mlock.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/module.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (rlimit(RLIMIT_MEMLOCK) != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. /*
  31. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  32. * in vmscan and, possibly, the fault path; and to support semi-accurate
  33. * statistics.
  34. *
  35. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  36. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  37. * The unevictable list is an LRU sibling list to the [in]active lists.
  38. * PageUnevictable is set to indicate the unevictable state.
  39. *
  40. * When lazy mlocking via vmscan, it is important to ensure that the
  41. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  42. * may have mlocked a page that is being munlocked. So lazy mlock must take
  43. * the mmap_sem for read, and verify that the vma really is locked
  44. * (see mm/rmap.c).
  45. */
  46. /*
  47. * LRU accounting for clear_page_mlock()
  48. */
  49. void __clear_page_mlock(struct page *page)
  50. {
  51. VM_BUG_ON(!PageLocked(page));
  52. if (!page->mapping) { /* truncated ? */
  53. return;
  54. }
  55. dec_zone_page_state(page, NR_MLOCK);
  56. count_vm_event(UNEVICTABLE_PGCLEARED);
  57. if (!isolate_lru_page(page)) {
  58. putback_lru_page(page);
  59. } else {
  60. /*
  61. * We lost the race. the page already moved to evictable list.
  62. */
  63. if (PageUnevictable(page))
  64. count_vm_event(UNEVICTABLE_PGSTRANDED);
  65. }
  66. }
  67. /*
  68. * Mark page as mlocked if not already.
  69. * If page on LRU, isolate and putback to move to unevictable list.
  70. */
  71. void mlock_vma_page(struct page *page)
  72. {
  73. BUG_ON(!PageLocked(page));
  74. if (!TestSetPageMlocked(page)) {
  75. inc_zone_page_state(page, NR_MLOCK);
  76. count_vm_event(UNEVICTABLE_PGMLOCKED);
  77. if (!isolate_lru_page(page))
  78. putback_lru_page(page);
  79. }
  80. }
  81. /**
  82. * munlock_vma_page - munlock a vma page
  83. * @page - page to be unlocked
  84. *
  85. * called from munlock()/munmap() path with page supposedly on the LRU.
  86. * When we munlock a page, because the vma where we found the page is being
  87. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  88. * page locked so that we can leave it on the unevictable lru list and not
  89. * bother vmscan with it. However, to walk the page's rmap list in
  90. * try_to_munlock() we must isolate the page from the LRU. If some other
  91. * task has removed the page from the LRU, we won't be able to do that.
  92. * So we clear the PageMlocked as we might not get another chance. If we
  93. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  94. * [page_referenced()/try_to_unmap()] to deal with.
  95. */
  96. void munlock_vma_page(struct page *page)
  97. {
  98. BUG_ON(!PageLocked(page));
  99. if (TestClearPageMlocked(page)) {
  100. dec_zone_page_state(page, NR_MLOCK);
  101. if (!isolate_lru_page(page)) {
  102. int ret = try_to_munlock(page);
  103. /*
  104. * did try_to_unlock() succeed or punt?
  105. */
  106. if (ret != SWAP_MLOCK)
  107. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  108. putback_lru_page(page);
  109. } else {
  110. /*
  111. * Some other task has removed the page from the LRU.
  112. * putback_lru_page() will take care of removing the
  113. * page from the unevictable list, if necessary.
  114. * vmscan [page_referenced()] will move the page back
  115. * to the unevictable list if some other vma has it
  116. * mlocked.
  117. */
  118. if (PageUnevictable(page))
  119. count_vm_event(UNEVICTABLE_PGSTRANDED);
  120. else
  121. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  122. }
  123. }
  124. }
  125. /**
  126. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  127. * @vma: target vma
  128. * @start: start address
  129. * @end: end address
  130. *
  131. * This takes care of making the pages present too.
  132. *
  133. * return 0 on success, negative error code on error.
  134. *
  135. * vma->vm_mm->mmap_sem must be held for at least read.
  136. */
  137. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  138. unsigned long start, unsigned long end,
  139. int *nonblocking)
  140. {
  141. struct mm_struct *mm = vma->vm_mm;
  142. unsigned long addr = start;
  143. int nr_pages = (end - start) / PAGE_SIZE;
  144. int gup_flags;
  145. VM_BUG_ON(start & ~PAGE_MASK);
  146. VM_BUG_ON(end & ~PAGE_MASK);
  147. VM_BUG_ON(start < vma->vm_start);
  148. VM_BUG_ON(end > vma->vm_end);
  149. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  150. gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  151. /*
  152. * We want to touch writable mappings with a write fault in order
  153. * to break COW, except for shared mappings because these don't COW
  154. * and we would not want to dirty them for nothing.
  155. */
  156. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  157. gup_flags |= FOLL_WRITE;
  158. /*
  159. * We want mlock to succeed for regions that have any permissions
  160. * other than PROT_NONE.
  161. */
  162. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  163. gup_flags |= FOLL_FORCE;
  164. return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
  165. NULL, NULL, nonblocking);
  166. }
  167. /*
  168. * convert get_user_pages() return value to posix mlock() error
  169. */
  170. static int __mlock_posix_error_return(long retval)
  171. {
  172. if (retval == -EFAULT)
  173. retval = -ENOMEM;
  174. else if (retval == -ENOMEM)
  175. retval = -EAGAIN;
  176. return retval;
  177. }
  178. /**
  179. * mlock_vma_pages_range() - mlock pages in specified vma range.
  180. * @vma - the vma containing the specfied address range
  181. * @start - starting address in @vma to mlock
  182. * @end - end address [+1] in @vma to mlock
  183. *
  184. * For mmap()/mremap()/expansion of mlocked vma.
  185. *
  186. * return 0 on success for "normal" vmas.
  187. *
  188. * return number of pages [> 0] to be removed from locked_vm on success
  189. * of "special" vmas.
  190. */
  191. long mlock_vma_pages_range(struct vm_area_struct *vma,
  192. unsigned long start, unsigned long end)
  193. {
  194. int nr_pages = (end - start) / PAGE_SIZE;
  195. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  196. /*
  197. * filter unlockable vmas
  198. */
  199. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  200. goto no_mlock;
  201. if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  202. is_vm_hugetlb_page(vma) ||
  203. vma == get_gate_vma(current->mm))) {
  204. __mlock_vma_pages_range(vma, start, end, NULL);
  205. /* Hide errors from mmap() and other callers */
  206. return 0;
  207. }
  208. /*
  209. * User mapped kernel pages or huge pages:
  210. * make these pages present to populate the ptes, but
  211. * fall thru' to reset VM_LOCKED--no need to unlock, and
  212. * return nr_pages so these don't get counted against task's
  213. * locked limit. huge pages are already counted against
  214. * locked vm limit.
  215. */
  216. make_pages_present(start, end);
  217. no_mlock:
  218. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  219. return nr_pages; /* error or pages NOT mlocked */
  220. }
  221. /*
  222. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  223. * @vma - vma containing range to be munlock()ed.
  224. * @start - start address in @vma of the range
  225. * @end - end of range in @vma.
  226. *
  227. * For mremap(), munmap() and exit().
  228. *
  229. * Called with @vma VM_LOCKED.
  230. *
  231. * Returns with VM_LOCKED cleared. Callers must be prepared to
  232. * deal with this.
  233. *
  234. * We don't save and restore VM_LOCKED here because pages are
  235. * still on lru. In unmap path, pages might be scanned by reclaim
  236. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  237. * free them. This will result in freeing mlocked pages.
  238. */
  239. void munlock_vma_pages_range(struct vm_area_struct *vma,
  240. unsigned long start, unsigned long end)
  241. {
  242. unsigned long addr;
  243. lru_add_drain();
  244. vma->vm_flags &= ~VM_LOCKED;
  245. for (addr = start; addr < end; addr += PAGE_SIZE) {
  246. struct page *page;
  247. /*
  248. * Although FOLL_DUMP is intended for get_dump_page(),
  249. * it just so happens that its special treatment of the
  250. * ZERO_PAGE (returning an error instead of doing get_page)
  251. * suits munlock very well (and if somehow an abnormal page
  252. * has sneaked into the range, we won't oops here: great).
  253. */
  254. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  255. if (page && !IS_ERR(page)) {
  256. lock_page(page);
  257. /*
  258. * Like in __mlock_vma_pages_range(),
  259. * because we lock page here and migration is
  260. * blocked by the elevated reference, we need
  261. * only check for file-cache page truncation.
  262. */
  263. if (page->mapping)
  264. munlock_vma_page(page);
  265. unlock_page(page);
  266. put_page(page);
  267. }
  268. cond_resched();
  269. }
  270. }
  271. /*
  272. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  273. *
  274. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  275. * munlock is a no-op. However, for some special vmas, we go ahead and
  276. * populate the ptes via make_pages_present().
  277. *
  278. * For vmas that pass the filters, merge/split as appropriate.
  279. */
  280. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  281. unsigned long start, unsigned long end, vm_flags_t newflags)
  282. {
  283. struct mm_struct *mm = vma->vm_mm;
  284. pgoff_t pgoff;
  285. int nr_pages;
  286. int ret = 0;
  287. int lock = !!(newflags & VM_LOCKED);
  288. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  289. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  290. goto out; /* don't set VM_LOCKED, don't count */
  291. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  292. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  293. vma->vm_file, pgoff, vma_policy(vma));
  294. if (*prev) {
  295. vma = *prev;
  296. goto success;
  297. }
  298. if (start != vma->vm_start) {
  299. ret = split_vma(mm, vma, start, 1);
  300. if (ret)
  301. goto out;
  302. }
  303. if (end != vma->vm_end) {
  304. ret = split_vma(mm, vma, end, 0);
  305. if (ret)
  306. goto out;
  307. }
  308. success:
  309. /*
  310. * Keep track of amount of locked VM.
  311. */
  312. nr_pages = (end - start) >> PAGE_SHIFT;
  313. if (!lock)
  314. nr_pages = -nr_pages;
  315. mm->locked_vm += nr_pages;
  316. /*
  317. * vm_flags is protected by the mmap_sem held in write mode.
  318. * It's okay if try_to_unmap_one unmaps a page just after we
  319. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  320. */
  321. if (lock)
  322. vma->vm_flags = newflags;
  323. else
  324. munlock_vma_pages_range(vma, start, end);
  325. out:
  326. *prev = vma;
  327. return ret;
  328. }
  329. static int do_mlock(unsigned long start, size_t len, int on)
  330. {
  331. unsigned long nstart, end, tmp;
  332. struct vm_area_struct * vma, * prev;
  333. int error;
  334. VM_BUG_ON(start & ~PAGE_MASK);
  335. VM_BUG_ON(len != PAGE_ALIGN(len));
  336. end = start + len;
  337. if (end < start)
  338. return -EINVAL;
  339. if (end == start)
  340. return 0;
  341. vma = find_vma_prev(current->mm, start, &prev);
  342. if (!vma || vma->vm_start > start)
  343. return -ENOMEM;
  344. if (start > vma->vm_start)
  345. prev = vma;
  346. for (nstart = start ; ; ) {
  347. vm_flags_t newflags;
  348. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  349. newflags = vma->vm_flags | VM_LOCKED;
  350. if (!on)
  351. newflags &= ~VM_LOCKED;
  352. tmp = vma->vm_end;
  353. if (tmp > end)
  354. tmp = end;
  355. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  356. if (error)
  357. break;
  358. nstart = tmp;
  359. if (nstart < prev->vm_end)
  360. nstart = prev->vm_end;
  361. if (nstart >= end)
  362. break;
  363. vma = prev->vm_next;
  364. if (!vma || vma->vm_start != nstart) {
  365. error = -ENOMEM;
  366. break;
  367. }
  368. }
  369. return error;
  370. }
  371. static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
  372. {
  373. struct mm_struct *mm = current->mm;
  374. unsigned long end, nstart, nend;
  375. struct vm_area_struct *vma = NULL;
  376. int locked = 0;
  377. int ret = 0;
  378. VM_BUG_ON(start & ~PAGE_MASK);
  379. VM_BUG_ON(len != PAGE_ALIGN(len));
  380. end = start + len;
  381. for (nstart = start; nstart < end; nstart = nend) {
  382. /*
  383. * We want to fault in pages for [nstart; end) address range.
  384. * Find first corresponding VMA.
  385. */
  386. if (!locked) {
  387. locked = 1;
  388. down_read(&mm->mmap_sem);
  389. vma = find_vma(mm, nstart);
  390. } else if (nstart >= vma->vm_end)
  391. vma = vma->vm_next;
  392. if (!vma || vma->vm_start >= end)
  393. break;
  394. /*
  395. * Set [nstart; nend) to intersection of desired address
  396. * range with the first VMA. Also, skip undesirable VMA types.
  397. */
  398. nend = min(end, vma->vm_end);
  399. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  400. continue;
  401. if (nstart < vma->vm_start)
  402. nstart = vma->vm_start;
  403. /*
  404. * Now fault in a range of pages. __mlock_vma_pages_range()
  405. * double checks the vma flags, so that it won't mlock pages
  406. * if the vma was already munlocked.
  407. */
  408. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  409. if (ret < 0) {
  410. if (ignore_errors) {
  411. ret = 0;
  412. continue; /* continue at next VMA */
  413. }
  414. ret = __mlock_posix_error_return(ret);
  415. break;
  416. }
  417. nend = nstart + ret * PAGE_SIZE;
  418. ret = 0;
  419. }
  420. if (locked)
  421. up_read(&mm->mmap_sem);
  422. return ret; /* 0 or negative error code */
  423. }
  424. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  425. {
  426. unsigned long locked;
  427. unsigned long lock_limit;
  428. int error = -ENOMEM;
  429. if (!can_do_mlock())
  430. return -EPERM;
  431. lru_add_drain_all(); /* flush pagevec */
  432. down_write(&current->mm->mmap_sem);
  433. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  434. start &= PAGE_MASK;
  435. locked = len >> PAGE_SHIFT;
  436. locked += current->mm->locked_vm;
  437. lock_limit = rlimit(RLIMIT_MEMLOCK);
  438. lock_limit >>= PAGE_SHIFT;
  439. /* check against resource limits */
  440. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  441. error = do_mlock(start, len, 1);
  442. up_write(&current->mm->mmap_sem);
  443. if (!error)
  444. error = do_mlock_pages(start, len, 0);
  445. return error;
  446. }
  447. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  448. {
  449. int ret;
  450. down_write(&current->mm->mmap_sem);
  451. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  452. start &= PAGE_MASK;
  453. ret = do_mlock(start, len, 0);
  454. up_write(&current->mm->mmap_sem);
  455. return ret;
  456. }
  457. static int do_mlockall(int flags)
  458. {
  459. struct vm_area_struct * vma, * prev = NULL;
  460. unsigned int def_flags = 0;
  461. if (flags & MCL_FUTURE)
  462. def_flags = VM_LOCKED;
  463. current->mm->def_flags = def_flags;
  464. if (flags == MCL_FUTURE)
  465. goto out;
  466. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  467. vm_flags_t newflags;
  468. newflags = vma->vm_flags | VM_LOCKED;
  469. if (!(flags & MCL_CURRENT))
  470. newflags &= ~VM_LOCKED;
  471. /* Ignore errors */
  472. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  473. }
  474. out:
  475. return 0;
  476. }
  477. SYSCALL_DEFINE1(mlockall, int, flags)
  478. {
  479. unsigned long lock_limit;
  480. int ret = -EINVAL;
  481. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  482. goto out;
  483. ret = -EPERM;
  484. if (!can_do_mlock())
  485. goto out;
  486. lru_add_drain_all(); /* flush pagevec */
  487. down_write(&current->mm->mmap_sem);
  488. lock_limit = rlimit(RLIMIT_MEMLOCK);
  489. lock_limit >>= PAGE_SHIFT;
  490. ret = -ENOMEM;
  491. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  492. capable(CAP_IPC_LOCK))
  493. ret = do_mlockall(flags);
  494. up_write(&current->mm->mmap_sem);
  495. if (!ret && (flags & MCL_CURRENT)) {
  496. /* Ignore errors */
  497. do_mlock_pages(0, TASK_SIZE, 1);
  498. }
  499. out:
  500. return ret;
  501. }
  502. SYSCALL_DEFINE0(munlockall)
  503. {
  504. int ret;
  505. down_write(&current->mm->mmap_sem);
  506. ret = do_mlockall(0);
  507. up_write(&current->mm->mmap_sem);
  508. return ret;
  509. }
  510. /*
  511. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  512. * shm segments) get accounted against the user_struct instead.
  513. */
  514. static DEFINE_SPINLOCK(shmlock_user_lock);
  515. int user_shm_lock(size_t size, struct user_struct *user)
  516. {
  517. unsigned long lock_limit, locked;
  518. int allowed = 0;
  519. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  520. lock_limit = rlimit(RLIMIT_MEMLOCK);
  521. if (lock_limit == RLIM_INFINITY)
  522. allowed = 1;
  523. lock_limit >>= PAGE_SHIFT;
  524. spin_lock(&shmlock_user_lock);
  525. if (!allowed &&
  526. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  527. goto out;
  528. get_uid(user);
  529. user->locked_shm += locked;
  530. allowed = 1;
  531. out:
  532. spin_unlock(&shmlock_user_lock);
  533. return allowed;
  534. }
  535. void user_shm_unlock(size_t size, struct user_struct *user)
  536. {
  537. spin_lock(&shmlock_user_lock);
  538. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  539. spin_unlock(&shmlock_user_lock);
  540. free_uid(user);
  541. }