].end_pfn, data);
  3429. if (ret)
  3430. break;
  3431. }
  3432. }
  3433. /**
  3434. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3435. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3436. *
  3437. * If an architecture guarantees that all ranges registered with
  3438. * add_active_ranges() contain no holes and may be freed, this
  3439. * function may be used instead of calling memory_present() manually.
  3440. */
  3441. void __init sparse_memory_present_with_active_regions(int nid)
  3442. {
  3443. int i;
  3444. for_each_active_range_index_in_nid(i, nid)
  3445. memory_present(early_node_map[i].nid,
  3446. early_node_map[i].start_pfn,
  3447. early_node_map[i].end_pfn);
  3448. }
  3449. /**
  3450. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3451. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3452. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3453. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3454. *
  3455. * It returns the start and end page frame of a node based on information
  3456. * provided by an arch calling add_active_range(). If called for a node
  3457. * with no available memory, a warning is printed and the start and end
  3458. * PFNs will be 0.
  3459. */
  3460. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3461. unsigned long *start_pfn, unsigned long *end_pfn)
  3462. {
  3463. int i;
  3464. *start_pfn = -1UL;
  3465. *end_pfn = 0;
  3466. for_each_active_range_index_in_nid(i, nid) {
  3467. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3468. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3469. }
  3470. if (*start_pfn == -1UL)
  3471. *start_pfn = 0;
  3472. }
  3473. /*
  3474. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3475. * assumption is made that zones within a node are ordered in monotonic
  3476. * increasing memory addresses so that the "highest" populated zone is used
  3477. */
  3478. static void __init find_usable_zone_for_movable(void)
  3479. {
  3480. int zone_index;
  3481. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3482. if (zone_index == ZONE_MOVABLE)
  3483. continue;
  3484. if (arch_zone_highest_possible_pfn[zone_index] >
  3485. arch_zone_lowest_possible_pfn[zone_index])
  3486. break;
  3487. }
  3488. VM_BUG_ON(zone_index == -1);
  3489. movable_zone = zone_index;
  3490. }
  3491. /*
  3492. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3493. * because it is sized independent of architecture. Unlike the other zones,
  3494. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3495. * in each node depending on the size of each node and how evenly kernelcore
  3496. * is distributed. This helper function adjusts the zone ranges
  3497. * provided by the architecture for a given node by using the end of the
  3498. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3499. * zones within a node are in order of monotonic increases memory addresses
  3500. */
  3501. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3502. unsigned long zone_type,
  3503. unsigned long node_start_pfn,
  3504. unsigned long node_end_pfn,
  3505. unsigned long *zone_start_pfn,
  3506. unsigned long *zone_end_pfn)
  3507. {
  3508. /* Only adjust if ZONE_MOVABLE is on this node */
  3509. if (zone_movable_pfn[nid]) {
  3510. /* Size ZONE_MOVABLE */
  3511. if (zone_type == ZONE_MOVABLE) {
  3512. *zone_start_pfn = zone_movable_pfn[nid];
  3513. *zone_end_pfn = min(node_end_pfn,
  3514. arch_zone_highest_possible_pfn[movable_zone]);
  3515. /* Adjust for ZONE_MOVABLE starting within this range */
  3516. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3517. *zone_end_pfn > zone_movable_pfn[nid]) {
  3518. *zone_end_pfn = zone_movable_pfn[nid];
  3519. /* Check if this whole range is within ZONE_MOVABLE */
  3520. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3521. *zone_start_pfn = *zone_end_pfn;
  3522. }
  3523. }
  3524. /*
  3525. * Return the number of pages a zone spans in a node, including holes
  3526. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3527. */
  3528. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3529. unsigned long zone_type,
  3530. unsigned long *ignored)
  3531. {
  3532. unsigned long node_start_pfn, node_end_pfn;
  3533. unsigned long zone_start_pfn, zone_end_pfn;
  3534. /* Get the start and end of the node and zone */
  3535. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3536. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3537. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3538. adjust_zone_range_for_zone_movable(nid, zone_type,
  3539. node_start_pfn, node_end_pfn,
  3540. &zone_start_pfn, &zone_end_pfn);
  3541. /* Check that this node has pages within the zone's required range */
  3542. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3543. return 0;
  3544. /* Move the zone boundaries inside the node if necessary */
  3545. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3546. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3547. /* Return the spanned pages */
  3548. return zone_end_pfn - zone_start_pfn;
  3549. }
  3550. /*
  3551. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3552. * then all holes in the requested range will be accounted for.
  3553. */
  3554. unsigned long __meminit __absent_pages_in_range(int nid,
  3555. unsigned long range_start_pfn,
  3556. unsigned long range_end_pfn)
  3557. {
  3558. int i = 0;
  3559. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3560. unsigned long start_pfn;
  3561. /* Find the end_pfn of the first active range of pfns in the node */
  3562. i = first_active_region_index_in_nid(nid);
  3563. if (i == -1)
  3564. return 0;
  3565. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3566. /* Account for ranges before physical memory on this node */
  3567. if (early_node_map[i].start_pfn > range_start_pfn)
  3568. hole_pages = prev_end_pfn - range_start_pfn;
  3569. /* Find all holes for the zone within the node */
  3570. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3571. /* No need to continue if prev_end_pfn is outside the zone */
  3572. if (prev_end_pfn >= range_end_pfn)
  3573. break;
  3574. /* Make sure the end of the zone is not within the hole */
  3575. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3576. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3577. /* Update the hole size cound and move on */
  3578. if (start_pfn > range_start_pfn) {
  3579. BUG_ON(prev_end_pfn > start_pfn);
  3580. hole_pages += start_pfn - prev_end_pfn;
  3581. }
  3582. prev_end_pfn = early_node_map[i].end_pfn;
  3583. }
  3584. /* Account for ranges past physical memory on this node */
  3585. if (range_end_pfn > prev_end_pfn)
  3586. hole_pages += range_end_pfn -
  3587. max(range_start_pfn, prev_end_pfn);
  3588. return hole_pages;
  3589. }
  3590. /**
  3591. * absent_pages_in_range - Return number of page frames in holes within a range
  3592. * @start_pfn: The start PFN to start searching for holes
  3593. * @end_pfn: The end PFN to stop searching for holes
  3594. *
  3595. * It returns the number of pages frames in memory holes within a range.
  3596. */
  3597. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3598. unsigned long end_pfn)
  3599. {
  3600. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3601. }
  3602. /* Return the number of page frames in holes in a zone on a node */
  3603. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3604. unsigned long zone_type,
  3605. unsigned long *ignored)
  3606. {
  3607. unsigned long node_start_pfn, node_end_pfn;
  3608. unsigned long zone_start_pfn, zone_end_pfn;
  3609. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3610. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3611. node_start_pfn);
  3612. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3613. node_end_pfn);
  3614. adjust_zone_range_for_zone_movable(nid, zone_type,
  3615. node_start_pfn, node_end_pfn,
  3616. &zone_start_pfn, &zone_end_pfn);
  3617. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3618. }
  3619. #else
  3620. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3621. unsigned long zone_type,
  3622. unsigned long *zones_size)
  3623. {
  3624. return zones_size[zone_type];
  3625. }
  3626. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3627. unsigned long zone_type,
  3628. unsigned long *zholes_size)
  3629. {
  3630. if (!zholes_size)
  3631. return 0;
  3632. return zholes_size[zone_type];
  3633. }
  3634. #endif
  3635. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3636. unsigned long *zones_size, unsigned long *zholes_size)
  3637. {
  3638. unsigned long realtotalpages, totalpages = 0;
  3639. enum zone_type i;
  3640. for (i = 0; i < MAX_NR_ZONES; i++)
  3641. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3642. zones_size);
  3643. pgdat->node_spanned_pages = totalpages;
  3644. realtotalpages = totalpages;
  3645. for (i = 0; i < MAX_NR_ZONES; i++)
  3646. realtotalpages -=
  3647. zone_absent_pages_in_node(pgdat->node_id, i,
  3648. zholes_size);
  3649. pgdat->node_present_pages = realtotalpages;
  3650. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3651. realtotalpages);
  3652. }
  3653. #ifndef CONFIG_SPARSEMEM
  3654. /*
  3655. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3656. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3657. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3658. * round what is now in bits to nearest long in bits, then return it in
  3659. * bytes.
  3660. */
  3661. static unsigned long __init usemap_size(unsigned long zonesize)
  3662. {
  3663. unsigned long usemapsize;
  3664. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3665. usemapsize = usemapsize >> pageblock_order;
  3666. usemapsize *= NR_PAGEBLOCK_BITS;
  3667. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3668. return usemapsize / 8;
  3669. }
  3670. static void __init setup_usemap(struct pglist_data *pgdat,
  3671. struct zone *zone, unsigned long zonesize)
  3672. {
  3673. unsigned long usemapsize = usemap_size(zonesize);
  3674. zone->pageblock_flags = NULL;
  3675. if (usemapsize)
  3676. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3677. usemapsize);
  3678. }
  3679. #else
  3680. static inline void setup_usemap(struct pglist_data *pgdat,
  3681. struct zone *zone, unsigned long zonesize) {}
  3682. #endif /* CONFIG_SPARSEMEM */
  3683. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3684. /* Return a sensible default order for the pageblock size. */
  3685. static inline int pageblock_default_order(void)
  3686. {
  3687. if (HPAGE_SHIFT > PAGE_SHIFT)
  3688. return HUGETLB_PAGE_ORDER;
  3689. return MAX_ORDER-1;
  3690. }
  3691. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3692. static inline void __init set_pageblock_order(unsigned int order)
  3693. {
  3694. /* Check that pageblock_nr_pages has not already been setup */
  3695. if (pageblock_order)
  3696. return;
  3697. /*
  3698. * Assume the largest contiguous order of interest is a huge page.
  3699. * This value may be variable depending on boot parameters on IA64
  3700. */
  3701. pageblock_order = order;
  3702. }
  3703. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3704. /*
  3705. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3706. * and pageblock_default_order() are unused as pageblock_order is set
  3707. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3708. * pageblock_order based on the kernel config
  3709. */
  3710. static inline int pageblock_default_order(unsigned int order)
  3711. {
  3712. return MAX_ORDER-1;
  3713. }
  3714. #define set_pageblock_order(x) do {} while (0)
  3715. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3716. /*
  3717. * Set up the zone data structures:
  3718. * - mark all pages reserved
  3719. * - mark all memory queues empty
  3720. * - clear the memory bitmaps
  3721. */
  3722. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3723. unsigned long *zones_size, unsigned long *zholes_size)
  3724. {
  3725. enum zone_type j;
  3726. int nid = pgdat->node_id;
  3727. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3728. int ret;
  3729. pgdat_resize_init(pgdat);
  3730. pgdat->nr_zones = 0;
  3731. init_waitqueue_head(&pgdat->kswapd_wait);
  3732. pgdat->kswapd_max_order = 0;
  3733. pgdat_page_cgroup_init(pgdat);
  3734. for (j = 0; j < MAX_NR_ZONES; j++) {
  3735. struct zone *zone = pgdat->node_zones + j;
  3736. unsigned long size, realsize, memmap_pages;
  3737. enum lru_list l;
  3738. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3739. realsize = size - zone_absent_pages_in_node(nid, j,
  3740. zholes_size);
  3741. /*
  3742. * Adjust realsize so that it accounts for how much memory
  3743. * is used by this zone for memmap. This affects the watermark
  3744. * and per-cpu initialisations
  3745. */
  3746. memmap_pages =
  3747. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3748. if (realsize >= memmap_pages) {
  3749. realsize -= memmap_pages;
  3750. if (memmap_pages)
  3751. printk(KERN_DEBUG
  3752. " %s zone: %lu pages used for memmap\n",
  3753. zone_names[j], memmap_pages);
  3754. } else
  3755. printk(KERN_WARNING
  3756. " %s zone: %lu pages exceeds realsize %lu\n",
  3757. zone_names[j], memmap_pages, realsize);
  3758. /* Account for reserved pages */
  3759. if (j == 0 && realsize > dma_reserve) {
  3760. realsize -= dma_reserve;
  3761. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3762. zone_names[0], dma_reserve);
  3763. }
  3764. if (!is_highmem_idx(j))
  3765. nr_kernel_pages += realsize;
  3766. nr_all_pages += realsize;
  3767. zone->spanned_pages = size;
  3768. zone->present_pages = realsize;
  3769. #ifdef CONFIG_NUMA
  3770. zone->node = nid;
  3771. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3772. / 100;
  3773. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3774. #endif
  3775. zone->name = zone_names[j];
  3776. spin_lock_init(&zone->lock);
  3777. spin_lock_init(&zone->lru_lock);
  3778. zone_seqlock_init(zone);
  3779. zone->zone_pgdat = pgdat;
  3780. zone_pcp_init(zone);
  3781. for_each_lru(l)
  3782. INIT_LIST_HEAD(&zone->lru[l].list);
  3783. zone->reclaim_stat.recent_rotated[0] = 0;
  3784. zone->reclaim_stat.recent_rotated[1] = 0;
  3785. zone->reclaim_stat.recent_scanned[0] = 0;
  3786. zone->reclaim_stat.recent_scanned[1] = 0;
  3787. zap_zone_vm_stats(zone);
  3788. zone->flags = 0;
  3789. if (!size)
  3790. continue;
  3791. set_pageblock_order(pageblock_default_order());
  3792. setup_usemap(pgdat, zone, size);
  3793. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3794. size, MEMMAP_EARLY);
  3795. BUG_ON(ret);
  3796. memmap_init(size, nid, j, zone_start_pfn);
  3797. zone_start_pfn += size;
  3798. }
  3799. }
  3800. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3801. {
  3802. /* Skip empty nodes */
  3803. if (!pgdat->node_spanned_pages)
  3804. return;
  3805. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3806. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3807. if (!pgdat->node_mem_map) {
  3808. unsigned long size, start, end;
  3809. struct page *map;
  3810. /*
  3811. * The zone's endpoints aren't required to be MAX_ORDER
  3812. * aligned but the node_mem_map endpoints must be in order
  3813. * for the buddy allocator to function correctly.
  3814. */
  3815. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3816. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3817. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3818. size = (end - start) * sizeof(struct page);
  3819. map = alloc_remap(pgdat->node_id, size);
  3820. if (!map)
  3821. map = alloc_bootmem_node_nopanic(pgdat, size);
  3822. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3823. }
  3824. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3825. /*
  3826. * With no DISCONTIG, the global mem_map is just set as node 0's
  3827. */
  3828. if (pgdat == NODE_DATA(0)) {
  3829. mem_map = NODE_DATA(0)->node_mem_map;
  3830. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3831. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3832. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3833. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3834. }
  3835. #endif
  3836. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3837. }
  3838. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3839. unsigned long node_start_pfn, unsigned long *zholes_size)
  3840. {
  3841. pg_data_t *pgdat = NODE_DATA(nid);
  3842. pgdat->node_id = nid;
  3843. pgdat->node_start_pfn = node_start_pfn;
  3844. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3845. alloc_node_mem_map(pgdat);
  3846. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3847. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3848. nid, (unsigned long)pgdat,
  3849. (unsigned long)pgdat->node_mem_map);
  3850. #endif
  3851. free_area_init_core(pgdat, zones_size, zholes_size);
  3852. }
  3853. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3854. #if MAX_NUMNODES > 1
  3855. /*
  3856. * Figure out the number of possible node ids.
  3857. */
  3858. static void __init setup_nr_node_ids(void)
  3859. {
  3860. unsigned int node;
  3861. unsigned int highest = 0;
  3862. for_each_node_mask(node, node_possible_map)
  3863. highest = node;
  3864. nr_node_ids = highest + 1;
  3865. }
  3866. #else
  3867. static inline void setup_nr_node_ids(void)
  3868. {
  3869. }
  3870. #endif
  3871. /**
  3872. * add_active_range - Register a range of PFNs backed by physical memory
  3873. * @nid: The node ID the range resides on
  3874. * @start_pfn: The start PFN of the available physical memory
  3875. * @end_pfn: The end PFN of the available physical memory
  3876. *
  3877. * These ranges are stored in an early_node_map[] and later used by
  3878. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3879. * range spans a memory hole, it is up to the architecture to ensure
  3880. * the memory is not freed by the bootmem allocator. If possible
  3881. * the range being registered will be merged with existing ranges.
  3882. */
  3883. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3884. unsigned long end_pfn)
  3885. {
  3886. int i;
  3887. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3888. "Entering add_active_range(%d, %#lx, %#lx) "
  3889. "%d entries of %d used\n",
  3890. nid, start_pfn, end_pfn,
  3891. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3892. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3893. /* Merge with existing active regions if possible */
  3894. for (i = 0; i < nr_nodemap_entries; i++) {
  3895. if (early_node_map[i].nid != nid)
  3896. continue;
  3897. /* Skip if an existing region covers this new one */
  3898. if (start_pfn >= early_node_map[i].start_pfn &&
  3899. end_pfn <= early_node_map[i].end_pfn)
  3900. return;
  3901. /* Merge forward if suitable */
  3902. if (start_pfn <= early_node_map[i].end_pfn &&
  3903. end_pfn > early_node_map[i].end_pfn) {
  3904. early_node_map[i].end_pfn = end_pfn;
  3905. return;
  3906. }
  3907. /* Merge backward if suitable */
  3908. if (start_pfn < early_node_map[i].start_pfn &&
  3909. end_pfn >= early_node_map[i].start_pfn) {
  3910. early_node_map[i].start_pfn = start_pfn;
  3911. return;
  3912. }
  3913. }
  3914. /* Check that early_node_map is large enough */
  3915. if (i >= MAX_ACTIVE_REGIONS) {
  3916. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3917. MAX_ACTIVE_REGIONS);
  3918. return;
  3919. }
  3920. early_node_map[i].nid = nid;
  3921. early_node_map[i].start_pfn = start_pfn;
  3922. early_node_map[i].end_pfn = end_pfn;
  3923. nr_nodemap_entries = i + 1;
  3924. }
  3925. /**
  3926. * remove_active_range - Shrink an existing registered range of PFNs
  3927. * @nid: The node id the range is on that should be shrunk
  3928. * @start_pfn: The new PFN of the range
  3929. * @end_pfn: The new PFN of the range
  3930. *
  3931. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3932. * The map is kept near the end physical page range that has already been
  3933. * registered. This function allows an arch to shrink an existing registered
  3934. * range.
  3935. */
  3936. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3937. unsigned long end_pfn)
  3938. {
  3939. int i, j;
  3940. int removed = 0;
  3941. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3942. nid, start_pfn, end_pfn);
  3943. /* Find the old active region end and shrink */
  3944. for_each_active_range_index_in_nid(i, nid) {
  3945. if (early_node_map[i].start_pfn >= start_pfn &&
  3946. early_node_map[i].end_pfn <= end_pfn) {
  3947. /* clear it */
  3948. early_node_map[i].start_pfn = 0;
  3949. early_node_map[i].end_pfn = 0;
  3950. removed = 1;
  3951. continue;
  3952. }
  3953. if (early_node_map[i].start_pfn < start_pfn &&
  3954. early_node_map[i].end_pfn > start_pfn) {
  3955. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3956. early_node_map[i].end_pfn = start_pfn;
  3957. if (temp_end_pfn > end_pfn)
  3958. add_active_range(nid, end_pfn, temp_end_pfn);
  3959. continue;
  3960. }
  3961. if (early_node_map[i].start_pfn >= start_pfn &&
  3962. early_node_map[i].end_pfn > end_pfn &&
  3963. early_node_map[i].start_pfn < end_pfn) {
  3964. early_node_map[i].start_pfn = end_pfn;
  3965. continue;
  3966. }
  3967. }
  3968. if (!removed)
  3969. return;
  3970. /* remove the blank ones */
  3971. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3972. if (early_node_map[i].nid != nid)
  3973. continue;
  3974. if (early_node_map[i].end_pfn)
  3975. continue;
  3976. /* we found it, get rid of it */
  3977. for (j = i; j < nr_nodemap_entries - 1; j++)
  3978. memcpy(&early_node_map[j], &early_node_map[j+1],
  3979. sizeof(early_node_map[j]));
  3980. j = nr_nodemap_entries - 1;
  3981. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3982. nr_nodemap_entries--;
  3983. }
  3984. }
  3985. /**
  3986. * remove_all_active_ranges - Remove all currently registered regions
  3987. *
  3988. * During discovery, it may be found that a table like SRAT is invalid
  3989. * and an alternative discovery method must be used. This function removes
  3990. * all currently registered regions.
  3991. */
  3992. void __init remove_all_active_ranges(void)
  3993. {
  3994. memset(early_node_map, 0, sizeof(early_node_map));
  3995. nr_nodemap_entries = 0;
  3996. }
  3997. /* Compare two active node_active_regions */
  3998. static int __init cmp_node_active_region(const void *a, const void *b)
  3999. {
  4000. struct node_active_region *arange = (struct node_active_region *)a;
  4001. struct node_active_region *brange = (struct node_active_region *)b;
  4002. /* Done this way to avoid overflows */
  4003. if (arange->start_pfn > brange->start_pfn)
  4004. return 1;
  4005. if (arange->start_pfn < brange->start_pfn)
  4006. return -1;
  4007. return 0;
  4008. }
  4009. /* sort the node_map by start_pfn */
  4010. void __init sort_node_map(void)
  4011. {
  4012. sort(early_node_map, (size_t)nr_nodemap_entries,
  4013. sizeof(struct node_active_region),
  4014. cmp_node_active_region, NULL);
  4015. }
  4016. /* Find the lowest pfn for a node */
  4017. static unsigned long __init find_min_pfn_for_node(int nid)
  4018. {
  4019. int i;
  4020. unsigned long min_pfn = ULONG_MAX;
  4021. /* Assuming a sorted map, the first range found has the starting pfn */
  4022. for_each_active_range_index_in_nid(i, nid)
  4023. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  4024. if (min_pfn == ULONG_MAX) {
  4025. printk(KERN_WARNING
  4026. "Could not find start_pfn for node %d\n", nid);
  4027. return 0;
  4028. }
  4029. return min_pfn;
  4030. }
  4031. /**
  4032. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4033. *
  4034. * It returns the minimum PFN based on information provided via
  4035. * add_active_range().
  4036. */
  4037. unsigned long __init find_min_pfn_with_active_regions(void)
  4038. {
  4039. return find_min_pfn_for_node(MAX_NUMNODES);
  4040. }
  4041. /*
  4042. * early_calculate_totalpages()
  4043. * Sum pages in active regions for movable zone.
  4044. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  4045. */
  4046. static unsigned long __init early_calculate_totalpages(void)
  4047. {
  4048. int i;
  4049. unsigned long totalpages = 0;
  4050. for (i = 0; i < nr_nodemap_entries; i++) {
  4051. unsigned long pages = early_node_map[i].end_pfn -
  4052. early_node_map[i].start_pfn;
  4053. totalpages += pages;
  4054. if (pages)
  4055. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  4056. }
  4057. return totalpages;
  4058. }
  4059. /*
  4060. * Find the PFN the Movable zone begins in each node. Kernel memory
  4061. * is spread evenly between nodes as long as the nodes have enough
  4062. * memory. When they don't, some nodes will have more kernelcore than
  4063. * others
  4064. */
  4065. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  4066. {
  4067. int i, nid;
  4068. unsigned long usable_startpfn;
  4069. unsigned long kernelcore_node, kernelcore_remaining;
  4070. /* save the state before borrow the nodemask */
  4071. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  4072. unsigned long totalpages = early_calculate_totalpages();
  4073. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  4074. /*
  4075. * If movablecore was specified, calculate what size of
  4076. * kernelcore that corresponds so that memory usable for
  4077. * any allocation type is evenly spread. If both kernelcore
  4078. * and movablecore are specified, then the value of kernelcore
  4079. * will be used for required_kernelcore if it's greater than
  4080. * what movablecore would have allowed.
  4081. */
  4082. if (required_movablecore) {
  4083. unsigned long corepages;
  4084. /*
  4085. * Round-up so that ZONE_MOVABLE is at least as large as what
  4086. * was requested by the user
  4087. */
  4088. required_movablecore =
  4089. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4090. corepages = totalpages - required_movablecore;
  4091. required_kernelcore = max(required_kernelcore, corepages);
  4092. }
  4093. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4094. if (!required_kernelcore)
  4095. goto out;
  4096. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4097. find_usable_zone_for_movable();
  4098. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4099. restart:
  4100. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4101. kernelcore_node = required_kernelcore / usable_nodes;
  4102. for_each_node_state(nid, N_HIGH_MEMORY) {
  4103. /*
  4104. * Recalculate kernelcore_node if the division per node
  4105. * now exceeds what is necessary to satisfy the requested
  4106. * amount of memory for the kernel
  4107. */
  4108. if (required_kernelcore < kernelcore_node)
  4109. kernelcore_node = required_kernelcore / usable_nodes;
  4110. /*
  4111. * As the map is walked, we track how much memory is usable
  4112. * by the kernel using kernelcore_remaining. When it is
  4113. * 0, the rest of the node is usable by ZONE_MOVABLE
  4114. */
  4115. kernelcore_remaining = kernelcore_node;
  4116. /* Go through each range of PFNs within this node */
  4117. for_each_active_range_index_in_nid(i, nid) {
  4118. unsigned long start_pfn, end_pfn;
  4119. unsigned long size_pages;
  4120. start_pfn = max(early_node_map[i].start_pfn,
  4121. zone_movable_pfn[nid]);
  4122. end_pfn = early_node_map[i].end_pfn;
  4123. if (start_pfn >= end_pfn)
  4124. continue;
  4125. /* Account for what is only usable for kernelcore */
  4126. if (start_pfn < usable_startpfn) {
  4127. unsigned long kernel_pages;
  4128. kernel_pages = min(end_pfn, usable_startpfn)
  4129. - start_pfn;
  4130. kernelcore_remaining -= min(kernel_pages,
  4131. kernelcore_remaining);
  4132. required_kernelcore -= min(kernel_pages,
  4133. required_kernelcore);
  4134. /* Continue if range is now fully accounted */
  4135. if (end_pfn <= usable_startpfn) {
  4136. /*
  4137. * Push zone_movable_pfn to the end so
  4138. * that if we have to rebalance
  4139. * kernelcore across nodes, we will
  4140. * not double account here
  4141. */
  4142. zone_movable_pfn[nid] = end_pfn;
  4143. continue;
  4144. }
  4145. start_pfn = usable_startpfn;
  4146. }
  4147. /*
  4148. * The usable PFN range for ZONE_MOVABLE is from
  4149. * start_pfn->end_pfn. Calculate size_pages as the
  4150. * number of pages used as kernelcore
  4151. */
  4152. size_pages = end_pfn - start_pfn;
  4153. if (size_pages > kernelcore_remaining)
  4154. size_pages = kernelcore_remaining;
  4155. zone_movable_pfn[nid] = start_pfn + size_pages;
  4156. /*
  4157. * Some kernelcore has been met, update counts and
  4158. * break if the kernelcore for this node has been
  4159. * satisified
  4160. */
  4161. required_kernelcore -= min(required_kernelcore,
  4162. size_pages);
  4163. kernelcore_remaining -= size_pages;
  4164. if (!kernelcore_remaining)
  4165. break;
  4166. }
  4167. }
  4168. /*
  4169. * If there is still required_kernelcore, we do another pass with one
  4170. * less node in the count. This will push zone_movable_pfn[nid] further
  4171. * along on the nodes that still have memory until kernelcore is
  4172. * satisified
  4173. */
  4174. usable_nodes--;
  4175. if (usable_nodes && required_kernelcore > usable_nodes)
  4176. goto restart;
  4177. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4178. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4179. zone_movable_pfn[nid] =
  4180. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4181. out:
  4182. /* restore the node_state */
  4183. node_states[N_HIGH_MEMORY] = saved_node_state;
  4184. }
  4185. /* Any regular memory on that node ? */
  4186. static void check_for_regular_memory(pg_data_t *pgdat)
  4187. {
  4188. #ifdef CONFIG_HIGHMEM
  4189. enum zone_type zone_type;
  4190. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4191. struct zone *zone = &pgdat->node_zones[zone_type];
  4192. if (zone->present_pages)
  4193. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4194. }
  4195. #endif
  4196. }
  4197. /**
  4198. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4199. * @max_zone_pfn: an array of max PFNs for each zone
  4200. *
  4201. * This will call free_area_init_node() for each active node in the system.
  4202. * Using the page ranges provided by add_active_range(), the size of each
  4203. * zone in each node and their holes is calculated. If the maximum PFN
  4204. * between two adjacent zones match, it is assumed that the zone is empty.
  4205. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4206. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4207. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4208. * at arch_max_dma_pfn.
  4209. */
  4210. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4211. {
  4212. unsigned long nid;
  4213. int i;
  4214. /* Sort early_node_map as initialisation assumes it is sorted */
  4215. sort_node_map();
  4216. /* Record where the zone boundaries are */
  4217. memset(arch_zone_lowest_possible_pfn, 0,
  4218. sizeof(arch_zone_lowest_possible_pfn));
  4219. memset(arch_zone_highest_possible_pfn, 0,
  4220. sizeof(arch_zone_highest_possible_pfn));
  4221. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4222. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4223. for (i = 1; i < MAX_NR_ZONES; i++) {
  4224. if (i == ZONE_MOVABLE)
  4225. continue;
  4226. arch_zone_lowest_possible_pfn[i] =
  4227. arch_zone_highest_possible_pfn[i-1];
  4228. arch_zone_highest_possible_pfn[i] =
  4229. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4230. }
  4231. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4232. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4233. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4234. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4235. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4236. /* Print out the zone ranges */
  4237. printk("Zone PFN ranges:\n");
  4238. for (i = 0; i < MAX_NR_ZONES; i++) {
  4239. if (i == ZONE_MOVABLE)
  4240. continue;
  4241. printk(" %-8s ", zone_names[i]);
  4242. if (arch_zone_lowest_possible_pfn[i] ==
  4243. arch_zone_highest_possible_pfn[i])
  4244. printk("empty\n");
  4245. else
  4246. printk("%0#10lx -> %0#10lx\n",
  4247. arch_zone_lowest_possible_pfn[i],
  4248. arch_zone_highest_possible_pfn[i]);
  4249. }
  4250. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4251. printk("Movable zone start PFN for each node\n");
  4252. for (i = 0; i < MAX_NUMNODES; i++) {
  4253. if (zone_movable_pfn[i])
  4254. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4255. }
  4256. /* Print out the early_node_map[] */
  4257. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4258. for (i = 0; i < nr_nodemap_entries; i++)
  4259. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4260. early_node_map[i].start_pfn,
  4261. early_node_map[i].end_pfn);
  4262. /* Initialise every node */
  4263. mminit_verify_pageflags_layout();
  4264. setup_nr_node_ids();
  4265. for_each_online_node(nid) {
  4266. pg_data_t *pgdat = NODE_DATA(nid);
  4267. free_area_init_node(nid, NULL,
  4268. find_min_pfn_for_node(nid), NULL);
  4269. /* Any memory on that node */
  4270. if (pgdat->node_present_pages)
  4271. node_set_state(nid, N_HIGH_MEMORY);
  4272. check_for_regular_memory(pgdat);
  4273. }
  4274. }
  4275. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4276. {
  4277. unsigned long long coremem;
  4278. if (!p)
  4279. return -EINVAL;
  4280. coremem = memparse(p, &p);
  4281. *core = coremem >> PAGE_SHIFT;
  4282. /* Paranoid check that UL is enough for the coremem value */
  4283. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4284. return 0;
  4285. }
  4286. /*
  4287. * kernelcore=size sets the amount of memory for use for allocations that
  4288. * cannot be reclaimed or migrated.
  4289. */
  4290. static int __init cmdline_parse_kernelcore(char *p)
  4291. {
  4292. return cmdline_parse_core(p, &required_kernelcore);
  4293. }
  4294. /*
  4295. * movablecore=size sets the amount of memory for use for allocations that
  4296. * can be reclaimed or migrated.
  4297. */
  4298. static int __init cmdline_parse_movablecore(char *p)
  4299. {
  4300. return cmdline_parse_core(p, &required_movablecore);
  4301. }
  4302. early_param("kernelcore", cmdline_parse_kernelcore);
  4303. early_param("movablecore", cmdline_parse_movablecore);
  4304. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4305. /**
  4306. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4307. * @new_dma_reserve: The number of pages to mark reserved
  4308. *
  4309. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4310. * In the DMA zone, a significant percentage may be consumed by kernel image
  4311. * and other unfreeable allocations which can skew the watermarks badly. This
  4312. * function may optionally be used to account for unfreeable pages in the
  4313. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4314. * smaller per-cpu batchsize.
  4315. */
  4316. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4317. {
  4318. dma_reserve = new_dma_reserve;
  4319. }
  4320. void __init free_area_init(unsigned long *zones_size)
  4321. {
  4322. free_area_init_node(0, zones_size,
  4323. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4324. }
  4325. static int page_alloc_cpu_notify(struct notifier_block *self,
  4326. unsigned long action, void *hcpu)
  4327. {
  4328. int cpu = (unsigned long)hcpu;
  4329. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4330. drain_pages(cpu);
  4331. /*
  4332. * Spill the event counters of the dead processor
  4333. * into the current processors event counters.
  4334. * This artificially elevates the count of the current
  4335. * processor.
  4336. */
  4337. vm_events_fold_cpu(cpu);
  4338. /*
  4339. * Zero the differential counters of the dead processor
  4340. * so that the vm statistics are consistent.
  4341. *
  4342. * This is only okay since the processor is dead and cannot
  4343. * race with what we are doing.
  4344. */
  4345. refresh_cpu_vm_stats(cpu);
  4346. }
  4347. return NOTIFY_OK;
  4348. }
  4349. void __init page_alloc_init(void)
  4350. {
  4351. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4352. }
  4353. /*
  4354. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4355. * or min_free_kbytes changes.
  4356. */
  4357. static void calculate_totalreserve_pages(void)
  4358. {
  4359. struct pglist_data *pgdat;
  4360. unsigned long reserve_pages = 0;
  4361. enum zone_type i, j;
  4362. for_each_online_pgdat(pgdat) {
  4363. for (i = 0; i < MAX_NR_ZONES; i++) {
  4364. struct zone *zone = pgdat->node_zones + i;
  4365. unsigned long max = 0;
  4366. /* Find valid and maximum lowmem_reserve in the zone */
  4367. for (j = i; j < MAX_NR_ZONES; j++) {
  4368. if (zone->lowmem_reserve[j] > max)
  4369. max = zone->lowmem_reserve[j];
  4370. }
  4371. /* we treat the high watermark as reserved pages. */
  4372. max += high_wmark_pages(zone);
  4373. if (max > zone->present_pages)
  4374. max = zone->present_pages;
  4375. reserve_pages += max;
  4376. }
  4377. }
  4378. totalreserve_pages = reserve_pages;
  4379. }
  4380. /*
  4381. * setup_per_zone_lowmem_reserve - called whenever
  4382. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4383. * has a correct pages reserved value, so an adequate number of
  4384. * pages are left in the zone after a successful __alloc_pages().
  4385. */
  4386. static void setup_per_zone_lowmem_reserve(void)
  4387. {
  4388. struct pglist_data *pgdat;
  4389. enum zone_type j, idx;
  4390. for_each_online_pgdat(pgdat) {
  4391. for (j = 0; j < MAX_NR_ZONES; j++) {
  4392. struct zone *zone = pgdat->node_zones + j;
  4393. unsigned long present_pages = zone->present_pages;
  4394. zone->lowmem_reserve[j] = 0;
  4395. idx = j;
  4396. while (idx) {
  4397. struct zone *lower_zone;
  4398. idx--;
  4399. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4400. sysctl_lowmem_reserve_ratio[idx] = 1;
  4401. lower_zone = pgdat->node_zones + idx;
  4402. lower_zone->lowmem_reserve[j] = present_pages /
  4403. sysctl_lowmem_reserve_ratio[idx];
  4404. present_pages += lower_zone->present_pages;
  4405. }
  4406. }
  4407. }
  4408. /* update totalreserve_pages */
  4409. calculate_totalreserve_pages();
  4410. }
  4411. /**
  4412. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4413. * or when memory is hot-{added|removed}
  4414. *
  4415. * Ensures that the watermark[min,low,high] values for each zone are set
  4416. * correctly with respect to min_free_kbytes.
  4417. */
  4418. void setup_per_zone_wmarks(void)
  4419. {
  4420. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4421. unsigned long lowmem_pages = 0;
  4422. struct zone *zone;
  4423. unsigned long flags;
  4424. /* Calculate total number of !ZONE_HIGHMEM pages */
  4425. for_each_zone(zone) {
  4426. if (!is_highmem(zone))
  4427. lowmem_pages += zone->present_pages;
  4428. }
  4429. for_each_zone(zone) {
  4430. u64 tmp;
  4431. spin_lock_irqsave(&zone->lock, flags);
  4432. tmp = (u64)pages_min * zone->present_pages;
  4433. do_div(tmp, lowmem_pages);
  4434. if (is_highmem(zone)) {
  4435. /*
  4436. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4437. * need highmem pages, so cap pages_min to a small
  4438. * value here.
  4439. *
  4440. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4441. * deltas controls asynch page reclaim, and so should
  4442. * not be capped for highmem.
  4443. */
  4444. int min_pages;
  4445. min_pages = zone->present_pages / 1024;
  4446. if (min_pages < SWAP_CLUSTER_MAX)
  4447. min_pages = SWAP_CLUSTER_MAX;
  4448. if (min_pages > 128)
  4449. min_pages = 128;
  4450. zone->watermark[WMARK_MIN] = min_pages;
  4451. } else {
  4452. /*
  4453. * If it's a lowmem zone, reserve a number of pages
  4454. * proportionate to the zone's size.
  4455. */
  4456. zone->watermark[WMARK_MIN] = tmp;
  4457. }
  4458. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4459. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4460. setup_zone_migrate_reserve(zone);
  4461. spin_unlock_irqrestore(&zone->lock, flags);
  4462. }
  4463. /* update totalreserve_pages */
  4464. calculate_totalreserve_pages();
  4465. }
  4466. /*
  4467. * The inactive anon list should be small enough that the VM never has to
  4468. * do too much work, but large enough that each inactive page has a chance
  4469. * to be referenced again before it is swapped out.
  4470. *
  4471. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4472. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4473. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4474. * the anonymous pages are kept on the inactive list.
  4475. *
  4476. * total target max
  4477. * memory ratio inactive anon
  4478. * -------------------------------------
  4479. * 10MB 1 5MB
  4480. * 100MB 1 50MB
  4481. * 1GB 3 250MB
  4482. * 10GB 10 0.9GB
  4483. * 100GB 31 3GB
  4484. * 1TB 101 10GB
  4485. * 10TB 320 32GB
  4486. */
  4487. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4488. {
  4489. unsigned int gb, ratio;
  4490. /* Zone size in gigabytes */
  4491. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4492. if (gb)
  4493. ratio = int_sqrt(10 * gb);
  4494. else
  4495. ratio = 1;
  4496. zone->inactive_ratio = ratio;
  4497. }
  4498. static void __meminit setup_per_zone_inactive_ratio(void)
  4499. {
  4500. struct zone *zone;
  4501. for_each_zone(zone)
  4502. calculate_zone_inactive_ratio(zone);
  4503. }
  4504. /*
  4505. * Initialise min_free_kbytes.
  4506. *
  4507. * For small machines we want it small (128k min). For large machines
  4508. * we want it large (64MB max). But it is not linear, because network
  4509. * bandwidth does not increase linearly with machine size. We use
  4510. *
  4511. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4512. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4513. *
  4514. * which yields
  4515. *
  4516. * 16MB: 512k
  4517. * 32MB: 724k
  4518. * 64MB: 1024k
  4519. * 128MB: 1448k
  4520. * 256MB: 2048k
  4521. * 512MB: 2896k
  4522. * 1024MB: 4096k
  4523. * 2048MB: 5792k
  4524. * 4096MB: 8192k
  4525. * 8192MB: 11584k
  4526. * 16384MB: 16384k
  4527. */
  4528. int __meminit init_per_zone_wmark_min(void)
  4529. {
  4530. unsigned long lowmem_kbytes;
  4531. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4532. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4533. if (min_free_kbytes < 128)
  4534. min_free_kbytes = 128;
  4535. if (min_free_kbytes > 65536)
  4536. min_free_kbytes = 65536;
  4537. setup_per_zone_wmarks();
  4538. refresh_zone_stat_thresholds();
  4539. setup_per_zone_lowmem_reserve();
  4540. setup_per_zone_inactive_ratio();
  4541. return 0;
  4542. }
  4543. module_init(init_per_zone_wmark_min)
  4544. /*
  4545. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4546. * that we can call two helper functions whenever min_free_kbytes
  4547. * changes.
  4548. */
  4549. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4550. void __user *buffer, size_t *length, loff_t *ppos)
  4551. {
  4552. proc_dointvec(table, write, buffer, length, ppos);
  4553. if (write)
  4554. setup_per_zone_wmarks();
  4555. return 0;
  4556. }
  4557. #ifdef CONFIG_NUMA
  4558. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4559. void __user *buffer, size_t *length, loff_t *ppos)
  4560. {
  4561. struct zone *zone;
  4562. int rc;
  4563. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4564. if (rc)
  4565. return rc;
  4566. for_each_zone(zone)
  4567. zone->min_unmapped_pages = (zone->present_pages *
  4568. sysctl_min_unmapped_ratio) / 100;
  4569. return 0;
  4570. }
  4571. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4572. void __user *buffer, size_t *length, loff_t *ppos)
  4573. {
  4574. struct zone *zone;
  4575. int rc;
  4576. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4577. if (rc)
  4578. return rc;
  4579. for_each_zone(zone)
  4580. zone->min_slab_pages = (zone->present_pages *
  4581. sysctl_min_slab_ratio) / 100;
  4582. return 0;
  4583. }
  4584. #endif
  4585. /*
  4586. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4587. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4588. * whenever sysctl_lowmem_reserve_ratio changes.
  4589. *
  4590. * The reserve ratio obviously has absolutely no relation with the
  4591. * minimum watermarks. The lowmem reserve ratio can only make sense
  4592. * if in function of the boot time zone sizes.
  4593. */
  4594. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4595. void __user *buffer, size_t *length, loff_t *ppos)
  4596. {
  4597. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4598. setup_per_zone_lowmem_reserve();
  4599. return 0;
  4600. }
  4601. /*
  4602. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4603. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4604. * can have before it gets flushed back to buddy allocator.
  4605. */
  4606. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4607. void __user *buffer, size_t *length, loff_t *ppos)
  4608. {
  4609. struct zone *zone;
  4610. unsigned int cpu;
  4611. int ret;
  4612. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4613. if (!write || (ret == -EINVAL))
  4614. return ret;
  4615. for_each_populated_zone(zone) {
  4616. for_each_possible_cpu(cpu) {
  4617. unsigned long high;
  4618. high = zone->present_pages / percpu_pagelist_fraction;
  4619. setup_pagelist_highmark(
  4620. per_cpu_ptr(zone->pageset, cpu), high);
  4621. }
  4622. }
  4623. return 0;
  4624. }
  4625. int hashdist = HASHDIST_DEFAULT;
  4626. #ifdef CONFIG_NUMA
  4627. static int __init set_hashdist(char *str)
  4628. {
  4629. if (!str)
  4630. return 0;
  4631. hashdist = simple_strtoul(str, &str, 0);
  4632. return 1;
  4633. }
  4634. __setup("hashdist=", set_hashdist);
  4635. #endif
  4636. /*
  4637. * allocate a large system hash table from bootmem
  4638. * - it is assumed that the hash table must contain an exact power-of-2
  4639. * quantity of entries
  4640. * - limit is the number of hash buckets, not the total allocation size
  4641. */
  4642. void *__init alloc_large_system_hash(const char *tablename,
  4643. unsigned long bucketsize,
  4644. unsigned long numentries,
  4645. int scale,
  4646. int flags,
  4647. unsigned int *_hash_shift,
  4648. unsigned int *_hash_mask,
  4649. unsigned long limit)
  4650. {
  4651. unsigned long long max = limit;
  4652. unsigned long log2qty, size;
  4653. void *table = NULL;
  4654. /* allow the kernel cmdline to have a say */
  4655. if (!numentries) {
  4656. /* round applicable memory size up to nearest megabyte */
  4657. numentries = nr_kernel_pages;
  4658. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4659. numentries >>= 20 - PAGE_SHIFT;
  4660. numentries <<= 20 - PAGE_SHIFT;
  4661. /* limit to 1 bucket per 2^scale bytes of low memory */
  4662. if (scale > PAGE_SHIFT)
  4663. numentries >>= (scale - PAGE_SHIFT);
  4664. else
  4665. numentries <<= (PAGE_SHIFT - scale);
  4666. /* Make sure we've got at least a 0-order allocation.. */
  4667. if (unlikely(flags & HASH_SMALL)) {
  4668. /* Makes no sense without HASH_EARLY */
  4669. WARN_ON(!(flags & HASH_EARLY));
  4670. if (!(numentries >> *_hash_shift)) {
  4671. numentries = 1UL << *_hash_shift;
  4672. BUG_ON(!numentries);
  4673. }
  4674. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4675. numentries = PAGE_SIZE / bucketsize;
  4676. }
  4677. numentries = roundup_pow_of_two(numentries);
  4678. /* limit allocation size to 1/16 total memory by default */
  4679. if (max == 0) {
  4680. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4681. do_div(max, bucketsize);
  4682. }
  4683. if (numentries > max)
  4684. numentries = max;
  4685. log2qty = ilog2(numentries);
  4686. do {
  4687. size = bucketsize << log2qty;
  4688. if (flags & HASH_EARLY)
  4689. table = alloc_bootmem_nopanic(size);
  4690. else if (hashdist)
  4691. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4692. else {
  4693. /*
  4694. * If bucketsize is not a power-of-two, we may free
  4695. * some pages at the end of hash table which
  4696. * alloc_pages_exact() automatically does
  4697. */
  4698. if (get_order(size) < MAX_ORDER) {
  4699. table = alloc_pages_exact(size, GFP_ATOMIC);
  4700. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4701. }
  4702. }
  4703. } while (!table && size > PAGE_SIZE && --log2qty);
  4704. if (!table)
  4705. panic("Failed to allocate %s hash table\n", tablename);
  4706. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4707. tablename,
  4708. (1UL << log2qty),
  4709. ilog2(size) - PAGE_SHIFT,
  4710. size);
  4711. if (_hash_shift)
  4712. *_hash_shift = log2qty;
  4713. if (_hash_mask)
  4714. *_hash_mask = (1 << log2qty) - 1;
  4715. return table;
  4716. }
  4717. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4718. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4719. unsigned long pfn)
  4720. {
  4721. #ifdef CONFIG_SPARSEMEM
  4722. return __pfn_to_section(pfn)->pageblock_flags;
  4723. #else
  4724. return zone->pageblock_flags;
  4725. #endif /* CONFIG_SPARSEMEM */
  4726. }
  4727. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4728. {
  4729. #ifdef CONFIG_SPARSEMEM
  4730. pfn &= (PAGES_PER_SECTION-1);
  4731. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4732. #else
  4733. pfn = pfn - zone->zone_start_pfn;
  4734. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4735. #endif /* CONFIG_SPARSEMEM */
  4736. }
  4737. /**
  4738. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4739. * @page: The page within the block of interest
  4740. * @start_bitidx: The first bit of interest to retrieve
  4741. * @end_bitidx: The last bit of interest
  4742. * returns pageblock_bits flags
  4743. */
  4744. unsigned long get_pageblock_flags_group(struct page *page,
  4745. int start_bitidx, int end_bitidx)
  4746. {
  4747. struct zone *zone;
  4748. unsigned long *bitmap;
  4749. unsigned long pfn, bitidx;
  4750. unsigned long flags = 0;
  4751. unsigned long value = 1;
  4752. zone = page_zone(page);
  4753. pfn = page_to_pfn(page);
  4754. bitmap = get_pageblock_bitmap(zone, pfn);
  4755. bitidx = pfn_to_bitidx(zone, pfn);
  4756. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4757. if (test_bit(bitidx + start_bitidx, bitmap))
  4758. flags |= value;
  4759. return flags;
  4760. }
  4761. /**
  4762. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4763. * @page: The page within the block of interest
  4764. * @start_bitidx: The first bit of interest
  4765. * @end_bitidx: The last bit of interest
  4766. * @flags: The flags to set
  4767. */
  4768. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4769. int start_bitidx, int end_bitidx)
  4770. {
  4771. struct zone *zone;
  4772. unsigned long *bitmap;
  4773. unsigned long pfn, bitidx;
  4774. unsigned long value = 1;
  4775. zone = page_zone(page);
  4776. pfn = page_to_pfn(page);
  4777. bitmap = get_pageblock_bitmap(zone, pfn);
  4778. bitidx = pfn_to_bitidx(zone, pfn);
  4779. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4780. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4781. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4782. if (flags & value)
  4783. __set_bit(bitidx + start_bitidx, bitmap);
  4784. else
  4785. __clear_bit(bitidx + start_bitidx, bitmap);
  4786. }
  4787. /*
  4788. * This is designed as sub function...plz see page_isolation.c also.
  4789. * set/clear page block's type to be ISOLATE.
  4790. * page allocater never alloc memory from ISOLATE block.
  4791. */
  4792. static int
  4793. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4794. {
  4795. unsigned long pfn, iter, found;
  4796. /*
  4797. * For avoiding noise data, lru_add_drain_all() should be called
  4798. * If ZONE_MOVABLE, the zone never contains immobile pages
  4799. */
  4800. if (zone_idx(zone) == ZONE_MOVABLE)
  4801. return true;
  4802. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4803. return true;
  4804. pfn = page_to_pfn(page);
  4805. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4806. unsigned long check = pfn + iter;
  4807. if (!pfn_valid_within(check))
  4808. continue;
  4809. page = pfn_to_page(check);
  4810. if (!page_count(page)) {
  4811. if (PageBuddy(page))
  4812. iter += (1 << page_order(page)) - 1;
  4813. continue;
  4814. }
  4815. if (!PageLRU(page))
  4816. found++;
  4817. /*
  4818. * If there are RECLAIMABLE pages, we need to check it.
  4819. * But now, memory offline itself doesn't call shrink_slab()
  4820. * and it still to be fixed.
  4821. */
  4822. /*
  4823. * If the page is not RAM, page_count()should be 0.
  4824. * we don't need more check. This is an _used_ not-movable page.
  4825. *
  4826. * The problematic thing here is PG_reserved pages. PG_reserved
  4827. * is set to both of a memory hole page and a _used_ kernel
  4828. * page at boot.
  4829. */
  4830. if (found > count)
  4831. return false;
  4832. }
  4833. return true;
  4834. }
  4835. bool is_pageblock_removable_nolock(struct page *page)
  4836. {
  4837. struct zone *zone = page_zone(page);
  4838. unsigned long pfn = page_to_pfn(page);
  4839. /*
  4840. * We have to be careful here because we are iterating over memory
  4841. * sections which are not zone aware so we might end up outside of
  4842. * the zone but still within the section.
  4843. */
  4844. if (!zone || zone->zone_start_pfn > pfn ||
  4845. zone->zone_start_pfn + zone->spanned_pages <= pfn)
  4846. return false;
  4847. return __count_immobile_pages(zone, page, 0);
  4848. }
  4849. int set_migratetype_isolate(struct page *page)
  4850. {
  4851. struct zone *zone;
  4852. unsigned long flags, pfn;
  4853. struct memory_isolate_notify arg;
  4854. int notifier_ret;
  4855. int ret = -EBUSY;
  4856. zone = page_zone(page);
  4857. spin_lock_irqsave(&zone->lock, flags);
  4858. pfn = page_to_pfn(page);
  4859. arg.start_pfn = pfn;
  4860. arg.nr_pages = pageblock_nr_pages;
  4861. arg.pages_found = 0;
  4862. /*
  4863. * It may be possible to isolate a pageblock even if the
  4864. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4865. * notifier chain is used by balloon drivers to return the
  4866. * number of pages in a range that are held by the balloon
  4867. * driver to shrink memory. If all the pages are accounted for
  4868. * by balloons, are free, or on the LRU, isolation can continue.
  4869. * Later, for example, when memory hotplug notifier runs, these
  4870. * pages reported as "can be isolated" should be isolated(freed)
  4871. * by the balloon driver through the memory notifier chain.
  4872. */
  4873. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4874. notifier_ret = notifier_to_errno(notifier_ret);
  4875. if (notifier_ret)
  4876. goto out;
  4877. /*
  4878. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4879. * We just check MOVABLE pages.
  4880. */
  4881. if (__count_immobile_pages(zone, page, arg.pages_found))
  4882. ret = 0;
  4883. /*
  4884. * immobile means "not-on-lru" paes. If immobile is larger than
  4885. * removable-by-driver pages reported by notifier, we'll fail.
  4886. */
  4887. out:
  4888. if (!ret) {
  4889. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4890. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4891. }
  4892. spin_unlock_irqrestore(&zone->lock, flags);
  4893. if (!ret)
  4894. drain_all_pages();
  4895. return ret;
  4896. }
  4897. void unset_migratetype_isolate(struct page *page)
  4898. {
  4899. struct zone *zone;
  4900. unsigned long flags;
  4901. zone = page_zone(page);
  4902. spin_lock_irqsave(&zone->lock, flags);
  4903. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4904. goto out;
  4905. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4906. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4907. out:
  4908. spin_unlock_irqrestore(&zone->lock, flags);
  4909. }
  4910. #ifdef CONFIG_MEMORY_HOTREMOVE
  4911. /*
  4912. * All pages in the range must be isolated before calling this.
  4913. */
  4914. void
  4915. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4916. {
  4917. struct page *page;
  4918. struct zone *zone;
  4919. int order, i;
  4920. unsigned long pfn;
  4921. unsigned long flags;
  4922. /* find the first valid pfn */
  4923. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4924. if (pfn_valid(pfn))
  4925. break;
  4926. if (pfn == end_pfn)
  4927. return;
  4928. zone = page_zone(pfn_to_page(pfn));
  4929. spin_lock_irqsave(&zone->lock, flags);
  4930. pfn = start_pfn;
  4931. while (pfn < end_pfn) {
  4932. if (!pfn_valid(pfn)) {
  4933. pfn++;
  4934. continue;
  4935. }
  4936. page = pfn_to_page(pfn);
  4937. BUG_ON(page_count(page));
  4938. BUG_ON(!PageBuddy(page));
  4939. order = page_order(page);
  4940. #ifdef CONFIG_DEBUG_VM
  4941. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4942. pfn, 1 << order, end_pfn);
  4943. #endif
  4944. list_del(&page->lru);
  4945. rmv_page_order(page);
  4946. zone->free_area[order].nr_free--;
  4947. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4948. - (1UL << order));
  4949. for (i = 0; i < (1 << order); i++)
  4950. SetPageReserved((page+i));
  4951. pfn += (1 << order);
  4952. }
  4953. spin_unlock_irqrestore(&zone->lock, flags);
  4954. }
  4955. #endif
  4956. #ifdef CONFIG_MEMORY_FAILURE
  4957. bool is_free_buddy_page(struct page *page)
  4958. {
  4959. struct zone *zone = page_zone(page);
  4960. unsigned long pfn = page_to_pfn(page);
  4961. unsigned long flags;
  4962. int order;
  4963. spin_lock_irqsave(&zone->lock, flags);
  4964. for (order = 0; order < MAX_ORDER; order++) {
  4965. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4966. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4967. break;
  4968. }
  4969. spin_unlock_irqrestore(&zone->lock, flags);
  4970. return order < MAX_ORDER;
  4971. }
  4972. #endif
  4973. static struct trace_print_flags pageflag_names[] = {
  4974. {1UL << PG_locked, "locked" },
  4975. {1UL << PG_error, "error" },
  4976. {1UL << PG_referenced, "referenced" },
  4977. {1UL << PG_uptodate, "uptodate" },
  4978. {1UL << PG_dirty, "dirty" },
  4979. {1UL << PG_lru, "lru" },
  4980. {1UL << PG_active, "active" },
  4981. {1UL << PG_slab, "slab" },
  4982. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4983. {1UL << PG_arch_1, "arch_1" },
  4984. {1UL << PG_reserved, "reserved" },
  4985. {1UL << PG_private, "private" },
  4986. {1UL << PG_private_2, "private_2" },
  4987. {1UL << PG_writeback, "writeback" },
  4988. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4989. {1UL << PG_head, "head" },
  4990. {1UL << PG_tail, "tail" },
  4991. #else
  4992. {1UL << PG_compound, "compound" },
  4993. #endif
  4994. {1UL << PG_swapcache, "swapcache" },
  4995. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4996. {1UL << PG_reclaim, "reclaim" },
  4997. {1UL << PG_swapbacked, "swapbacked" },
  4998. {1UL << PG_unevictable, "unevictable" },
  4999. #ifdef CONFIG_MMU
  5000. {1UL << PG_mlocked, "mlocked" },
  5001. #endif
  5002. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5003. {1UL << PG_uncached, "uncached" },
  5004. #endif
  5005. #ifdef CONFIG_MEMORY_FAILURE
  5006. {1UL << PG_hwpoison, "hwpoison" },
  5007. #endif
  5008. {-1UL, NULL },
  5009. };
  5010. static void dump_page_flags(unsigned long flags)
  5011. {
  5012. const char *delim = "";
  5013. unsigned long mask;
  5014. int i;
  5015. printk(KERN_ALERT "page flags: %#lx(", flags);
  5016. /* remove zone id */
  5017. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5018. for (i = 0; pageflag_names[i].name && flags; i++) {
  5019. mask = pageflag_names[i].mask;
  5020. if ((flags & mask) != mask)
  5021. continue;
  5022. flags &= ~mask;
  5023. printk("%s%s", delim, pageflag_names[i].name);
  5024. delim = "|";
  5025. }
  5026. /* check for left over flags */
  5027. if (flags)
  5028. printk("%s%#lx", delim, flags);
  5029. printk(")\n");
  5030. }
  5031. void dump_page(struct page *page)
  5032. {
  5033. printk(KERN_ALERT
  5034. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5035. page, atomic_read(&page->_count), page_mapcount(page),
  5036. page->mapping, page->index);
  5037. dump_page_flags(page->flags);
  5038. mem_cgroup_print_bad_page(page);
  5039. }