memory.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else /* SPLIT_RSS_COUNTING */
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif /* SPLIT_RSS_COUNTING */
  167. #ifdef HAVE_GENERIC_MMU_GATHER
  168. static int tlb_next_batch(struct mmu_gather *tlb)
  169. {
  170. struct mmu_gather_batch *batch;
  171. batch = tlb->active;
  172. if (batch->next) {
  173. tlb->active = batch->next;
  174. return 1;
  175. }
  176. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  177. if (!batch)
  178. return 0;
  179. batch->next = NULL;
  180. batch->nr = 0;
  181. batch->max = MAX_GATHER_BATCH;
  182. tlb->active->next = batch;
  183. tlb->active = batch;
  184. return 1;
  185. }
  186. /* tlb_gather_mmu
  187. * Called to initialize an (on-stack) mmu_gather structure for page-table
  188. * tear-down from @mm. The @fullmm argument is used when @mm is without
  189. * users and we're going to destroy the full address space (exit/execve).
  190. */
  191. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  192. {
  193. tlb->mm = mm;
  194. tlb->fullmm = fullmm;
  195. tlb->need_flush = 0;
  196. tlb->fast_mode = (num_possible_cpus() == 1);
  197. tlb->local.next = NULL;
  198. tlb->local.nr = 0;
  199. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  200. tlb->active = &tlb->local;
  201. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  202. tlb->batch = NULL;
  203. #endif
  204. }
  205. void tlb_flush_mmu(struct mmu_gather *tlb)
  206. {
  207. struct mmu_gather_batch *batch;
  208. if (!tlb->need_flush)
  209. return;
  210. tlb->need_flush = 0;
  211. tlb_flush(tlb);
  212. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  213. tlb_table_flush(tlb);
  214. #endif
  215. if (tlb_fast_mode(tlb))
  216. return;
  217. for (batch = &tlb->local; batch; batch = batch->next) {
  218. free_pages_and_swap_cache(batch->pages, batch->nr);
  219. batch->nr = 0;
  220. }
  221. tlb->active = &tlb->local;
  222. }
  223. /* tlb_finish_mmu
  224. * Called at the end of the shootdown operation to free up any resources
  225. * that were required.
  226. */
  227. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  228. {
  229. struct mmu_gather_batch *batch, *next;
  230. tlb_flush_mmu(tlb);
  231. /* keep the page table cache within bounds */
  232. check_pgt_cache();
  233. for (batch = tlb->local.next; batch; batch = next) {
  234. next = batch->next;
  235. free_pages((unsigned long)batch, 0);
  236. }
  237. tlb->local.next = NULL;
  238. }
  239. /* __tlb_remove_page
  240. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  241. * handling the additional races in SMP caused by other CPUs caching valid
  242. * mappings in their TLBs. Returns the number of free page slots left.
  243. * When out of page slots we must call tlb_flush_mmu().
  244. */
  245. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  246. {
  247. struct mmu_gather_batch *batch;
  248. tlb->need_flush = 1;
  249. if (tlb_fast_mode(tlb)) {
  250. free_page_and_swap_cache(page);
  251. return 1; /* avoid calling tlb_flush_mmu() */
  252. }
  253. batch = tlb->active;
  254. batch->pages[batch->nr++] = page;
  255. if (batch->nr == batch->max) {
  256. if (!tlb_next_batch(tlb))
  257. return 0;
  258. batch = tlb->active;
  259. }
  260. VM_BUG_ON(batch->nr > batch->max);
  261. return batch->max - batch->nr;
  262. }
  263. #endif /* HAVE_GENERIC_MMU_GATHER */
  264. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  265. /*
  266. * See the comment near struct mmu_table_batch.
  267. */
  268. static void tlb_remove_table_smp_sync(void *arg)
  269. {
  270. /* Simply deliver the interrupt */
  271. }
  272. static void tlb_remove_table_one(void *table)
  273. {
  274. /*
  275. * This isn't an RCU grace period and hence the page-tables cannot be
  276. * assumed to be actually RCU-freed.
  277. *
  278. * It is however sufficient for software page-table walkers that rely on
  279. * IRQ disabling. See the comment near struct mmu_table_batch.
  280. */
  281. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  282. __tlb_remove_table(table);
  283. }
  284. static void tlb_remove_table_rcu(struct rcu_head *head)
  285. {
  286. struct mmu_table_batch *batch;
  287. int i;
  288. batch = container_of(head, struct mmu_table_batch, rcu);
  289. for (i = 0; i < batch->nr; i++)
  290. __tlb_remove_table(batch->tables[i]);
  291. free_page((unsigned long)batch);
  292. }
  293. void tlb_table_flush(struct mmu_gather *tlb)
  294. {
  295. struct mmu_table_batch **batch = &tlb->batch;
  296. if (*batch) {
  297. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  298. *batch = NULL;
  299. }
  300. }
  301. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  302. {
  303. struct mmu_table_batch **batch = &tlb->batch;
  304. tlb->need_flush = 1;
  305. /*
  306. * When there's less then two users of this mm there cannot be a
  307. * concurrent page-table walk.
  308. */
  309. if (atomic_read(&tlb->mm->mm_users) < 2) {
  310. __tlb_remove_table(table);
  311. return;
  312. }
  313. if (*batch == NULL) {
  314. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  315. if (*batch == NULL) {
  316. tlb_remove_table_one(table);
  317. return;
  318. }
  319. (*batch)->nr = 0;
  320. }
  321. (*batch)->tables[(*batch)->nr++] = table;
  322. if ((*batch)->nr == MAX_TABLE_BATCH)
  323. tlb_table_flush(tlb);
  324. }
  325. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  326. /*
  327. * If a p?d_bad entry is found while walking page tables, report
  328. * the error, before resetting entry to p?d_none. Usually (but
  329. * very seldom) called out from the p?d_none_or_clear_bad macros.
  330. */
  331. void pgd_clear_bad(pgd_t *pgd)
  332. {
  333. pgd_ERROR(*pgd);
  334. pgd_clear(pgd);
  335. }
  336. void pud_clear_bad(pud_t *pud)
  337. {
  338. pud_ERROR(*pud);
  339. pud_clear(pud);
  340. }
  341. void pmd_clear_bad(pmd_t *pmd)
  342. {
  343. pmd_ERROR(*pmd);
  344. pmd_clear(pmd);
  345. }
  346. /*
  347. * Note: this doesn't free the actual pages themselves. That
  348. * has been handled earlier when unmapping all the memory regions.
  349. */
  350. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  351. unsigned long addr)
  352. {
  353. pgtable_t token = pmd_pgtable(*pmd);
  354. pmd_clear(pmd);
  355. pte_free_tlb(tlb, token, addr);
  356. tlb->mm->nr_ptes--;
  357. }
  358. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  359. unsigned long addr, unsigned long end,
  360. unsigned long floor, unsigned long ceiling)
  361. {
  362. pmd_t *pmd;
  363. unsigned long next;
  364. unsigned long start;
  365. start = addr;
  366. pmd = pmd_offset(pud, addr);
  367. do {
  368. next = pmd_addr_end(addr, end);
  369. if (pmd_none_or_clear_bad(pmd))
  370. continue;
  371. free_pte_range(tlb, pmd, addr);
  372. } while (pmd++, addr = next, addr != end);
  373. start &= PUD_MASK;
  374. if (start < floor)
  375. return;
  376. if (ceiling) {
  377. ceiling &= PUD_MASK;
  378. if (!ceiling)
  379. return;
  380. }
  381. if (end - 1 > ceiling - 1)
  382. return;
  383. pmd = pmd_offset(pud, start);
  384. pud_clear(pud);
  385. pmd_free_tlb(tlb, pmd, start);
  386. }
  387. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  388. unsigned long addr, unsigned long end,
  389. unsigned long floor, unsigned long ceiling)
  390. {
  391. pud_t *pud;
  392. unsigned long next;
  393. unsigned long start;
  394. start = addr;
  395. pud = pud_offset(pgd, addr);
  396. do {
  397. next = pud_addr_end(addr, end);
  398. if (pud_none_or_clear_bad(pud))
  399. continue;
  400. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  401. } while (pud++, addr = next, addr != end);
  402. start &= PGDIR_MASK;
  403. if (start < floor)
  404. return;
  405. if (ceiling) {
  406. ceiling &= PGDIR_MASK;
  407. if (!ceiling)
  408. return;
  409. }
  410. if (end - 1 > ceiling - 1)
  411. return;
  412. pud = pud_offset(pgd, start);
  413. pgd_clear(pgd);
  414. pud_free_tlb(tlb, pud, start);
  415. }
  416. /*
  417. * This function frees user-level page tables of a process.
  418. *
  419. * Must be called with pagetable lock held.
  420. */
  421. void free_pgd_range(struct mmu_gather *tlb,
  422. unsigned long addr, unsigned long end,
  423. unsigned long floor, unsigned long ceiling)
  424. {
  425. pgd_t *pgd;
  426. unsigned long next;
  427. /*
  428. * The next few lines have given us lots of grief...
  429. *
  430. * Why are we testing PMD* at this top level? Because often
  431. * there will be no work to do at all, and we'd prefer not to
  432. * go all the way down to the bottom just to discover that.
  433. *
  434. * Why all these "- 1"s? Because 0 represents both the bottom
  435. * of the address space and the top of it (using -1 for the
  436. * top wouldn't help much: the masks would do the wrong thing).
  437. * The rule is that addr 0 and floor 0 refer to the bottom of
  438. * the address space, but end 0 and ceiling 0 refer to the top
  439. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  440. * that end 0 case should be mythical).
  441. *
  442. * Wherever addr is brought up or ceiling brought down, we must
  443. * be careful to reject "the opposite 0" before it confuses the
  444. * subsequent tests. But what about where end is brought down
  445. * by PMD_SIZE below? no, end can't go down to 0 there.
  446. *
  447. * Whereas we round start (addr) and ceiling down, by different
  448. * masks at different levels, in order to test whether a table
  449. * now has no other vmas using it, so can be freed, we don't
  450. * bother to round floor or end up - the tests don't need that.
  451. */
  452. addr &= PMD_MASK;
  453. if (addr < floor) {
  454. addr += PMD_SIZE;
  455. if (!addr)
  456. return;
  457. }
  458. if (ceiling) {
  459. ceiling &= PMD_MASK;
  460. if (!ceiling)
  461. return;
  462. }
  463. if (end - 1 > ceiling - 1)
  464. end -= PMD_SIZE;
  465. if (addr > end - 1)
  466. return;
  467. pgd = pgd_offset(tlb->mm, addr);
  468. do {
  469. next = pgd_addr_end(addr, end);
  470. if (pgd_none_or_clear_bad(pgd))
  471. continue;
  472. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  473. } while (pgd++, addr = next, addr != end);
  474. }
  475. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  476. unsigned long floor, unsigned long ceiling)
  477. {
  478. while (vma) {
  479. struct vm_area_struct *next = vma->vm_next;
  480. unsigned long addr = vma->vm_start;
  481. /*
  482. * Hide vma from rmap and truncate_pagecache before freeing
  483. * pgtables
  484. */
  485. unlink_anon_vmas(vma);
  486. unlink_file_vma(vma);
  487. if (is_vm_hugetlb_page(vma)) {
  488. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  489. floor, next? next->vm_start: ceiling);
  490. } else {
  491. /*
  492. * Optimization: gather nearby vmas into one call down
  493. */
  494. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  495. && !is_vm_hugetlb_page(next)) {
  496. vma = next;
  497. next = vma->vm_next;
  498. unlink_anon_vmas(vma);
  499. unlink_file_vma(vma);
  500. }
  501. free_pgd_range(tlb, addr, vma->vm_end,
  502. floor, next? next->vm_start: ceiling);
  503. }
  504. vma = next;
  505. }
  506. }
  507. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  508. pmd_t *pmd, unsigned long address)
  509. {
  510. pgtable_t new = pte_alloc_one(mm, address);
  511. int wait_split_huge_page;
  512. if (!new)
  513. return -ENOMEM;
  514. /*
  515. * Ensure all pte setup (eg. pte page lock and page clearing) are
  516. * visible before the pte is made visible to other CPUs by being
  517. * put into page tables.
  518. *
  519. * The other side of the story is the pointer chasing in the page
  520. * table walking code (when walking the page table without locking;
  521. * ie. most of the time). Fortunately, these data accesses consist
  522. * of a chain of data-dependent loads, meaning most CPUs (alpha
  523. * being the notable exception) will already guarantee loads are
  524. * seen in-order. See the alpha page table accessors for the
  525. * smp_read_barrier_depends() barriers in page table walking code.
  526. */
  527. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  528. spin_lock(&mm->page_table_lock);
  529. wait_split_huge_page = 0;
  530. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  531. mm->nr_ptes++;
  532. pmd_populate(mm, pmd, new);
  533. new = NULL;
  534. } else if (unlikely(pmd_trans_splitting(*pmd)))
  535. wait_split_huge_page = 1;
  536. spin_unlock(&mm->page_table_lock);
  537. if (new)
  538. pte_free(mm, new);
  539. if (wait_split_huge_page)
  540. wait_split_huge_page(vma->anon_vma, pmd);
  541. return 0;
  542. }
  543. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  544. {
  545. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  546. if (!new)
  547. return -ENOMEM;
  548. smp_wmb(); /* See comment in __pte_alloc */
  549. spin_lock(&init_mm.page_table_lock);
  550. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  551. pmd_populate_kernel(&init_mm, pmd, new);
  552. new = NULL;
  553. } else
  554. VM_BUG_ON(pmd_trans_splitting(*pmd));
  555. spin_unlock(&init_mm.page_table_lock);
  556. if (new)
  557. pte_free_kernel(&init_mm, new);
  558. return 0;
  559. }
  560. static inline void init_rss_vec(int *rss)
  561. {
  562. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  563. }
  564. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  565. {
  566. int i;
  567. if (current->mm == mm)
  568. sync_mm_rss(current, mm);
  569. for (i = 0; i < NR_MM_COUNTERS; i++)
  570. if (rss[i])
  571. add_mm_counter(mm, i, rss[i]);
  572. }
  573. /*
  574. * This function is called to print an error when a bad pte
  575. * is found. For example, we might have a PFN-mapped pte in
  576. * a region that doesn't allow it.
  577. *
  578. * The calling function must still handle the error.
  579. */
  580. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  581. pte_t pte, struct page *page)
  582. {
  583. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  584. pud_t *pud = pud_offset(pgd, addr);
  585. pmd_t *pmd = pmd_offset(pud, addr);
  586. struct address_space *mapping;
  587. pgoff_t index;
  588. static unsigned long resume;
  589. static unsigned long nr_shown;
  590. static unsigned long nr_unshown;
  591. /*
  592. * Allow a burst of 60 reports, then keep quiet for that minute;
  593. * or allow a steady drip of one report per second.
  594. */
  595. if (nr_shown == 60) {
  596. if (time_before(jiffies, resume)) {
  597. nr_unshown++;
  598. return;
  599. }
  600. if (nr_unshown) {
  601. printk(KERN_ALERT
  602. "BUG: Bad page map: %lu messages suppressed\n",
  603. nr_unshown);
  604. nr_unshown = 0;
  605. }
  606. nr_shown = 0;
  607. }
  608. if (nr_shown++ == 0)
  609. resume = jiffies + 60 * HZ;
  610. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  611. index = linear_page_index(vma, addr);
  612. printk(KERN_ALERT
  613. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  614. current->comm,
  615. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  616. if (page)
  617. dump_page(page);
  618. printk(KERN_ALERT
  619. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  620. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  621. /*
  622. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  623. */
  624. if (vma->vm_ops)
  625. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  626. (unsigned long)vma->vm_ops->fault);
  627. if (vma->vm_file && vma->vm_file->f_op)
  628. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  629. (unsigned long)vma->vm_file->f_op->mmap);
  630. dump_stack();
  631. add_taint(TAINT_BAD_PAGE);
  632. }
  633. static inline int is_cow_mapping(vm_flags_t flags)
  634. {
  635. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  636. }
  637. #ifndef is_zero_pfn
  638. static inline int is_zero_pfn(unsigned long pfn)
  639. {
  640. return pfn == zero_pfn;
  641. }
  642. #endif
  643. #ifndef my_zero_pfn
  644. static inline unsigned long my_zero_pfn(unsigned long addr)
  645. {
  646. return zero_pfn;
  647. }
  648. #endif
  649. /*
  650. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  651. *
  652. * "Special" mappings do not wish to be associated with a "struct page" (either
  653. * it doesn't exist, or it exists but they don't want to touch it). In this
  654. * case, NULL is returned here. "Normal" mappings do have a struct page.
  655. *
  656. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  657. * pte bit, in which case this function is trivial. Secondly, an architecture
  658. * may not have a spare pte bit, which requires a more complicated scheme,
  659. * described below.
  660. *
  661. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  662. * special mapping (even if there are underlying and valid "struct pages").
  663. * COWed pages of a VM_PFNMAP are always normal.
  664. *
  665. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  666. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  667. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  668. * mapping will always honor the rule
  669. *
  670. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  671. *
  672. * And for normal mappings this is false.
  673. *
  674. * This restricts such mappings to be a linear translation from virtual address
  675. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  676. * as the vma is not a COW mapping; in that case, we know that all ptes are
  677. * special (because none can have been COWed).
  678. *
  679. *
  680. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  681. *
  682. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  683. * page" backing, however the difference is that _all_ pages with a struct
  684. * page (that is, those where pfn_valid is true) are refcounted and considered
  685. * normal pages by the VM. The disadvantage is that pages are refcounted
  686. * (which can be slower and simply not an option for some PFNMAP users). The
  687. * advantage is that we don't have to follow the strict linearity rule of
  688. * PFNMAP mappings in order to support COWable mappings.
  689. *
  690. */
  691. #ifdef __HAVE_ARCH_PTE_SPECIAL
  692. # define HAVE_PTE_SPECIAL 1
  693. #else
  694. # define HAVE_PTE_SPECIAL 0
  695. #endif
  696. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  697. pte_t pte)
  698. {
  699. unsigned long pfn = pte_pfn(pte);
  700. if (HAVE_PTE_SPECIAL) {
  701. if (likely(!pte_special(pte)))
  702. goto check_pfn;
  703. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  704. return NULL;
  705. if (!is_zero_pfn(pfn))
  706. print_bad_pte(vma, addr, pte, NULL);
  707. return NULL;
  708. }
  709. /* !HAVE_PTE_SPECIAL case follows: */
  710. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  711. if (vma->vm_flags & VM_MIXEDMAP) {
  712. if (!pfn_valid(pfn))
  713. return NULL;
  714. goto out;
  715. } else {
  716. unsigned long off;
  717. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  718. if (pfn == vma->vm_pgoff + off)
  719. return NULL;
  720. if (!is_cow_mapping(vma->vm_flags))
  721. return NULL;
  722. }
  723. }
  724. if (is_zero_pfn(pfn))
  725. return NULL;
  726. check_pfn:
  727. if (unlikely(pfn > highest_memmap_pfn)) {
  728. print_bad_pte(vma, addr, pte, NULL);
  729. return NULL;
  730. }
  731. /*
  732. * NOTE! We still have PageReserved() pages in the page tables.
  733. * eg. VDSO mappings can cause them to exist.
  734. */
  735. out:
  736. return pfn_to_page(pfn);
  737. }
  738. /*
  739. * copy one vm_area from one task to the other. Assumes the page tables
  740. * already present in the new task to be cleared in the whole range
  741. * covered by this vma.
  742. */
  743. static inline unsigned long
  744. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  745. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  746. unsigned long addr, int *rss)
  747. {
  748. unsigned long vm_flags = vma->vm_flags;
  749. pte_t pte = *src_pte;
  750. struct page *page;
  751. /* pte contains position in swap or file, so copy. */
  752. if (unlikely(!pte_present(pte))) {
  753. if (!pte_file(pte)) {
  754. swp_entry_t entry = pte_to_swp_entry(pte);
  755. if (swap_duplicate(entry) < 0)
  756. return entry.val;
  757. /* make sure dst_mm is on swapoff's mmlist. */
  758. if (unlikely(list_empty(&dst_mm->mmlist))) {
  759. spin_lock(&mmlist_lock);
  760. if (list_empty(&dst_mm->mmlist))
  761. list_add(&dst_mm->mmlist,
  762. &src_mm->mmlist);
  763. spin_unlock(&mmlist_lock);
  764. }
  765. if (likely(!non_swap_entry(entry)))
  766. rss[MM_SWAPENTS]++;
  767. else if (is_write_migration_entry(entry) &&
  768. is_cow_mapping(vm_flags)) {
  769. /*
  770. * COW mappings require pages in both parent
  771. * and child to be set to read.
  772. */
  773. make_migration_entry_read(&entry);
  774. pte = swp_entry_to_pte(entry);
  775. set_pte_at(src_mm, addr, src_pte, pte);
  776. }
  777. }
  778. goto out_set_pte;
  779. }
  780. /*
  781. * If it's a COW mapping, write protect it both
  782. * in the parent and the child
  783. */
  784. if (is_cow_mapping(vm_flags)) {
  785. ptep_set_wrprotect(src_mm, addr, src_pte);
  786. pte = pte_wrprotect(pte);
  787. }
  788. /*
  789. * If it's a shared mapping, mark it clean in
  790. * the child
  791. */
  792. if (vm_flags & VM_SHARED)
  793. pte = pte_mkclean(pte);
  794. pte = pte_mkold(pte);
  795. page = vm_normal_page(vma, addr, pte);
  796. if (page) {
  797. get_page(page);
  798. page_dup_rmap(page);
  799. if (PageAnon(page))
  800. rss[MM_ANONPAGES]++;
  801. else
  802. rss[MM_FILEPAGES]++;
  803. }
  804. out_set_pte:
  805. set_pte_at(dst_mm, addr, dst_pte, pte);
  806. return 0;
  807. }
  808. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  809. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  810. unsigned long addr, unsigned long end)
  811. {
  812. pte_t *orig_src_pte, *orig_dst_pte;
  813. pte_t *src_pte, *dst_pte;
  814. spinlock_t *src_ptl, *dst_ptl;
  815. int progress = 0;
  816. int rss[NR_MM_COUNTERS];
  817. swp_entry_t entry = (swp_entry_t){0};
  818. again:
  819. init_rss_vec(rss);
  820. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  821. if (!dst_pte)
  822. return -ENOMEM;
  823. src_pte = pte_offset_map(src_pmd, addr);
  824. src_ptl = pte_lockptr(src_mm, src_pmd);
  825. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  826. orig_src_pte = src_pte;
  827. orig_dst_pte = dst_pte;
  828. arch_enter_lazy_mmu_mode();
  829. do {
  830. /*
  831. * We are holding two locks at this point - either of them
  832. * could generate latencies in another task on another CPU.
  833. */
  834. if (progress >= 32) {
  835. progress = 0;
  836. if (need_resched() ||
  837. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  838. break;
  839. }
  840. if (pte_none(*src_pte)) {
  841. progress++;
  842. continue;
  843. }
  844. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  845. vma, addr, rss);
  846. if (entry.val)
  847. break;
  848. progress += 8;
  849. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  850. arch_leave_lazy_mmu_mode();
  851. spin_unlock(src_ptl);
  852. pte_unmap(orig_src_pte);
  853. add_mm_rss_vec(dst_mm, rss);
  854. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  855. cond_resched();
  856. if (entry.val) {
  857. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  858. return -ENOMEM;
  859. progress = 0;
  860. }
  861. if (addr != end)
  862. goto again;
  863. return 0;
  864. }
  865. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  866. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  867. unsigned long addr, unsigned long end)
  868. {
  869. pmd_t *src_pmd, *dst_pmd;
  870. unsigned long next;
  871. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  872. if (!dst_pmd)
  873. return -ENOMEM;
  874. src_pmd = pmd_offset(src_pud, addr);
  875. do {
  876. next = pmd_addr_end(addr, end);
  877. if (pmd_trans_huge(*src_pmd)) {
  878. int err;
  879. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  880. err = copy_huge_pmd(dst_mm, src_mm,
  881. dst_pmd, src_pmd, addr, vma);
  882. if (err == -ENOMEM)
  883. return -ENOMEM;
  884. if (!err)
  885. continue;
  886. /* fall through */
  887. }
  888. if (pmd_none_or_clear_bad(src_pmd))
  889. continue;
  890. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  891. vma, addr, next))
  892. return -ENOMEM;
  893. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  894. return 0;
  895. }
  896. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  897. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  898. unsigned long addr, unsigned long end)
  899. {
  900. pud_t *src_pud, *dst_pud;
  901. unsigned long next;
  902. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  903. if (!dst_pud)
  904. return -ENOMEM;
  905. src_pud = pud_offset(src_pgd, addr);
  906. do {
  907. next = pud_addr_end(addr, end);
  908. if (pud_none_or_clear_bad(src_pud))
  909. continue;
  910. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  911. vma, addr, next))
  912. return -ENOMEM;
  913. } while (dst_pud++, src_pud++, addr = next, addr != end);
  914. return 0;
  915. }
  916. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  917. struct vm_area_struct *vma)
  918. {
  919. pgd_t *src_pgd, *dst_pgd;
  920. unsigned long next;
  921. unsigned long addr = vma->vm_start;
  922. unsigned long end = vma->vm_end;
  923. int ret;
  924. /*
  925. * Don't copy ptes where a page fault will fill them correctly.
  926. * Fork becomes much lighter when there are big shared or private
  927. * readonly mappings. The tradeoff is that copy_page_range is more
  928. * efficient than faulting.
  929. */
  930. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  931. if (!vma->anon_vma)
  932. return 0;
  933. }
  934. if (is_vm_hugetlb_page(vma))
  935. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  936. if (unlikely(is_pfn_mapping(vma))) {
  937. /*
  938. * We do not free on error cases below as remove_vma
  939. * gets called on error from higher level routine
  940. */
  941. ret = track_pfn_vma_copy(vma);
  942. if (ret)
  943. return ret;
  944. }
  945. /*
  946. * We need to invalidate the secondary MMU mappings only when
  947. * there could be a permission downgrade on the ptes of the
  948. * parent mm. And a permission downgrade will only happen if
  949. * is_cow_mapping() returns true.
  950. */
  951. if (is_cow_mapping(vma->vm_flags))
  952. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  953. ret = 0;
  954. dst_pgd = pgd_offset(dst_mm, addr);
  955. src_pgd = pgd_offset(src_mm, addr);
  956. do {
  957. next = pgd_addr_end(addr, end);
  958. if (pgd_none_or_clear_bad(src_pgd))
  959. continue;
  960. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  961. vma, addr, next))) {
  962. ret = -ENOMEM;
  963. break;
  964. }
  965. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  966. if (is_cow_mapping(vma->vm_flags))
  967. mmu_notifier_invalidate_range_end(src_mm,
  968. vma->vm_start, end);
  969. return ret;
  970. }
  971. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  972. struct vm_area_struct *vma, pmd_t *pmd,
  973. unsigned long addr, unsigned long end,
  974. struct zap_details *details)
  975. {
  976. struct mm_struct *mm = tlb->mm;
  977. int force_flush = 0;
  978. int rss[NR_MM_COUNTERS];
  979. spinlock_t *ptl;
  980. pte_t *start_pte;
  981. pte_t *pte;
  982. again:
  983. init_rss_vec(rss);
  984. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  985. pte = start_pte;
  986. arch_enter_lazy_mmu_mode();
  987. do {
  988. pte_t ptent = *pte;
  989. if (pte_none(ptent)) {
  990. continue;
  991. }
  992. if (pte_present(ptent)) {
  993. struct page *page;
  994. page = vm_normal_page(vma, addr, ptent);
  995. if (unlikely(details) && page) {
  996. /*
  997. * unmap_shared_mapping_pages() wants to
  998. * invalidate cache without truncating:
  999. * unmap shared but keep private pages.
  1000. */
  1001. if (details->check_mapping &&
  1002. details->check_mapping != page->mapping)
  1003. continue;
  1004. /*
  1005. * Each page->index must be checked when
  1006. * invalidating or truncating nonlinear.
  1007. */
  1008. if (details->nonlinear_vma &&
  1009. (page->index < details->first_index ||
  1010. page->index > details->last_index))
  1011. continue;
  1012. }
  1013. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1014. tlb->fullmm);
  1015. tlb_remove_tlb_entry(tlb, pte, addr);
  1016. if (unlikely(!page))
  1017. continue;
  1018. if (unlikely(details) && details->nonlinear_vma
  1019. && linear_page_index(details->nonlinear_vma,
  1020. addr) != page->index)
  1021. set_pte_at(mm, addr, pte,
  1022. pgoff_to_pte(page->index));
  1023. if (PageAnon(page))
  1024. rss[MM_ANONPAGES]--;
  1025. else {
  1026. if (pte_dirty(ptent))
  1027. set_page_dirty(page);
  1028. if (pte_young(ptent) &&
  1029. likely(!VM_SequentialReadHint(vma)))
  1030. mark_page_accessed(page);
  1031. rss[MM_FILEPAGES]--;
  1032. }
  1033. page_remove_rmap(page);
  1034. if (unlikely(page_mapcount(page) < 0))
  1035. print_bad_pte(vma, addr, ptent, page);
  1036. force_flush = !__tlb_remove_page(tlb, page);
  1037. if (force_flush)
  1038. break;
  1039. continue;
  1040. }
  1041. /*
  1042. * If details->check_mapping, we leave swap entries;
  1043. * if details->nonlinear_vma, we leave file entries.
  1044. */
  1045. if (unlikely(details))
  1046. continue;
  1047. if (pte_file(ptent)) {
  1048. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1049. print_bad_pte(vma, addr, ptent, NULL);
  1050. } else {
  1051. swp_entry_t entry = pte_to_swp_entry(ptent);
  1052. if (!non_swap_entry(entry))
  1053. rss[MM_SWAPENTS]--;
  1054. if (unlikely(!free_swap_and_cache(entry)))
  1055. print_bad_pte(vma, addr, ptent, NULL);
  1056. }
  1057. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1058. } while (pte++, addr += PAGE_SIZE, addr != end);
  1059. add_mm_rss_vec(mm, rss);
  1060. arch_leave_lazy_mmu_mode();
  1061. pte_unmap_unlock(start_pte, ptl);
  1062. /*
  1063. * mmu_gather ran out of room to batch pages, we break out of
  1064. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1065. * and page-free while holding it.
  1066. */
  1067. if (force_flush) {
  1068. force_flush = 0;
  1069. tlb_flush_mmu(tlb);
  1070. if (addr != end)
  1071. goto again;
  1072. }
  1073. return addr;
  1074. }
  1075. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1076. struct vm_area_struct *vma, pud_t *pud,
  1077. unsigned long addr, unsigned long end,
  1078. struct zap_details *details)
  1079. {
  1080. pmd_t *pmd;
  1081. unsigned long next;
  1082. pmd = pmd_offset(pud, addr);
  1083. do {
  1084. next = pmd_addr_end(addr, end);
  1085. if (pmd_trans_huge(*pmd)) {
  1086. if (next - addr != HPAGE_PMD_SIZE) {
  1087. VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
  1088. split_huge_page_pmd(vma->vm_mm, pmd);
  1089. } else if (zap_huge_pmd(tlb, vma, pmd))
  1090. goto next;
  1091. /* fall through */
  1092. }
  1093. /*
  1094. * Here there can be other concurrent MADV_DONTNEED or
  1095. * trans huge page faults running, and if the pmd is
  1096. * none or trans huge it can change under us. This is
  1097. * because MADV_DONTNEED holds the mmap_sem in read
  1098. * mode.
  1099. */
  1100. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1101. goto next;
  1102. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1103. next:
  1104. cond_resched();
  1105. } while (pmd++, addr = next, addr != end);
  1106. return addr;
  1107. }
  1108. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1109. struct vm_area_struct *vma, pgd_t *pgd,
  1110. unsigned long addr, unsigned long end,
  1111. struct zap_details *details)
  1112. {
  1113. pud_t *pud;
  1114. unsigned long next;
  1115. pud = pud_offset(pgd, addr);
  1116. do {
  1117. next = pud_addr_end(addr, end);
  1118. if (pud_none_or_clear_bad(pud))
  1119. continue;
  1120. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1121. } while (pud++, addr = next, addr != end);
  1122. return addr;
  1123. }
  1124. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  1125. struct vm_area_struct *vma,
  1126. unsigned long addr, unsigned long end,
  1127. struct zap_details *details)
  1128. {
  1129. pgd_t *pgd;
  1130. unsigned long next;
  1131. if (details && !details->check_mapping && !details->nonlinear_vma)
  1132. details = NULL;
  1133. BUG_ON(addr >= end);
  1134. mem_cgroup_uncharge_start();
  1135. tlb_start_vma(tlb, vma);
  1136. pgd = pgd_offset(vma->vm_mm, addr);
  1137. do {
  1138. next = pgd_addr_end(addr, end);
  1139. if (pgd_none_or_clear_bad(pgd))
  1140. continue;
  1141. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1142. } while (pgd++, addr = next, addr != end);
  1143. tlb_end_vma(tlb, vma);
  1144. mem_cgroup_uncharge_end();
  1145. return addr;
  1146. }
  1147. #ifdef CONFIG_PREEMPT
  1148. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  1149. #else
  1150. /* No preempt: go for improved straight-line efficiency */
  1151. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  1152. #endif
  1153. /**
  1154. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1155. * @tlb: address of the caller's struct mmu_gather
  1156. * @vma: the starting vma
  1157. * @start_addr: virtual address at which to start unmapping
  1158. * @end_addr: virtual address at which to end unmapping
  1159. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  1160. * @details: details of nonlinear truncation or shared cache invalidation
  1161. *
  1162. * Returns the end address of the unmapping (restart addr if interrupted).
  1163. *
  1164. * Unmap all pages in the vma list.
  1165. *
  1166. * We aim to not hold locks for too long (for scheduling latency reasons).
  1167. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  1168. * return the ending mmu_gather to the caller.
  1169. *
  1170. * Only addresses between `start' and `end' will be unmapped.
  1171. *
  1172. * The VMA list must be sorted in ascending virtual address order.
  1173. *
  1174. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1175. * range after unmap_vmas() returns. So the only responsibility here is to
  1176. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1177. * drops the lock and schedules.
  1178. */
  1179. unsigned long unmap_vmas(struct mmu_gather *tlb,
  1180. struct vm_area_struct *vma, unsigned long start_addr,
  1181. unsigned long end_addr, unsigned long *nr_accounted,
  1182. struct zap_details *details)
  1183. {
  1184. unsigned long start = start_addr;
  1185. struct mm_struct *mm = vma->vm_mm;
  1186. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1187. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  1188. unsigned long end;
  1189. start = max(vma->vm_start, start_addr);
  1190. if (start >= vma->vm_end)
  1191. continue;
  1192. end = min(vma->vm_end, end_addr);
  1193. if (end <= vma->vm_start)
  1194. continue;
  1195. if (vma->vm_flags & VM_ACCOUNT)
  1196. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1197. if (unlikely(is_pfn_mapping(vma)))
  1198. untrack_pfn_vma(vma, 0, 0);
  1199. while (start != end) {
  1200. if (unlikely(is_vm_hugetlb_page(vma))) {
  1201. /*
  1202. * It is undesirable to test vma->vm_file as it
  1203. * should be non-null for valid hugetlb area.
  1204. * However, vm_file will be NULL in the error
  1205. * cleanup path of do_mmap_pgoff. When
  1206. * hugetlbfs ->mmap method fails,
  1207. * do_mmap_pgoff() nullifies vma->vm_file
  1208. * before calling this function to clean up.
  1209. * Since no pte has actually been setup, it is
  1210. * safe to do nothing in this case.
  1211. */
  1212. if (vma->vm_file)
  1213. unmap_hugepage_range(vma, start, end, NULL);
  1214. start = end;
  1215. } else
  1216. start = unmap_page_range(tlb, vma, start, end, details);
  1217. }
  1218. }
  1219. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1220. return start; /* which is now the end (or restart) address */
  1221. }
  1222. /**
  1223. * zap_page_range - remove user pages in a given range
  1224. * @vma: vm_area_struct holding the applicable pages
  1225. * @address: starting address of pages to zap
  1226. * @size: number of bytes to zap
  1227. * @details: details of nonlinear truncation or shared cache invalidation
  1228. */
  1229. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1230. unsigned long size, struct zap_details *details)
  1231. {
  1232. struct mm_struct *mm = vma->vm_mm;
  1233. struct mmu_gather tlb;
  1234. unsigned long end = address + size;
  1235. unsigned long nr_accounted = 0;
  1236. lru_add_drain();
  1237. tlb_gather_mmu(&tlb, mm, 0);
  1238. update_hiwater_rss(mm);
  1239. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1240. tlb_finish_mmu(&tlb, address, end);
  1241. return end;
  1242. }
  1243. /**
  1244. * zap_vma_ptes - remove ptes mapping the vma
  1245. * @vma: vm_area_struct holding ptes to be zapped
  1246. * @address: starting address of pages to zap
  1247. * @size: number of bytes to zap
  1248. *
  1249. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1250. *
  1251. * The entire address range must be fully contained within the vma.
  1252. *
  1253. * Returns 0 if successful.
  1254. */
  1255. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1256. unsigned long size)
  1257. {
  1258. if (address < vma->vm_start || address + size > vma->vm_end ||
  1259. !(vma->vm_flags & VM_PFNMAP))
  1260. return -1;
  1261. zap_page_range(vma, address, size, NULL);
  1262. return 0;
  1263. }
  1264. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1265. /**
  1266. * follow_page - look up a page descriptor from a user-virtual address
  1267. * @vma: vm_area_struct mapping @address
  1268. * @address: virtual address to look up
  1269. * @flags: flags modifying lookup behaviour
  1270. *
  1271. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1272. *
  1273. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1274. * an error pointer if there is a mapping to something not represented
  1275. * by a page descriptor (see also vm_normal_page()).
  1276. */
  1277. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1278. unsigned int flags)
  1279. {
  1280. pgd_t *pgd;
  1281. pud_t *pud;
  1282. pmd_t *pmd;
  1283. pte_t *ptep, pte;
  1284. spinlock_t *ptl;
  1285. struct page *page;
  1286. struct mm_struct *mm = vma->vm_mm;
  1287. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1288. if (!IS_ERR(page)) {
  1289. BUG_ON(flags & FOLL_GET);
  1290. goto out;
  1291. }
  1292. page = NULL;
  1293. pgd = pgd_offset(mm, address);
  1294. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1295. goto no_page_table;
  1296. pud = pud_offset(pgd, address);
  1297. if (pud_none(*pud))
  1298. goto no_page_table;
  1299. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1300. BUG_ON(flags & FOLL_GET);
  1301. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1302. goto out;
  1303. }
  1304. if (unlikely(pud_bad(*pud)))
  1305. goto no_page_table;
  1306. pmd = pmd_offset(pud, address);
  1307. if (pmd_none(*pmd))
  1308. goto no_page_table;
  1309. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1310. BUG_ON(flags & FOLL_GET);
  1311. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1312. goto out;
  1313. }
  1314. if (pmd_trans_huge(*pmd)) {
  1315. if (flags & FOLL_SPLIT) {
  1316. split_huge_page_pmd(mm, pmd);
  1317. goto split_fallthrough;
  1318. }
  1319. spin_lock(&mm->page_table_lock);
  1320. if (likely(pmd_trans_huge(*pmd))) {
  1321. if (unlikely(pmd_trans_splitting(*pmd))) {
  1322. spin_unlock(&mm->page_table_lock);
  1323. wait_split_huge_page(vma->anon_vma, pmd);
  1324. } else {
  1325. page = follow_trans_huge_pmd(mm, address,
  1326. pmd, flags);
  1327. spin_unlock(&mm->page_table_lock);
  1328. goto out;
  1329. }
  1330. } else
  1331. spin_unlock(&mm->page_table_lock);
  1332. /* fall through */
  1333. }
  1334. split_fallthrough:
  1335. if (unlikely(pmd_bad(*pmd)))
  1336. goto no_page_table;
  1337. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1338. pte = *ptep;
  1339. if (!pte_present(pte))
  1340. goto no_page;
  1341. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1342. goto unlock;
  1343. page = vm_normal_page(vma, address, pte);
  1344. if (unlikely(!page)) {
  1345. if ((flags & FOLL_DUMP) ||
  1346. !is_zero_pfn(pte_pfn(pte)))
  1347. goto bad_page;
  1348. page = pte_page(pte);
  1349. }
  1350. if (flags & FOLL_GET)
  1351. get_page_foll(page);
  1352. if (flags & FOLL_TOUCH) {
  1353. if ((flags & FOLL_WRITE) &&
  1354. !pte_dirty(pte) && !PageDirty(page))
  1355. set_page_dirty(page);
  1356. /*
  1357. * pte_mkyoung() would be more correct here, but atomic care
  1358. * is needed to avoid losing the dirty bit: it is easier to use
  1359. * mark_page_accessed().
  1360. */
  1361. mark_page_accessed(page);
  1362. }
  1363. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1364. /*
  1365. * The preliminary mapping check is mainly to avoid the
  1366. * pointless overhead of lock_page on the ZERO_PAGE
  1367. * which might bounce very badly if there is contention.
  1368. *
  1369. * If the page is already locked, we don't need to
  1370. * handle it now - vmscan will handle it later if and
  1371. * when it attempts to reclaim the page.
  1372. */
  1373. if (page->mapping && trylock_page(page)) {
  1374. lru_add_drain(); /* push cached pages to LRU */
  1375. /*
  1376. * Because we lock page here and migration is
  1377. * blocked by the pte's page reference, we need
  1378. * only check for file-cache page truncation.
  1379. */
  1380. if (page->mapping)
  1381. mlock_vma_page(page);
  1382. unlock_page(page);
  1383. }
  1384. }
  1385. unlock:
  1386. pte_unmap_unlock(ptep, ptl);
  1387. out:
  1388. return page;
  1389. bad_page:
  1390. pte_unmap_unlock(ptep, ptl);
  1391. return ERR_PTR(-EFAULT);
  1392. no_page:
  1393. pte_unmap_unlock(ptep, ptl);
  1394. if (!pte_none(pte))
  1395. return page;
  1396. no_page_table:
  1397. /*
  1398. * When core dumping an enormous anonymous area that nobody
  1399. * has touched so far, we don't want to allocate unnecessary pages or
  1400. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1401. * then get_dump_page() will return NULL to leave a hole in the dump.
  1402. * But we can only make this optimization where a hole would surely
  1403. * be zero-filled if handle_mm_fault() actually did handle it.
  1404. */
  1405. if ((flags & FOLL_DUMP) &&
  1406. (!vma->vm_ops || !vma->vm_ops->fault))
  1407. return ERR_PTR(-EFAULT);
  1408. return page;
  1409. }
  1410. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1411. {
  1412. return stack_guard_page_start(vma, addr) ||
  1413. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1414. }
  1415. /**
  1416. * __get_user_pages() - pin user pages in memory
  1417. * @tsk: task_struct of target task
  1418. * @mm: mm_struct of target mm
  1419. * @start: starting user address
  1420. * @nr_pages: number of pages from start to pin
  1421. * @gup_flags: flags modifying pin behaviour
  1422. * @pages: array that receives pointers to the pages pinned.
  1423. * Should be at least nr_pages long. Or NULL, if caller
  1424. * only intends to ensure the pages are faulted in.
  1425. * @vmas: array of pointers to vmas corresponding to each page.
  1426. * Or NULL if the caller does not require them.
  1427. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1428. *
  1429. * Returns number of pages pinned. This may be fewer than the number
  1430. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1431. * were pinned, returns -errno. Each page returned must be released
  1432. * with a put_page() call when it is finished with. vmas will only
  1433. * remain valid while mmap_sem is held.
  1434. *
  1435. * Must be called with mmap_sem held for read or write.
  1436. *
  1437. * __get_user_pages walks a process's page tables and takes a reference to
  1438. * each struct page that each user address corresponds to at a given
  1439. * instant. That is, it takes the page that would be accessed if a user
  1440. * thread accesses the given user virtual address at that instant.
  1441. *
  1442. * This does not guarantee that the page exists in the user mappings when
  1443. * __get_user_pages returns, and there may even be a completely different
  1444. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1445. * and subsequently re faulted). However it does guarantee that the page
  1446. * won't be freed completely. And mostly callers simply care that the page
  1447. * contains data that was valid *at some point in time*. Typically, an IO
  1448. * or similar operation cannot guarantee anything stronger anyway because
  1449. * locks can't be held over the syscall boundary.
  1450. *
  1451. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1452. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1453. * appropriate) must be called after the page is finished with, and
  1454. * before put_page is called.
  1455. *
  1456. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1457. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1458. * *@nonblocking will be set to 0.
  1459. *
  1460. * In most cases, get_user_pages or get_user_pages_fast should be used
  1461. * instead of __get_user_pages. __get_user_pages should be used only if
  1462. * you need some special @gup_flags.
  1463. */
  1464. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1465. unsigned long start, int nr_pages, unsigned int gup_flags,
  1466. struct page **pages, struct vm_area_struct **vmas,
  1467. int *nonblocking)
  1468. {
  1469. int i;
  1470. unsigned long vm_flags;
  1471. if (nr_pages <= 0)
  1472. return 0;
  1473. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1474. /*
  1475. * Require read or write permissions.
  1476. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1477. */
  1478. vm_flags = (gup_flags & FOLL_WRITE) ?
  1479. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1480. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1481. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1482. i = 0;
  1483. do {
  1484. struct vm_area_struct *vma;
  1485. vma = find_extend_vma(mm, start);
  1486. if (!vma && in_gate_area(mm, start)) {
  1487. unsigned long pg = start & PAGE_MASK;
  1488. pgd_t *pgd;
  1489. pud_t *pud;
  1490. pmd_t *pmd;
  1491. pte_t *pte;
  1492. /* user gate pages are read-only */
  1493. if (gup_flags & FOLL_WRITE)
  1494. return i ? : -EFAULT;
  1495. if (pg > TASK_SIZE)
  1496. pgd = pgd_offset_k(pg);
  1497. else
  1498. pgd = pgd_offset_gate(mm, pg);
  1499. BUG_ON(pgd_none(*pgd));
  1500. pud = pud_offset(pgd, pg);
  1501. BUG_ON(pud_none(*pud));
  1502. pmd = pmd_offset(pud, pg);
  1503. if (pmd_none(*pmd))
  1504. return i ? : -EFAULT;
  1505. VM_BUG_ON(pmd_trans_huge(*pmd));
  1506. pte = pte_offset_map(pmd, pg);
  1507. if (pte_none(*pte)) {
  1508. pte_unmap(pte);
  1509. return i ? : -EFAULT;
  1510. }
  1511. vma = get_gate_vma(mm);
  1512. if (pages) {
  1513. struct page *page;
  1514. page = vm_normal_page(vma, start, *pte);
  1515. if (!page) {
  1516. if (!(gup_flags & FOLL_DUMP) &&
  1517. is_zero_pfn(pte_pfn(*pte)))
  1518. page = pte_page(*pte);
  1519. else {
  1520. pte_unmap(pte);
  1521. return i ? : -EFAULT;
  1522. }
  1523. }
  1524. pages[i] = page;
  1525. get_page(page);
  1526. }
  1527. pte_unmap(pte);
  1528. goto next_page;
  1529. }
  1530. if (!vma ||
  1531. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1532. !(vm_flags & vma->vm_flags))
  1533. return i ? : -EFAULT;
  1534. if (is_vm_hugetlb_page(vma)) {
  1535. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1536. &start, &nr_pages, i, gup_flags);
  1537. continue;
  1538. }
  1539. do {
  1540. struct page *page;
  1541. unsigned int foll_flags = gup_flags;
  1542. /*
  1543. * If we have a pending SIGKILL, don't keep faulting
  1544. * pages and potentially allocating memory.
  1545. */
  1546. if (unlikely(fatal_signal_pending(current)))
  1547. return i ? i : -ERESTARTSYS;
  1548. cond_resched();
  1549. while (!(page = follow_page(vma, start, foll_flags))) {
  1550. int ret;
  1551. unsigned int fault_flags = 0;
  1552. /* For mlock, just skip the stack guard page. */
  1553. if (foll_flags & FOLL_MLOCK) {
  1554. if (stack_guard_page(vma, start))
  1555. goto next_page;
  1556. }
  1557. if (foll_flags & FOLL_WRITE)
  1558. fault_flags |= FAULT_FLAG_WRITE;
  1559. if (nonblocking)
  1560. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1561. if (foll_flags & FOLL_NOWAIT)
  1562. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1563. ret = handle_mm_fault(mm, vma, start,
  1564. fault_flags);
  1565. if (ret & VM_FAULT_ERROR) {
  1566. if (ret & VM_FAULT_OOM)
  1567. return i ? i : -ENOMEM;
  1568. if (ret & (VM_FAULT_HWPOISON |
  1569. VM_FAULT_HWPOISON_LARGE)) {
  1570. if (i)
  1571. return i;
  1572. else if (gup_flags & FOLL_HWPOISON)
  1573. return -EHWPOISON;
  1574. else
  1575. return -EFAULT;
  1576. }
  1577. if (ret & VM_FAULT_SIGBUS)
  1578. return i ? i : -EFAULT;
  1579. BUG();
  1580. }
  1581. if (tsk) {
  1582. if (ret & VM_FAULT_MAJOR)
  1583. tsk->maj_flt++;
  1584. else
  1585. tsk->min_flt++;
  1586. }
  1587. if (ret & VM_FAULT_RETRY) {
  1588. if (nonblocking)
  1589. *nonblocking = 0;
  1590. return i;
  1591. }
  1592. /*
  1593. * The VM_FAULT_WRITE bit tells us that
  1594. * do_wp_page has broken COW when necessary,
  1595. * even if maybe_mkwrite decided not to set
  1596. * pte_write. We can thus safely do subsequent
  1597. * page lookups as if they were reads. But only
  1598. * do so when looping for pte_write is futile:
  1599. * in some cases userspace may also be wanting
  1600. * to write to the gotten user page, which a
  1601. * read fault here might prevent (a readonly
  1602. * page might get reCOWed by userspace write).
  1603. */
  1604. if ((ret & VM_FAULT_WRITE) &&
  1605. !(vma->vm_flags & VM_WRITE))
  1606. foll_flags &= ~FOLL_WRITE;
  1607. cond_resched();
  1608. }
  1609. if (IS_ERR(page))
  1610. return i ? i : PTR_ERR(page);
  1611. if (pages) {
  1612. pages[i] = page;
  1613. flush_anon_page(vma, page, start);
  1614. flush_dcache_page(page);
  1615. }
  1616. next_page:
  1617. if (vmas)
  1618. vmas[i] = vma;
  1619. i++;
  1620. start += PAGE_SIZE;
  1621. nr_pages--;
  1622. } while (nr_pages && start < vma->vm_end);
  1623. } while (nr_pages);
  1624. return i;
  1625. }
  1626. EXPORT_SYMBOL(__get_user_pages);
  1627. /*
  1628. * fixup_user_fault() - manually resolve a user page fault
  1629. * @tsk: the task_struct to use for page fault accounting, or
  1630. * NULL if faults are not to be recorded.
  1631. * @mm: mm_struct of target mm
  1632. * @address: user address
  1633. * @fault_flags:flags to pass down to handle_mm_fault()
  1634. *
  1635. * This is meant to be called in the specific scenario where for locking reasons
  1636. * we try to access user memory in atomic context (within a pagefault_disable()
  1637. * section), this returns -EFAULT, and we want to resolve the user fault before
  1638. * trying again.
  1639. *
  1640. * Typically this is meant to be used by the futex code.
  1641. *
  1642. * The main difference with get_user_pages() is that this function will
  1643. * unconditionally call handle_mm_fault() which will in turn perform all the
  1644. * necessary SW fixup of the dirty and young bits in the PTE, while
  1645. * handle_mm_fault() only guarantees to update these in the struct page.
  1646. *
  1647. * This is important for some architectures where those bits also gate the
  1648. * access permission to the page because they are maintained in software. On
  1649. * such architectures, gup() will not be enough to make a subsequent access
  1650. * succeed.
  1651. *
  1652. * This should be called with the mm_sem held for read.
  1653. */
  1654. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1655. unsigned long address, unsigned int fault_flags)
  1656. {
  1657. struct vm_area_struct *vma;
  1658. int ret;
  1659. vma = find_extend_vma(mm, address);
  1660. if (!vma || address < vma->vm_start)
  1661. return -EFAULT;
  1662. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1663. if (ret & VM_FAULT_ERROR) {
  1664. if (ret & VM_FAULT_OOM)
  1665. return -ENOMEM;
  1666. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1667. return -EHWPOISON;
  1668. if (ret & VM_FAULT_SIGBUS)
  1669. return -EFAULT;
  1670. BUG();
  1671. }
  1672. if (tsk) {
  1673. if (ret & VM_FAULT_MAJOR)
  1674. tsk->maj_flt++;
  1675. else
  1676. tsk->min_flt++;
  1677. }
  1678. return 0;
  1679. }
  1680. /*
  1681. * get_user_pages() - pin user pages in memory
  1682. * @tsk: the task_struct to use for page fault accounting, or
  1683. * NULL if faults are not to be recorded.
  1684. * @mm: mm_struct of target mm
  1685. * @start: starting user address
  1686. * @nr_pages: number of pages from start to pin
  1687. * @write: whether pages will be written to by the caller
  1688. * @force: whether to force write access even if user mapping is
  1689. * readonly. This will result in the page being COWed even
  1690. * in MAP_SHARED mappings. You do not want this.
  1691. * @pages: array that receives pointers to the pages pinned.
  1692. * Should be at least nr_pages long. Or NULL, if caller
  1693. * only intends to ensure the pages are faulted in.
  1694. * @vmas: array of pointers to vmas corresponding to each page.
  1695. * Or NULL if the caller does not require them.
  1696. *
  1697. * Returns number of pages pinned. This may be fewer than the number
  1698. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1699. * were pinned, returns -errno. Each page returned must be released
  1700. * with a put_page() call when it is finished with. vmas will only
  1701. * remain valid while mmap_sem is held.
  1702. *
  1703. * Must be called with mmap_sem held for read or write.
  1704. *
  1705. * get_user_pages walks a process's page tables and takes a reference to
  1706. * each struct page that each user address corresponds to at a given
  1707. * instant. That is, it takes the page that would be accessed if a user
  1708. * thread accesses the given user virtual address at that instant.
  1709. *
  1710. * This does not guarantee that the page exists in the user mappings when
  1711. * get_user_pages returns, and there may even be a completely different
  1712. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1713. * and subsequently re faulted). However it does guarantee that the page
  1714. * won't be freed completely. And mostly callers simply care that the page
  1715. * contains data that was valid *at some point in time*. Typically, an IO
  1716. * or similar operation cannot guarantee anything stronger anyway because
  1717. * locks can't be held over the syscall boundary.
  1718. *
  1719. * If write=0, the page must not be written to. If the page is written to,
  1720. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1721. * after the page is finished with, and before put_page is called.
  1722. *
  1723. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1724. * handle on the memory by some means other than accesses via the user virtual
  1725. * addresses. The pages may be submitted for DMA to devices or accessed via
  1726. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1727. * use the correct cache flushing APIs.
  1728. *
  1729. * See also get_user_pages_fast, for performance critical applications.
  1730. */
  1731. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1732. unsigned long start, int nr_pages, int write, int force,
  1733. struct page **pages, struct vm_area_struct **vmas)
  1734. {
  1735. int flags = FOLL_TOUCH;
  1736. if (pages)
  1737. flags |= FOLL_GET;
  1738. if (write)
  1739. flags |= FOLL_WRITE;
  1740. if (force)
  1741. flags |= FOLL_FORCE;
  1742. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1743. NULL);
  1744. }
  1745. EXPORT_SYMBOL(get_user_pages);
  1746. /**
  1747. * get_dump_page() - pin user page in memory while writing it to core dump
  1748. * @addr: user address
  1749. *
  1750. * Returns struct page pointer of user page pinned for dump,
  1751. * to be freed afterwards by page_cache_release() or put_page().
  1752. *
  1753. * Returns NULL on any kind of failure - a hole must then be inserted into
  1754. * the corefile, to preserve alignment with its headers; and also returns
  1755. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1756. * allowing a hole to be left in the corefile to save diskspace.
  1757. *
  1758. * Called without mmap_sem, but after all other threads have been killed.
  1759. */
  1760. #ifdef CONFIG_ELF_CORE
  1761. struct page *get_dump_page(unsigned long addr)
  1762. {
  1763. struct vm_area_struct *vma;
  1764. struct page *page;
  1765. if (__get_user_pages(current, current->mm, addr, 1,
  1766. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1767. NULL) < 1)
  1768. return NULL;
  1769. flush_cache_page(vma, addr, page_to_pfn(page));
  1770. return page;
  1771. }
  1772. #endif /* CONFIG_ELF_CORE */
  1773. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1774. spinlock_t **ptl)
  1775. {
  1776. pgd_t * pgd = pgd_offset(mm, addr);
  1777. pud_t * pud = pud_alloc(mm, pgd, addr);
  1778. if (pud) {
  1779. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1780. if (pmd) {
  1781. VM_BUG_ON(pmd_trans_huge(*pmd));
  1782. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1783. }
  1784. }
  1785. return NULL;
  1786. }
  1787. /*
  1788. * This is the old fallback for page remapping.
  1789. *
  1790. * For historical reasons, it only allows reserved pages. Only
  1791. * old drivers should use this, and they needed to mark their
  1792. * pages reserved for the old functions anyway.
  1793. */
  1794. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1795. struct page *page, pgprot_t prot)
  1796. {
  1797. struct mm_struct *mm = vma->vm_mm;
  1798. int retval;
  1799. pte_t *pte;
  1800. spinlock_t *ptl;
  1801. retval = -EINVAL;
  1802. if (PageAnon(page))
  1803. goto out;
  1804. retval = -ENOMEM;
  1805. flush_dcache_page(page);
  1806. pte = get_locked_pte(mm, addr, &ptl);
  1807. if (!pte)
  1808. goto out;
  1809. retval = -EBUSY;
  1810. if (!pte_none(*pte))
  1811. goto out_unlock;
  1812. /* Ok, finally just insert the thing.. */
  1813. get_page(page);
  1814. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1815. page_add_file_rmap(page);
  1816. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1817. retval = 0;
  1818. pte_unmap_unlock(pte, ptl);
  1819. return retval;
  1820. out_unlock:
  1821. pte_unmap_unlock(pte, ptl);
  1822. out:
  1823. return retval;
  1824. }
  1825. /**
  1826. * vm_insert_page - insert single page into user vma
  1827. * @vma: user vma to map to
  1828. * @addr: target user address of this page
  1829. * @page: source kernel page
  1830. *
  1831. * This allows drivers to insert individual pages they've allocated
  1832. * into a user vma.
  1833. *
  1834. * The page has to be a nice clean _individual_ kernel allocation.
  1835. * If you allocate a compound page, you need to have marked it as
  1836. * such (__GFP_COMP), or manually just split the page up yourself
  1837. * (see split_page()).
  1838. *
  1839. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1840. * took an arbitrary page protection parameter. This doesn't allow
  1841. * that. Your vma protection will have to be set up correctly, which
  1842. * means that if you want a shared writable mapping, you'd better
  1843. * ask for a shared writable mapping!
  1844. *
  1845. * The page does not need to be reserved.
  1846. */
  1847. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1848. struct page *page)
  1849. {
  1850. if (addr < vma->vm_start || addr >= vma->vm_end)
  1851. return -EFAULT;
  1852. if (!page_count(page))
  1853. return -EINVAL;
  1854. vma->vm_flags |= VM_INSERTPAGE;
  1855. return insert_page(vma, addr, page, vma->vm_page_prot);
  1856. }
  1857. EXPORT_SYMBOL(vm_insert_page);
  1858. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1859. unsigned long pfn, pgprot_t prot)
  1860. {
  1861. struct mm_struct *mm = vma->vm_mm;
  1862. int retval;
  1863. pte_t *pte, entry;
  1864. spinlock_t *ptl;
  1865. retval = -ENOMEM;
  1866. pte = get_locked_pte(mm, addr, &ptl);
  1867. if (!pte)
  1868. goto out;
  1869. retval = -EBUSY;
  1870. if (!pte_none(*pte))
  1871. goto out_unlock;
  1872. /* Ok, finally just insert the thing.. */
  1873. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1874. set_pte_at(mm, addr, pte, entry);
  1875. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1876. retval = 0;
  1877. out_unlock:
  1878. pte_unmap_unlock(pte, ptl);
  1879. out:
  1880. return retval;
  1881. }
  1882. /**
  1883. * vm_insert_pfn - insert single pfn into user vma
  1884. * @vma: user vma to map to
  1885. * @addr: target user address of this page
  1886. * @pfn: source kernel pfn
  1887. *
  1888. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1889. * they've allocated into a user vma. Same comments apply.
  1890. *
  1891. * This function should only be called from a vm_ops->fault handler, and
  1892. * in that case the handler should return NULL.
  1893. *
  1894. * vma cannot be a COW mapping.
  1895. *
  1896. * As this is called only for pages that do not currently exist, we
  1897. * do not need to flush old virtual caches or the TLB.
  1898. */
  1899. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1900. unsigned long pfn)
  1901. {
  1902. int ret;
  1903. pgprot_t pgprot = vma->vm_page_prot;
  1904. /*
  1905. * Technically, architectures with pte_special can avoid all these
  1906. * restrictions (same for remap_pfn_range). However we would like
  1907. * consistency in testing and feature parity among all, so we should
  1908. * try to keep these invariants in place for everybody.
  1909. */
  1910. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1911. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1912. (VM_PFNMAP|VM_MIXEDMAP));
  1913. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1914. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1915. if (addr < vma->vm_start || addr >= vma->vm_end)
  1916. return -EFAULT;
  1917. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1918. return -EINVAL;
  1919. ret = insert_pfn(vma, addr, pfn, pgprot);
  1920. if (ret)
  1921. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1922. return ret;
  1923. }
  1924. EXPORT_SYMBOL(vm_insert_pfn);
  1925. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1926. unsigned long pfn)
  1927. {
  1928. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1929. if (addr < vma->vm_start || addr >= vma->vm_end)
  1930. return -EFAULT;
  1931. /*
  1932. * If we don't have pte special, then we have to use the pfn_valid()
  1933. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1934. * refcount the page if pfn_valid is true (hence insert_page rather
  1935. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1936. * without pte special, it would there be refcounted as a normal page.
  1937. */
  1938. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1939. struct page *page;
  1940. page = pfn_to_page(pfn);
  1941. return insert_page(vma, addr, page, vma->vm_page_prot);
  1942. }
  1943. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1944. }
  1945. EXPORT_SYMBOL(vm_insert_mixed);
  1946. /*
  1947. * maps a range of physical memory into the requested pages. the old
  1948. * mappings are removed. any references to nonexistent pages results
  1949. * in null mappings (currently treated as "copy-on-access")
  1950. */
  1951. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1952. unsigned long addr, unsigned long end,
  1953. unsigned long pfn, pgprot_t prot)
  1954. {
  1955. pte_t *pte;
  1956. spinlock_t *ptl;
  1957. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1958. if (!pte)
  1959. return -ENOMEM;
  1960. arch_enter_lazy_mmu_mode();
  1961. do {
  1962. BUG_ON(!pte_none(*pte));
  1963. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1964. pfn++;
  1965. } while (pte++, addr += PAGE_SIZE, addr != end);
  1966. arch_leave_lazy_mmu_mode();
  1967. pte_unmap_unlock(pte - 1, ptl);
  1968. return 0;
  1969. }
  1970. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1971. unsigned long addr, unsigned long end,
  1972. unsigned long pfn, pgprot_t prot)
  1973. {
  1974. pmd_t *pmd;
  1975. unsigned long next;
  1976. pfn -= addr >> PAGE_SHIFT;
  1977. pmd = pmd_alloc(mm, pud, addr);
  1978. if (!pmd)
  1979. return -ENOMEM;
  1980. VM_BUG_ON(pmd_trans_huge(*pmd));
  1981. do {
  1982. next = pmd_addr_end(addr, end);
  1983. if (remap_pte_range(mm, pmd, addr, next,
  1984. pfn + (addr >> PAGE_SHIFT), prot))
  1985. return -ENOMEM;
  1986. } while (pmd++, addr = next, addr != end);
  1987. return 0;
  1988. }
  1989. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1990. unsigned long addr, unsigned long end,
  1991. unsigned long pfn, pgprot_t prot)
  1992. {
  1993. pud_t *pud;
  1994. unsigned long next;
  1995. pfn -= addr >> PAGE_SHIFT;
  1996. pud = pud_alloc(mm, pgd, addr);
  1997. if (!pud)
  1998. return -ENOMEM;
  1999. do {
  2000. next = pud_addr_end(addr, end);
  2001. if (remap_pmd_range(mm, pud, addr, next,
  2002. pfn + (addr >> PAGE_SHIFT), prot))
  2003. return -ENOMEM;
  2004. } while (pud++, addr = next, addr != end);
  2005. return 0;
  2006. }
  2007. /**
  2008. * remap_pfn_range - remap kernel memory to userspace
  2009. * @vma: user vma to map to
  2010. * @addr: target user address to start at
  2011. * @pfn: physical address of kernel memory
  2012. * @size: size of map area
  2013. * @prot: page protection flags for this mapping
  2014. *
  2015. * Note: this is only safe if the mm semaphore is held when called.
  2016. */
  2017. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2018. unsigned long pfn, unsigned long size, pgprot_t prot)
  2019. {
  2020. pgd_t *pgd;
  2021. unsigned long next;
  2022. unsigned long end = addr + PAGE_ALIGN(size);
  2023. struct mm_struct *mm = vma->vm_mm;
  2024. int err;
  2025. /*
  2026. * Physically remapped pages are special. Tell the
  2027. * rest of the world about it:
  2028. * VM_IO tells people not to look at these pages
  2029. * (accesses can have side effects).
  2030. * VM_RESERVED is specified all over the place, because
  2031. * in 2.4 it kept swapout's vma scan off this vma; but
  2032. * in 2.6 the LRU scan won't even find its pages, so this
  2033. * flag means no more than count its pages in reserved_vm,
  2034. * and omit it from core dump, even when VM_IO turned off.
  2035. * VM_PFNMAP tells the core MM that the base pages are just
  2036. * raw PFN mappings, and do not have a "struct page" associated
  2037. * with them.
  2038. *
  2039. * There's a horrible special case to handle copy-on-write
  2040. * behaviour that some programs depend on. We mark the "original"
  2041. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2042. */
  2043. if (addr == vma->vm_start && end == vma->vm_end) {
  2044. vma->vm_pgoff = pfn;
  2045. vma->vm_flags |= VM_PFN_AT_MMAP;
  2046. } else if (is_cow_mapping(vma->vm_flags))
  2047. return -EINVAL;
  2048. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  2049. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  2050. if (err) {
  2051. /*
  2052. * To indicate that track_pfn related cleanup is not
  2053. * needed from higher level routine calling unmap_vmas
  2054. */
  2055. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  2056. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  2057. return -EINVAL;
  2058. }
  2059. BUG_ON(addr >= end);
  2060. pfn -= addr >> PAGE_SHIFT;
  2061. pgd = pgd_offset(mm, addr);
  2062. flush_cache_range(vma, addr, end);
  2063. do {
  2064. next = pgd_addr_end(addr, end);
  2065. err = remap_pud_range(mm, pgd, addr, next,
  2066. pfn + (addr >> PAGE_SHIFT), prot);
  2067. if (err)
  2068. break;
  2069. } while (pgd++, addr = next, addr != end);
  2070. if (err)
  2071. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  2072. return err;
  2073. }
  2074. EXPORT_SYMBOL(remap_pfn_range);
  2075. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2076. unsigned long addr, unsigned long end,
  2077. pte_fn_t fn, void *data)
  2078. {
  2079. pte_t *pte;
  2080. int err;
  2081. pgtable_t token;
  2082. spinlock_t *uninitialized_var(ptl);
  2083. pte = (mm == &init_mm) ?
  2084. pte_alloc_kernel(pmd, addr) :
  2085. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2086. if (!pte)
  2087. return -ENOMEM;
  2088. BUG_ON(pmd_huge(*pmd));
  2089. arch_enter_lazy_mmu_mode();
  2090. token = pmd_pgtable(*pmd);
  2091. do {
  2092. err = fn(pte++, token, addr, data);
  2093. if (err)
  2094. break;
  2095. } while (addr += PAGE_SIZE, addr != end);
  2096. arch_leave_lazy_mmu_mode();
  2097. if (mm != &init_mm)
  2098. pte_unmap_unlock(pte-1, ptl);
  2099. return err;
  2100. }
  2101. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2102. unsigned long addr, unsigned long end,
  2103. pte_fn_t fn, void *data)
  2104. {
  2105. pmd_t *pmd;
  2106. unsigned long next;
  2107. int err;
  2108. BUG_ON(pud_huge(*pud));
  2109. pmd = pmd_alloc(mm, pud, addr);
  2110. if (!pmd)
  2111. return -ENOMEM;
  2112. do {
  2113. next = pmd_addr_end(addr, end);
  2114. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2115. if (err)
  2116. break;
  2117. } while (pmd++, addr = next, addr != end);
  2118. return err;
  2119. }
  2120. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2121. unsigned long addr, unsigned long end,
  2122. pte_fn_t fn, void *data)
  2123. {
  2124. pud_t *pud;
  2125. unsigned long next;
  2126. int err;
  2127. pud = pud_alloc(mm, pgd, addr);
  2128. if (!pud)
  2129. return -ENOMEM;
  2130. do {
  2131. next = pud_addr_end(addr, end);
  2132. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2133. if (err)
  2134. break;
  2135. } while (pud++, addr = next, addr != end);
  2136. return err;
  2137. }
  2138. /*
  2139. * Scan a region of virtual memory, filling in page tables as necessary
  2140. * and calling a provided function on each leaf page table.
  2141. */
  2142. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2143. unsigned long size, pte_fn_t fn, void *data)
  2144. {
  2145. pgd_t *pgd;
  2146. unsigned long next;
  2147. unsigned long end = addr + size;
  2148. int err;
  2149. BUG_ON(addr >= end);
  2150. pgd = pgd_offset(mm, addr);
  2151. do {
  2152. next = pgd_addr_end(addr, end);
  2153. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2154. if (err)
  2155. break;
  2156. } while (pgd++, addr = next, addr != end);
  2157. return err;
  2158. }
  2159. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2160. /*
  2161. * handle_pte_fault chooses page fault handler according to an entry
  2162. * which was read non-atomically. Before making any commitment, on
  2163. * those architectures or configurations (e.g. i386 with PAE) which
  2164. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2165. * must check under lock before unmapping the pte and proceeding
  2166. * (but do_wp_page is only called after already making such a check;
  2167. * and do_anonymous_page can safely check later on).
  2168. */
  2169. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2170. pte_t *page_table, pte_t orig_pte)
  2171. {
  2172. int same = 1;
  2173. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2174. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2175. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2176. spin_lock(ptl);
  2177. same = pte_same(*page_table, orig_pte);
  2178. spin_unlock(ptl);
  2179. }
  2180. #endif
  2181. pte_unmap(page_table);
  2182. return same;
  2183. }
  2184. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2185. {
  2186. /*
  2187. * If the source page was a PFN mapping, we don't have
  2188. * a "struct page" for it. We do a best-effort copy by
  2189. * just copying from the original user address. If that
  2190. * fails, we just zero-fill it. Live with it.
  2191. */
  2192. if (unlikely(!src)) {
  2193. void *kaddr = kmap_atomic(dst, KM_USER0);
  2194. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2195. /*
  2196. * This really shouldn't fail, because the page is there
  2197. * in the page tables. But it might just be unreadable,
  2198. * in which case we just give up and fill the result with
  2199. * zeroes.
  2200. */
  2201. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2202. clear_page(kaddr);
  2203. kunmap_atomic(kaddr, KM_USER0);
  2204. flush_dcache_page(dst);
  2205. } else
  2206. copy_user_highpage(dst, src, va, vma);
  2207. }
  2208. /*
  2209. * This routine handles present pages, when users try to write
  2210. * to a shared page. It is done by copying the page to a new address
  2211. * and decrementing the shared-page counter for the old page.
  2212. *
  2213. * Note that this routine assumes that the protection checks have been
  2214. * done by the caller (the low-level page fault routine in most cases).
  2215. * Thus we can safely just mark it writable once we've done any necessary
  2216. * COW.
  2217. *
  2218. * We also mark the page dirty at this point even though the page will
  2219. * change only once the write actually happens. This avoids a few races,
  2220. * and potentially makes it more efficient.
  2221. *
  2222. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2223. * but allow concurrent faults), with pte both mapped and locked.
  2224. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2225. */
  2226. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2227. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2228. spinlock_t *ptl, pte_t orig_pte)
  2229. __releases(ptl)
  2230. {
  2231. struct page *old_page, *new_page;
  2232. pte_t entry;
  2233. int ret = 0;
  2234. int page_mkwrite = 0;
  2235. struct page *dirty_page = NULL;
  2236. old_page = vm_normal_page(vma, address, orig_pte);
  2237. if (!old_page) {
  2238. /*
  2239. * VM_MIXEDMAP !pfn_valid() case
  2240. *
  2241. * We should not cow pages in a shared writeable mapping.
  2242. * Just mark the pages writable as we can't do any dirty
  2243. * accounting on raw pfn maps.
  2244. */
  2245. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2246. (VM_WRITE|VM_SHARED))
  2247. goto reuse;
  2248. goto gotten;
  2249. }
  2250. /*
  2251. * Take out anonymous pages first, anonymous shared vmas are
  2252. * not dirty accountable.
  2253. */
  2254. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2255. if (!trylock_page(old_page)) {
  2256. page_cache_get(old_page);
  2257. pte_unmap_unlock(page_table, ptl);
  2258. lock_page(old_page);
  2259. page_table = pte_offset_map_lock(mm, pmd, address,
  2260. &ptl);
  2261. if (!pte_same(*page_table, orig_pte)) {
  2262. unlock_page(old_page);
  2263. goto unlock;
  2264. }
  2265. page_cache_release(old_page);
  2266. }
  2267. if (reuse_swap_page(old_page)) {
  2268. /*
  2269. * The page is all ours. Move it to our anon_vma so
  2270. * the rmap code will not search our parent or siblings.
  2271. * Protected against the rmap code by the page lock.
  2272. */
  2273. page_move_anon_rmap(old_page, vma, address);
  2274. unlock_page(old_page);
  2275. goto reuse;
  2276. }
  2277. unlock_page(old_page);
  2278. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2279. (VM_WRITE|VM_SHARED))) {
  2280. /*
  2281. * Only catch write-faults on shared writable pages,
  2282. * read-only shared pages can get COWed by
  2283. * get_user_pages(.write=1, .force=1).
  2284. */
  2285. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2286. struct vm_fault vmf;
  2287. int tmp;
  2288. vmf.virtual_address = (void __user *)(address &
  2289. PAGE_MASK);
  2290. vmf.pgoff = old_page->index;
  2291. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2292. vmf.page = old_page;
  2293. /*
  2294. * Notify the address space that the page is about to
  2295. * become writable so that it can prohibit this or wait
  2296. * for the page to get into an appropriate state.
  2297. *
  2298. * We do this without the lock held, so that it can
  2299. * sleep if it needs to.
  2300. */
  2301. page_cache_get(old_page);
  2302. pte_unmap_unlock(page_table, ptl);
  2303. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2304. if (unlikely(tmp &
  2305. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2306. ret = tmp;
  2307. goto unwritable_page;
  2308. }
  2309. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2310. lock_page(old_page);
  2311. if (!old_page->mapping) {
  2312. ret = 0; /* retry the fault */
  2313. unlock_page(old_page);
  2314. goto unwritable_page;
  2315. }
  2316. } else
  2317. VM_BUG_ON(!PageLocked(old_page));
  2318. /*
  2319. * Since we dropped the lock we need to revalidate
  2320. * the PTE as someone else may have changed it. If
  2321. * they did, we just return, as we can count on the
  2322. * MMU to tell us if they didn't also make it writable.
  2323. */
  2324. page_table = pte_offset_map_lock(mm, pmd, address,
  2325. &ptl);
  2326. if (!pte_same(*page_table, orig_pte)) {
  2327. unlock_page(old_page);
  2328. goto unlock;
  2329. }
  2330. page_mkwrite = 1;
  2331. }
  2332. dirty_page = old_page;
  2333. get_page(dirty_page);
  2334. reuse:
  2335. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2336. entry = pte_mkyoung(orig_pte);
  2337. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2338. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2339. update_mmu_cache(vma, address, page_table);
  2340. pte_unmap_unlock(page_table, ptl);
  2341. ret |= VM_FAULT_WRITE;
  2342. if (!dirty_page)
  2343. return ret;
  2344. /*
  2345. * Yes, Virginia, this is actually required to prevent a race
  2346. * with clear_page_dirty_for_io() from clearing the page dirty
  2347. * bit after it clear all dirty ptes, but before a racing
  2348. * do_wp_page installs a dirty pte.
  2349. *
  2350. * __do_fault is protected similarly.
  2351. */
  2352. if (!page_mkwrite) {
  2353. wait_on_page_locked(dirty_page);
  2354. set_page_dirty_balance(dirty_page, page_mkwrite);
  2355. }
  2356. put_page(dirty_page);
  2357. if (page_mkwrite) {
  2358. struct address_space *mapping = dirty_page->mapping;
  2359. set_page_dirty(dirty_page);
  2360. unlock_page(dirty_page);
  2361. page_cache_release(dirty_page);
  2362. if (mapping) {
  2363. /*
  2364. * Some device drivers do not set page.mapping
  2365. * but still dirty their pages
  2366. */
  2367. balance_dirty_pages_ratelimited(mapping);
  2368. }
  2369. }
  2370. /* file_update_time outside page_lock */
  2371. if (vma->vm_file)
  2372. file_update_time(vma->vm_file);
  2373. return ret;
  2374. }
  2375. /*
  2376. * Ok, we need to copy. Oh, well..
  2377. */
  2378. page_cache_get(old_page);
  2379. gotten:
  2380. pte_unmap_unlock(page_table, ptl);
  2381. if (unlikely(anon_vma_prepare(vma)))
  2382. goto oom;
  2383. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2384. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2385. if (!new_page)
  2386. goto oom;
  2387. } else {
  2388. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2389. if (!new_page)
  2390. goto oom;
  2391. cow_user_page(new_page, old_page, address, vma);
  2392. }
  2393. __SetPageUptodate(new_page);
  2394. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2395. goto oom_free_new;
  2396. /*
  2397. * Re-check the pte - we dropped the lock
  2398. */
  2399. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2400. if (likely(pte_same(*page_table, orig_pte))) {
  2401. if (old_page) {
  2402. if (!PageAnon(old_page)) {
  2403. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2404. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2405. }
  2406. } else
  2407. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2408. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2409. entry = mk_pte(new_page, vma->vm_page_prot);
  2410. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2411. /*
  2412. * Clear the pte entry and flush it first, before updating the
  2413. * pte with the new entry. This will avoid a race condition
  2414. * seen in the presence of one thread doing SMC and another
  2415. * thread doing COW.
  2416. */
  2417. ptep_clear_flush(vma, address, page_table);
  2418. page_add_new_anon_rmap(new_page, vma, address);
  2419. /*
  2420. * We call the notify macro here because, when using secondary
  2421. * mmu page tables (such as kvm shadow page tables), we want the
  2422. * new page to be mapped directly into the secondary page table.
  2423. */
  2424. set_pte_at_notify(mm, address, page_table, entry);
  2425. update_mmu_cache(vma, address, page_table);
  2426. if (old_page) {
  2427. /*
  2428. * Only after switching the pte to the new page may
  2429. * we remove the mapcount here. Otherwise another
  2430. * process may come and find the rmap count decremented
  2431. * before the pte is switched to the new page, and
  2432. * "reuse" the old page writing into it while our pte
  2433. * here still points into it and can be read by other
  2434. * threads.
  2435. *
  2436. * The critical issue is to order this
  2437. * page_remove_rmap with the ptp_clear_flush above.
  2438. * Those stores are ordered by (if nothing else,)
  2439. * the barrier present in the atomic_add_negative
  2440. * in page_remove_rmap.
  2441. *
  2442. * Then the TLB flush in ptep_clear_flush ensures that
  2443. * no process can access the old page before the
  2444. * decremented mapcount is visible. And the old page
  2445. * cannot be reused until after the decremented
  2446. * mapcount is visible. So transitively, TLBs to
  2447. * old page will be flushed before it can be reused.
  2448. */
  2449. page_remove_rmap(old_page);
  2450. }
  2451. /* Free the old page.. */
  2452. new_page = old_page;
  2453. ret |= VM_FAULT_WRITE;
  2454. } else
  2455. mem_cgroup_uncharge_page(new_page);
  2456. if (new_page)
  2457. page_cache_release(new_page);
  2458. unlock:
  2459. pte_unmap_unlock(page_table, ptl);
  2460. if (old_page) {
  2461. /*
  2462. * Don't let another task, with possibly unlocked vma,
  2463. * keep the mlocked page.
  2464. */
  2465. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2466. lock_page(old_page); /* LRU manipulation */
  2467. munlock_vma_page(old_page);
  2468. unlock_page(old_page);
  2469. }
  2470. page_cache_release(old_page);
  2471. }
  2472. return ret;
  2473. oom_free_new:
  2474. page_cache_release(new_page);
  2475. oom:
  2476. if (old_page) {
  2477. if (page_mkwrite) {
  2478. unlock_page(old_page);
  2479. page_cache_release(old_page);
  2480. }
  2481. page_cache_release(old_page);
  2482. }
  2483. return VM_FAULT_OOM;
  2484. unwritable_page:
  2485. page_cache_release(old_page);
  2486. return ret;
  2487. }
  2488. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2489. unsigned long start_addr, unsigned long end_addr,
  2490. struct zap_details *details)
  2491. {
  2492. zap_page_range(vma, start_addr, end_addr - start_addr, details);
  2493. }
  2494. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2495. struct zap_details *details)
  2496. {
  2497. struct vm_area_struct *vma;
  2498. struct prio_tree_iter iter;
  2499. pgoff_t vba, vea, zba, zea;
  2500. vma_prio_tree_foreach(vma, &iter, root,
  2501. details->first_index, details->last_index) {
  2502. vba = vma->vm_pgoff;
  2503. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2504. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2505. zba = details->first_index;
  2506. if (zba < vba)
  2507. zba = vba;
  2508. zea = details->last_index;
  2509. if (zea > vea)
  2510. zea = vea;
  2511. unmap_mapping_range_vma(vma,
  2512. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2513. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2514. details);
  2515. }
  2516. }
  2517. static inline void unmap_mapping_range_list(struct list_head *head,
  2518. struct zap_details *details)
  2519. {
  2520. struct vm_area_struct *vma;
  2521. /*
  2522. * In nonlinear VMAs there is no correspondence between virtual address
  2523. * offset and file offset. So we must perform an exhaustive search
  2524. * across *all* the pages in each nonlinear VMA, not just the pages
  2525. * whose virtual address lies outside the file truncation point.
  2526. */
  2527. list_for_each_entry(vma, head, shared.vm_set.list) {
  2528. details->nonlinear_vma = vma;
  2529. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2530. }
  2531. }
  2532. /**
  2533. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2534. * @mapping: the address space containing mmaps to be unmapped.
  2535. * @holebegin: byte in first page to unmap, relative to the start of
  2536. * the underlying file. This will be rounded down to a PAGE_SIZE
  2537. * boundary. Note that this is different from truncate_pagecache(), which
  2538. * must keep the partial page. In contrast, we must get rid of
  2539. * partial pages.
  2540. * @holelen: size of prospective hole in bytes. This will be rounded
  2541. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2542. * end of the file.
  2543. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2544. * but 0 when invalidating pagecache, don't throw away private data.
  2545. */
  2546. void unmap_mapping_range(struct address_space *mapping,
  2547. loff_t const holebegin, loff_t const holelen, int even_cows)
  2548. {
  2549. struct zap_details details;
  2550. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2551. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2552. /* Check for overflow. */
  2553. if (sizeof(holelen) > sizeof(hlen)) {
  2554. long long holeend =
  2555. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2556. if (holeend & ~(long long)ULONG_MAX)
  2557. hlen = ULONG_MAX - hba + 1;
  2558. }
  2559. details.check_mapping = even_cows? NULL: mapping;
  2560. details.nonlinear_vma = NULL;
  2561. details.first_index = hba;
  2562. details.last_index = hba + hlen - 1;
  2563. if (details.last_index < details.first_index)
  2564. details.last_index = ULONG_MAX;
  2565. mutex_lock(&mapping->i_mmap_mutex);
  2566. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2567. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2568. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2569. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2570. mutex_unlock(&mapping->i_mmap_mutex);
  2571. }
  2572. EXPORT_SYMBOL(unmap_mapping_range);
  2573. /*
  2574. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2575. * but allow concurrent faults), and pte mapped but not yet locked.
  2576. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2577. */
  2578. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2579. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2580. unsigned int flags, pte_t orig_pte)
  2581. {
  2582. spinlock_t *ptl;
  2583. struct page *page, *swapcache = NULL;
  2584. swp_entry_t entry;
  2585. pte_t pte;
  2586. int locked;
  2587. struct mem_cgroup *ptr;
  2588. int exclusive = 0;
  2589. int ret = 0;
  2590. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2591. goto out;
  2592. entry = pte_to_swp_entry(orig_pte);
  2593. if (unlikely(non_swap_entry(entry))) {
  2594. if (is_migration_entry(entry)) {
  2595. migration_entry_wait(mm, pmd, address);
  2596. } else if (is_hwpoison_entry(entry)) {
  2597. ret = VM_FAULT_HWPOISON;
  2598. } else {
  2599. print_bad_pte(vma, address, orig_pte, NULL);
  2600. ret = VM_FAULT_SIGBUS;
  2601. }
  2602. goto out;
  2603. }
  2604. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2605. page = lookup_swap_cache(entry);
  2606. if (!page) {
  2607. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2608. page = swapin_readahead(entry,
  2609. GFP_HIGHUSER_MOVABLE, vma, address);
  2610. if (!page) {
  2611. /*
  2612. * Back out if somebody else faulted in this pte
  2613. * while we released the pte lock.
  2614. */
  2615. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2616. if (likely(pte_same(*page_table, orig_pte)))
  2617. ret = VM_FAULT_OOM;
  2618. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2619. goto unlock;
  2620. }
  2621. /* Had to read the page from swap area: Major fault */
  2622. ret = VM_FAULT_MAJOR;
  2623. count_vm_event(PGMAJFAULT);
  2624. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2625. } else if (PageHWPoison(page)) {
  2626. /*
  2627. * hwpoisoned dirty swapcache pages are kept for killing
  2628. * owner processes (which may be unknown at hwpoison time)
  2629. */
  2630. ret = VM_FAULT_HWPOISON;
  2631. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2632. goto out_release;
  2633. }
  2634. locked = lock_page_or_retry(page, mm, flags);
  2635. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2636. if (!locked) {
  2637. ret |= VM_FAULT_RETRY;
  2638. goto out_release;
  2639. }
  2640. /*
  2641. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2642. * release the swapcache from under us. The page pin, and pte_same
  2643. * test below, are not enough to exclude that. Even if it is still
  2644. * swapcache, we need to check that the page's swap has not changed.
  2645. */
  2646. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2647. goto out_page;
  2648. if (ksm_might_need_to_copy(page, vma, address)) {
  2649. swapcache = page;
  2650. page = ksm_does_need_to_copy(page, vma, address);
  2651. if (unlikely(!page)) {
  2652. ret = VM_FAULT_OOM;
  2653. page = swapcache;
  2654. swapcache = NULL;
  2655. goto out_page;
  2656. }
  2657. }
  2658. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2659. ret = VM_FAULT_OOM;
  2660. goto out_page;
  2661. }
  2662. /*
  2663. * Back out if somebody else already faulted in this pte.
  2664. */
  2665. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2666. if (unlikely(!pte_same(*page_table, orig_pte)))
  2667. goto out_nomap;
  2668. if (unlikely(!PageUptodate(page))) {
  2669. ret = VM_FAULT_SIGBUS;
  2670. goto out_nomap;
  2671. }
  2672. /*
  2673. * The page isn't present yet, go ahead with the fault.
  2674. *
  2675. * Be careful about the sequence of operations here.
  2676. * To get its accounting right, reuse_swap_page() must be called
  2677. * while the page is counted on swap but not yet in mapcount i.e.
  2678. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2679. * must be called after the swap_free(), or it will never succeed.
  2680. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2681. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2682. * in page->private. In this case, a record in swap_cgroup is silently
  2683. * discarded at swap_free().
  2684. */
  2685. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2686. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2687. pte = mk_pte(page, vma->vm_page_prot);
  2688. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2689. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2690. flags &= ~FAULT_FLAG_WRITE;
  2691. ret |= VM_FAULT_WRITE;
  2692. exclusive = 1;
  2693. }
  2694. flush_icache_page(vma, page);
  2695. set_pte_at(mm, address, page_table, pte);
  2696. do_page_add_anon_rmap(page, vma, address, exclusive);
  2697. /* It's better to call commit-charge after rmap is established */
  2698. mem_cgroup_commit_charge_swapin(page, ptr);
  2699. swap_free(entry);
  2700. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2701. try_to_free_swap(page);
  2702. unlock_page(page);
  2703. if (swapcache) {
  2704. /*
  2705. * Hold the lock to avoid the swap entry to be reused
  2706. * until we take the PT lock for the pte_same() check
  2707. * (to avoid false positives from pte_same). For
  2708. * further safety release the lock after the swap_free
  2709. * so that the swap count won't change under a
  2710. * parallel locked swapcache.
  2711. */
  2712. unlock_page(swapcache);
  2713. page_cache_release(swapcache);
  2714. }
  2715. if (flags & FAULT_FLAG_WRITE) {
  2716. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2717. if (ret & VM_FAULT_ERROR)
  2718. ret &= VM_FAULT_ERROR;
  2719. goto out;
  2720. }
  2721. /* No need to invalidate - it was non-present before */
  2722. update_mmu_cache(vma, address, page_table);
  2723. unlock:
  2724. pte_unmap_unlock(page_table, ptl);
  2725. out:
  2726. return ret;
  2727. out_nomap:
  2728. mem_cgroup_cancel_charge_swapin(ptr);
  2729. pte_unmap_unlock(page_table, ptl);
  2730. out_page:
  2731. unlock_page(page);
  2732. out_release:
  2733. page_cache_release(page);
  2734. if (swapcache) {
  2735. unlock_page(swapcache);
  2736. page_cache_release(swapcache);
  2737. }
  2738. return ret;
  2739. }
  2740. /*
  2741. * This is like a special single-page "expand_{down|up}wards()",
  2742. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2743. * doesn't hit another vma.
  2744. */
  2745. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2746. {
  2747. address &= PAGE_MASK;
  2748. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2749. struct vm_area_struct *prev = vma->vm_prev;
  2750. /*
  2751. * Is there a mapping abutting this one below?
  2752. *
  2753. * That's only ok if it's the same stack mapping
  2754. * that has gotten split..
  2755. */
  2756. if (prev && prev->vm_end == address)
  2757. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2758. expand_downwards(vma, address - PAGE_SIZE);
  2759. }
  2760. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2761. struct vm_area_struct *next = vma->vm_next;
  2762. /* As VM_GROWSDOWN but s/below/above/ */
  2763. if (next && next->vm_start == address + PAGE_SIZE)
  2764. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2765. expand_upwards(vma, address + PAGE_SIZE);
  2766. }
  2767. return 0;
  2768. }
  2769. /*
  2770. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2771. * but allow concurrent faults), and pte mapped but not yet locked.
  2772. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2773. */
  2774. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2775. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2776. unsigned int flags)
  2777. {
  2778. struct page *page;
  2779. spinlock_t *ptl;
  2780. pte_t entry;
  2781. pte_unmap(page_table);
  2782. /* Check if we need to add a guard page to the stack */
  2783. if (check_stack_guard_page(vma, address) < 0)
  2784. return VM_FAULT_SIGBUS;
  2785. /* Use the zero-page for reads */
  2786. if (!(flags & FAULT_FLAG_WRITE)) {
  2787. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2788. vma->vm_page_prot));
  2789. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2790. if (!pte_none(*page_table))
  2791. goto unlock;
  2792. goto setpte;
  2793. }
  2794. /* Allocate our own private page. */
  2795. if (unlikely(anon_vma_prepare(vma)))
  2796. goto oom;
  2797. page = alloc_zeroed_user_highpage_movable(vma, address);
  2798. if (!page)
  2799. goto oom;
  2800. __SetPageUptodate(page);
  2801. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2802. goto oom_free_page;
  2803. entry = mk_pte(page, vma->vm_page_prot);
  2804. if (vma->vm_flags & VM_WRITE)
  2805. entry = pte_mkwrite(pte_mkdirty(entry));
  2806. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2807. if (!pte_none(*page_table))
  2808. goto release;
  2809. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2810. page_add_new_anon_rmap(page, vma, address);
  2811. setpte:
  2812. set_pte_at(mm, address, page_table, entry);
  2813. /* No need to invalidate - it was non-present before */
  2814. update_mmu_cache(vma, address, page_table);
  2815. unlock:
  2816. pte_unmap_unlock(page_table, ptl);
  2817. return 0;
  2818. release:
  2819. mem_cgroup_uncharge_page(page);
  2820. page_cache_release(page);
  2821. goto unlock;
  2822. oom_free_page:
  2823. page_cache_release(page);
  2824. oom:
  2825. return VM_FAULT_OOM;
  2826. }
  2827. /*
  2828. * __do_fault() tries to create a new page mapping. It aggressively
  2829. * tries to share with existing pages, but makes a separate copy if
  2830. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2831. * the next page fault.
  2832. *
  2833. * As this is called only for pages that do not currently exist, we
  2834. * do not need to flush old virtual caches or the TLB.
  2835. *
  2836. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2837. * but allow concurrent faults), and pte neither mapped nor locked.
  2838. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2839. */
  2840. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2841. unsigned long address, pmd_t *pmd,
  2842. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2843. {
  2844. pte_t *page_table;
  2845. spinlock_t *ptl;
  2846. struct page *page;
  2847. pte_t entry;
  2848. int anon = 0;
  2849. int charged = 0;
  2850. struct page *dirty_page = NULL;
  2851. struct vm_fault vmf;
  2852. int ret;
  2853. int page_mkwrite = 0;
  2854. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2855. vmf.pgoff = pgoff;
  2856. vmf.flags = flags;
  2857. vmf.page = NULL;
  2858. ret = vma->vm_ops->fault(vma, &vmf);
  2859. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2860. VM_FAULT_RETRY)))
  2861. return ret;
  2862. if (unlikely(PageHWPoison(vmf.page))) {
  2863. if (ret & VM_FAULT_LOCKED)
  2864. unlock_page(vmf.page);
  2865. return VM_FAULT_HWPOISON;
  2866. }
  2867. /*
  2868. * For consistency in subsequent calls, make the faulted page always
  2869. * locked.
  2870. */
  2871. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2872. lock_page(vmf.page);
  2873. else
  2874. VM_BUG_ON(!PageLocked(vmf.page));
  2875. /*
  2876. * Should we do an early C-O-W break?
  2877. */
  2878. page = vmf.page;
  2879. if (flags & FAULT_FLAG_WRITE) {
  2880. if (!(vma->vm_flags & VM_SHARED)) {
  2881. anon = 1;
  2882. if (unlikely(anon_vma_prepare(vma))) {
  2883. ret = VM_FAULT_OOM;
  2884. goto out;
  2885. }
  2886. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2887. vma, address);
  2888. if (!page) {
  2889. ret = VM_FAULT_OOM;
  2890. goto out;
  2891. }
  2892. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2893. ret = VM_FAULT_OOM;
  2894. page_cache_release(page);
  2895. goto out;
  2896. }
  2897. charged = 1;
  2898. copy_user_highpage(page, vmf.page, address, vma);
  2899. __SetPageUptodate(page);
  2900. } else {
  2901. /*
  2902. * If the page will be shareable, see if the backing
  2903. * address space wants to know that the page is about
  2904. * to become writable
  2905. */
  2906. if (vma->vm_ops->page_mkwrite) {
  2907. int tmp;
  2908. unlock_page(page);
  2909. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2910. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2911. if (unlikely(tmp &
  2912. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2913. ret = tmp;
  2914. goto unwritable_page;
  2915. }
  2916. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2917. lock_page(page);
  2918. if (!page->mapping) {
  2919. ret = 0; /* retry the fault */
  2920. unlock_page(page);
  2921. goto unwritable_page;
  2922. }
  2923. } else
  2924. VM_BUG_ON(!PageLocked(page));
  2925. page_mkwrite = 1;
  2926. }
  2927. }
  2928. }
  2929. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2930. /*
  2931. * This silly early PAGE_DIRTY setting removes a race
  2932. * due to the bad i386 page protection. But it's valid
  2933. * for other architectures too.
  2934. *
  2935. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2936. * an exclusive copy of the page, or this is a shared mapping,
  2937. * so we can make it writable and dirty to avoid having to
  2938. * handle that later.
  2939. */
  2940. /* Only go through if we didn't race with anybody else... */
  2941. if (likely(pte_same(*page_table, orig_pte))) {
  2942. flush_icache_page(vma, page);
  2943. entry = mk_pte(page, vma->vm_page_prot);
  2944. if (flags & FAULT_FLAG_WRITE)
  2945. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2946. if (anon) {
  2947. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2948. page_add_new_anon_rmap(page, vma, address);
  2949. } else {
  2950. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2951. page_add_file_rmap(page);
  2952. if (flags & FAULT_FLAG_WRITE) {
  2953. dirty_page = page;
  2954. get_page(dirty_page);
  2955. }
  2956. }
  2957. set_pte_at(mm, address, page_table, entry);
  2958. /* no need to invalidate: a not-present page won't be cached */
  2959. update_mmu_cache(vma, address, page_table);
  2960. } else {
  2961. if (charged)
  2962. mem_cgroup_uncharge_page(page);
  2963. if (anon)
  2964. page_cache_release(page);
  2965. else
  2966. anon = 1; /* no anon but release faulted_page */
  2967. }
  2968. pte_unmap_unlock(page_table, ptl);
  2969. out:
  2970. if (dirty_page) {
  2971. struct address_space *mapping = page->mapping;
  2972. if (set_page_dirty(dirty_page))
  2973. page_mkwrite = 1;
  2974. unlock_page(dirty_page);
  2975. put_page(dirty_page);
  2976. if (page_mkwrite && mapping) {
  2977. /*
  2978. * Some device drivers do not set page.mapping but still
  2979. * dirty their pages
  2980. */
  2981. balance_dirty_pages_ratelimited(mapping);
  2982. }
  2983. /* file_update_time outside page_lock */
  2984. if (vma->vm_file)
  2985. file_update_time(vma->vm_file);
  2986. } else {
  2987. unlock_page(vmf.page);
  2988. if (anon)
  2989. page_cache_release(vmf.page);
  2990. }
  2991. return ret;
  2992. unwritable_page:
  2993. page_cache_release(page);
  2994. return ret;
  2995. }
  2996. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2997. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2998. unsigned int flags, pte_t orig_pte)
  2999. {
  3000. pgoff_t pgoff = (((address & PAGE_MASK)
  3001. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3002. pte_unmap(page_table);
  3003. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3004. }
  3005. /*
  3006. * Fault of a previously existing named mapping. Repopulate the pte
  3007. * from the encoded file_pte if possible. This enables swappable
  3008. * nonlinear vmas.
  3009. *
  3010. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3011. * but allow concurrent faults), and pte mapped but not yet locked.
  3012. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3013. */
  3014. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3015. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3016. unsigned int flags, pte_t orig_pte)
  3017. {
  3018. pgoff_t pgoff;
  3019. flags |= FAULT_FLAG_NONLINEAR;
  3020. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3021. return 0;
  3022. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3023. /*
  3024. * Page table corrupted: show pte and kill process.
  3025. */
  3026. print_bad_pte(vma, address, orig_pte, NULL);
  3027. return VM_FAULT_SIGBUS;
  3028. }
  3029. pgoff = pte_to_pgoff(orig_pte);
  3030. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3031. }
  3032. /*
  3033. * These routines also need to handle stuff like marking pages dirty
  3034. * and/or accessed for architectures that don't do it in hardware (most
  3035. * RISC architectures). The early dirtying is also good on the i386.
  3036. *
  3037. * There is also a hook called "update_mmu_cache()" that architectures
  3038. * with external mmu caches can use to update those (ie the Sparc or
  3039. * PowerPC hashed page tables that act as extended TLBs).
  3040. *
  3041. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3042. * but allow concurrent faults), and pte mapped but not yet locked.
  3043. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3044. */
  3045. int handle_pte_fault(struct mm_struct *mm,
  3046. struct vm_area_struct *vma, unsigned long address,
  3047. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3048. {
  3049. pte_t entry;
  3050. spinlock_t *ptl;
  3051. entry = *pte;
  3052. if (!pte_present(entry)) {
  3053. if (pte_none(entry)) {
  3054. if (vma->vm_ops) {
  3055. if (likely(vma->vm_ops->fault))
  3056. return do_linear_fault(mm, vma, address,
  3057. pte, pmd, flags, entry);
  3058. }
  3059. return do_anonymous_page(mm, vma, address,
  3060. pte, pmd, flags);
  3061. }
  3062. if (pte_file(entry))
  3063. return do_nonlinear_fault(mm, vma, address,
  3064. pte, pmd, flags, entry);
  3065. return do_swap_page(mm, vma, address,
  3066. pte, pmd, flags, entry);
  3067. }
  3068. ptl = pte_lockptr(mm, pmd);
  3069. spin_lock(ptl);
  3070. if (unlikely(!pte_same(*pte, entry)))
  3071. goto unlock;
  3072. if (flags & FAULT_FLAG_WRITE) {
  3073. if (!pte_write(entry))
  3074. return do_wp_page(mm, vma, address,
  3075. pte, pmd, ptl, entry);
  3076. entry = pte_mkdirty(entry);
  3077. }
  3078. entry = pte_mkyoung(entry);
  3079. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3080. update_mmu_cache(vma, address, pte);
  3081. } else {
  3082. /*
  3083. * This is needed only for protection faults but the arch code
  3084. * is not yet telling us if this is a protection fault or not.
  3085. * This still avoids useless tlb flushes for .text page faults
  3086. * with threads.
  3087. */
  3088. if (flags & FAULT_FLAG_WRITE)
  3089. flush_tlb_fix_spurious_fault(vma, address);
  3090. }
  3091. unlock:
  3092. pte_unmap_unlock(pte, ptl);
  3093. return 0;
  3094. }
  3095. /*
  3096. * By the time we get here, we already hold the mm semaphore
  3097. */
  3098. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3099. unsigned long address, unsigned int flags)
  3100. {
  3101. pgd_t *pgd;
  3102. pud_t *pud;
  3103. pmd_t *pmd;
  3104. pte_t *pte;
  3105. __set_current_state(TASK_RUNNING);
  3106. count_vm_event(PGFAULT);
  3107. mem_cgroup_count_vm_event(mm, PGFAULT);
  3108. /* do counter updates before entering really critical section. */
  3109. check_sync_rss_stat(current);
  3110. if (unlikely(is_vm_hugetlb_page(vma)))
  3111. return hugetlb_fault(mm, vma, address, flags);
  3112. pgd = pgd_offset(mm, address);
  3113. pud = pud_alloc(mm, pgd, address);
  3114. if (!pud)
  3115. return VM_FAULT_OOM;
  3116. pmd = pmd_alloc(mm, pud, address);
  3117. if (!pmd)
  3118. return VM_FAULT_OOM;
  3119. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3120. if (!vma->vm_ops)
  3121. return do_huge_pmd_anonymous_page(mm, vma, address,
  3122. pmd, flags);
  3123. } else {
  3124. pmd_t orig_pmd = *pmd;
  3125. barrier();
  3126. if (pmd_trans_huge(orig_pmd)) {
  3127. if (flags & FAULT_FLAG_WRITE &&
  3128. !pmd_write(orig_pmd) &&
  3129. !pmd_trans_splitting(orig_pmd))
  3130. return do_huge_pmd_wp_page(mm, vma, address,
  3131. pmd, orig_pmd);
  3132. return 0;
  3133. }
  3134. }
  3135. /*
  3136. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3137. * run pte_offset_map on the pmd, if an huge pmd could
  3138. * materialize from under us from a different thread.
  3139. */
  3140. if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
  3141. return VM_FAULT_OOM;
  3142. /* if an huge pmd materialized from under us just retry later */
  3143. if (unlikely(pmd_trans_huge(*pmd)))
  3144. return 0;
  3145. /*
  3146. * A regular pmd is established and it can't morph into a huge pmd
  3147. * from under us anymore at this point because we hold the mmap_sem
  3148. * read mode and khugepaged takes it in write mode. So now it's
  3149. * safe to run pte_offset_map().
  3150. */
  3151. pte = pte_offset_map(pmd, address);
  3152. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3153. }
  3154. #ifndef __PAGETABLE_PUD_FOLDED
  3155. /*
  3156. * Allocate page upper directory.
  3157. * We've already handled the fast-path in-line.
  3158. */
  3159. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3160. {
  3161. pud_t *new = pud_alloc_one(mm, address);
  3162. if (!new)
  3163. return -ENOMEM;
  3164. smp_wmb(); /* See comment in __pte_alloc */
  3165. spin_lock(&mm->page_table_lock);
  3166. if (pgd_present(*pgd)) /* Another has populated it */
  3167. pud_free(mm, new);
  3168. else
  3169. pgd_populate(mm, pgd, new);
  3170. spin_unlock(&mm->page_table_lock);
  3171. return 0;
  3172. }
  3173. #endif /* __PAGETABLE_PUD_FOLDED */
  3174. #ifndef __PAGETABLE_PMD_FOLDED
  3175. /*
  3176. * Allocate page middle directory.
  3177. * We've already handled the fast-path in-line.
  3178. */
  3179. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3180. {
  3181. pmd_t *new = pmd_alloc_one(mm, address);
  3182. if (!new)
  3183. return -ENOMEM;
  3184. smp_wmb(); /* See comment in __pte_alloc */
  3185. spin_lock(&mm->page_table_lock);
  3186. #ifndef __ARCH_HAS_4LEVEL_HACK
  3187. if (pud_present(*pud)) /* Another has populated it */
  3188. pmd_free(mm, new);
  3189. else
  3190. pud_populate(mm, pud, new);
  3191. #else
  3192. if (pgd_present(*pud)) /* Another has populated it */
  3193. pmd_free(mm, new);
  3194. else
  3195. pgd_populate(mm, pud, new);
  3196. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3197. spin_unlock(&mm->page_table_lock);
  3198. return 0;
  3199. }
  3200. #endif /* __PAGETABLE_PMD_FOLDED */
  3201. int make_pages_present(unsigned long addr, unsigned long end)
  3202. {
  3203. int ret, len, write;
  3204. struct vm_area_struct * vma;
  3205. vma = find_vma(current->mm, addr);
  3206. if (!vma)
  3207. return -ENOMEM;
  3208. /*
  3209. * We want to touch writable mappings with a write fault in order
  3210. * to break COW, except for shared mappings because these don't COW
  3211. * and we would not want to dirty them for nothing.
  3212. */
  3213. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3214. BUG_ON(addr >= end);
  3215. BUG_ON(end > vma->vm_end);
  3216. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3217. ret = get_user_pages(current, current->mm, addr,
  3218. len, write, 0, NULL, NULL);
  3219. if (ret < 0)
  3220. return ret;
  3221. return ret == len ? 0 : -EFAULT;
  3222. }
  3223. #if !defined(__HAVE_ARCH_GATE_AREA)
  3224. #if defined(AT_SYSINFO_EHDR)
  3225. static struct vm_area_struct gate_vma;
  3226. static int __init gate_vma_init(void)
  3227. {
  3228. gate_vma.vm_mm = NULL;
  3229. gate_vma.vm_start = FIXADDR_USER_START;
  3230. gate_vma.vm_end = FIXADDR_USER_END;
  3231. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3232. gate_vma.vm_page_prot = __P101;
  3233. /*
  3234. * Make sure the vDSO gets into every core dump.
  3235. * Dumping its contents makes post-mortem fully interpretable later
  3236. * without matching up the same kernel and hardware config to see
  3237. * what PC values meant.
  3238. */
  3239. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  3240. return 0;
  3241. }
  3242. __initcall(gate_vma_init);
  3243. #endif
  3244. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3245. {
  3246. #ifdef AT_SYSINFO_EHDR
  3247. return &gate_vma;
  3248. #else
  3249. return NULL;
  3250. #endif
  3251. }
  3252. int in_gate_area_no_mm(unsigned long addr)
  3253. {
  3254. #ifdef AT_SYSINFO_EHDR
  3255. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3256. return 1;
  3257. #endif
  3258. return 0;
  3259. }
  3260. #endif /* __HAVE_ARCH_GATE_AREA */
  3261. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3262. pte_t **ptepp, spinlock_t **ptlp)
  3263. {
  3264. pgd_t *pgd;
  3265. pud_t *pud;
  3266. pmd_t *pmd;
  3267. pte_t *ptep;
  3268. pgd = pgd_offset(mm, address);
  3269. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3270. goto out;
  3271. pud = pud_offset(pgd, address);
  3272. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3273. goto out;
  3274. pmd = pmd_offset(pud, address);
  3275. VM_BUG_ON(pmd_trans_huge(*pmd));
  3276. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3277. goto out;
  3278. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3279. if (pmd_huge(*pmd))
  3280. goto out;
  3281. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3282. if (!ptep)
  3283. goto out;
  3284. if (!pte_present(*ptep))
  3285. goto unlock;
  3286. *ptepp = ptep;
  3287. return 0;
  3288. unlock:
  3289. pte_unmap_unlock(ptep, *ptlp);
  3290. out:
  3291. return -EINVAL;
  3292. }
  3293. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3294. pte_t **ptepp, spinlock_t **ptlp)
  3295. {
  3296. int res;
  3297. /* (void) is needed to make gcc happy */
  3298. (void) __cond_lock(*ptlp,
  3299. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3300. return res;
  3301. }
  3302. /**
  3303. * follow_pfn - look up PFN at a user virtual address
  3304. * @vma: memory mapping
  3305. * @address: user virtual address
  3306. * @pfn: location to store found PFN
  3307. *
  3308. * Only IO mappings and raw PFN mappings are allowed.
  3309. *
  3310. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3311. */
  3312. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3313. unsigned long *pfn)
  3314. {
  3315. int ret = -EINVAL;
  3316. spinlock_t *ptl;
  3317. pte_t *ptep;
  3318. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3319. return ret;
  3320. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3321. if (ret)
  3322. return ret;
  3323. *pfn = pte_pfn(*ptep);
  3324. pte_unmap_unlock(ptep, ptl);
  3325. return 0;
  3326. }
  3327. EXPORT_SYMBOL(follow_pfn);
  3328. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3329. int follow_phys(struct vm_area_struct *vma,
  3330. unsigned long address, unsigned int flags,
  3331. unsigned long *prot, resource_size_t *phys)
  3332. {
  3333. int ret = -EINVAL;
  3334. pte_t *ptep, pte;
  3335. spinlock_t *ptl;
  3336. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3337. goto out;
  3338. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3339. goto out;
  3340. pte = *ptep;
  3341. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3342. goto unlock;
  3343. *prot = pgprot_val(pte_pgprot(pte));
  3344. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3345. ret = 0;
  3346. unlock:
  3347. pte_unmap_unlock(ptep, ptl);
  3348. out:
  3349. return ret;
  3350. }
  3351. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3352. void *buf, int len, int write)
  3353. {
  3354. resource_size_t phys_addr;
  3355. unsigned long prot = 0;
  3356. void __iomem *maddr;
  3357. int offset = addr & (PAGE_SIZE-1);
  3358. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3359. return -EINVAL;
  3360. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3361. if (write)
  3362. memcpy_toio(maddr + offset, buf, len);
  3363. else
  3364. memcpy_fromio(buf, maddr + offset, len);
  3365. iounmap(maddr);
  3366. return len;
  3367. }
  3368. #endif
  3369. /*
  3370. * Access another process' address space as given in mm. If non-NULL, use the
  3371. * given task for page fault accounting.
  3372. */
  3373. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3374. unsigned long addr, void *buf, int len, int write)
  3375. {
  3376. struct vm_area_struct *vma;
  3377. void *old_buf = buf;
  3378. down_read(&mm->mmap_sem);
  3379. /* ignore errors, just check how much was successfully transferred */
  3380. while (len) {
  3381. int bytes, ret, offset;
  3382. void *maddr;
  3383. struct page *page = NULL;
  3384. ret = get_user_pages(tsk, mm, addr, 1,
  3385. write, 1, &page, &vma);
  3386. if (ret <= 0) {
  3387. /*
  3388. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3389. * we can access using slightly different code.
  3390. */
  3391. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3392. vma = find_vma(mm, addr);
  3393. if (!vma || vma->vm_start > addr)
  3394. break;
  3395. if (vma->vm_ops && vma->vm_ops->access)
  3396. ret = vma->vm_ops->access(vma, addr, buf,
  3397. len, write);
  3398. if (ret <= 0)
  3399. #endif
  3400. break;
  3401. bytes = ret;
  3402. } else {
  3403. bytes = len;
  3404. offset = addr & (PAGE_SIZE-1);
  3405. if (bytes > PAGE_SIZE-offset)
  3406. bytes = PAGE_SIZE-offset;
  3407. maddr = kmap(page);
  3408. if (write) {
  3409. copy_to_user_page(vma, page, addr,
  3410. maddr + offset, buf, bytes);
  3411. set_page_dirty_lock(page);
  3412. } else {
  3413. copy_from_user_page(vma, page, addr,
  3414. buf, maddr + offset, bytes);
  3415. }
  3416. kunmap(page);
  3417. page_cache_release(page);
  3418. }
  3419. len -= bytes;
  3420. buf += bytes;
  3421. addr += bytes;
  3422. }
  3423. up_read(&mm->mmap_sem);
  3424. return buf - old_buf;
  3425. }
  3426. /**
  3427. * access_remote_vm - access another process' address space
  3428. * @mm: the mm_struct of the target address space
  3429. * @addr: start address to access
  3430. * @buf: source or destination buffer
  3431. * @len: number of bytes to transfer
  3432. * @write: whether the access is a write
  3433. *
  3434. * The caller must hold a reference on @mm.
  3435. */
  3436. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3437. void *buf, int len, int write)
  3438. {
  3439. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3440. }
  3441. /*
  3442. * Access another process' address space.
  3443. * Source/target buffer must be kernel space,
  3444. * Do not walk the page table directly, use get_user_pages
  3445. */
  3446. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3447. void *buf, int len, int write)
  3448. {
  3449. struct mm_struct *mm;
  3450. int ret;
  3451. mm = get_task_mm(tsk);
  3452. if (!mm)
  3453. return 0;
  3454. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3455. mmput(mm);
  3456. return ret;
  3457. }
  3458. /*
  3459. * Print the name of a VMA.
  3460. */
  3461. void print_vma_addr(char *prefix, unsigned long ip)
  3462. {
  3463. struct mm_struct *mm = current->mm;
  3464. struct vm_area_struct *vma;
  3465. /*
  3466. * Do not print if we are in atomic
  3467. * contexts (in exception stacks, etc.):
  3468. */
  3469. if (preempt_count())
  3470. return;
  3471. down_read(&mm->mmap_sem);
  3472. vma = find_vma(mm, ip);
  3473. if (vma && vma->vm_file) {
  3474. struct file *f = vma->vm_file;
  3475. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3476. if (buf) {
  3477. char *p, *s;
  3478. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3479. if (IS_ERR(p))
  3480. p = "?";
  3481. s = strrchr(p, '/');
  3482. if (s)
  3483. p = s+1;
  3484. printk("%s%s[%lx+%lx]", prefix, p,
  3485. vma->vm_start,
  3486. vma->vm_end - vma->vm_start);
  3487. free_page((unsigned long)buf);
  3488. }
  3489. }
  3490. up_read(&current->mm->mmap_sem);
  3491. }
  3492. #ifdef CONFIG_PROVE_LOCKING
  3493. void might_fault(void)
  3494. {
  3495. /*
  3496. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3497. * holding the mmap_sem, this is safe because kernel memory doesn't
  3498. * get paged out, therefore we'll never actually fault, and the
  3499. * below annotations will generate false positives.
  3500. */
  3501. if (segment_eq(get_fs(), KERNEL_DS))
  3502. return;
  3503. might_sleep();
  3504. /*
  3505. * it would be nicer only to annotate paths which are not under
  3506. * pagefault_disable, however that requires a larger audit and
  3507. * providing helpers like get_user_atomic.
  3508. */
  3509. if (!in_atomic() && current->mm)
  3510. might_lock_read(&current->mm->mmap_sem);
  3511. }
  3512. EXPORT_SYMBOL(might_fault);
  3513. #endif
  3514. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3515. static void clear_gigantic_page(struct page *page,
  3516. unsigned long addr,
  3517. unsigned int pages_per_huge_page)
  3518. {
  3519. int i;
  3520. struct page *p = page;
  3521. might_sleep();
  3522. for (i = 0; i < pages_per_huge_page;
  3523. i++, p = mem_map_next(p, page, i)) {
  3524. cond_resched();
  3525. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3526. }
  3527. }
  3528. void clear_huge_page(struct page *page,
  3529. unsigned long addr, unsigned int pages_per_huge_page)
  3530. {
  3531. int i;
  3532. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3533. clear_gigantic_page(page, addr, pages_per_huge_page);
  3534. return;
  3535. }
  3536. might_sleep();
  3537. for (i = 0; i < pages_per_huge_page; i++) {
  3538. cond_resched();
  3539. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3540. }
  3541. }
  3542. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3543. unsigned long addr,
  3544. struct vm_area_struct *vma,
  3545. unsigned int pages_per_huge_page)
  3546. {
  3547. int i;
  3548. struct page *dst_base = dst;
  3549. struct page *src_base = src;
  3550. for (i = 0; i < pages_per_huge_page; ) {
  3551. cond_resched();
  3552. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3553. i++;
  3554. dst = mem_map_next(dst, dst_base, i);
  3555. src = mem_map_next(src, src_base, i);
  3556. }
  3557. }
  3558. void copy_user_huge_page(struct page *dst, struct page *src,
  3559. unsigned long addr, struct vm_area_struct *vma,
  3560. unsigned int pages_per_huge_page)
  3561. {
  3562. int i;
  3563. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3564. copy_user_gigantic_page(dst, src, addr, vma,
  3565. pages_per_huge_page);
  3566. return;
  3567. }
  3568. might_sleep();
  3569. for (i = 0; i < pages_per_huge_page; i++) {
  3570. cond_resched();
  3571. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3572. }
  3573. }
  3574. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */