1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994 |
- /*
- * linux/mm/memory.c
- *
- * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
- */
- /*
- * demand-loading started 01.12.91 - seems it is high on the list of
- * things wanted, and it should be easy to implement. - Linus
- */
- /*
- * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
- * pages started 02.12.91, seems to work. - Linus.
- *
- * Tested sharing by executing about 30 /bin/sh: under the old kernel it
- * would have taken more than the 6M I have free, but it worked well as
- * far as I could see.
- *
- * Also corrected some "invalidate()"s - I wasn't doing enough of them.
- */
- /*
- * Real VM (paging to/from disk) started 18.12.91. Much more work and
- * thought has to go into this. Oh, well..
- * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
- * Found it. Everything seems to work now.
- * 20.12.91 - Ok, making the swap-device changeable like the root.
- */
- /*
- * 05.04.94 - Multi-page memory management added for v1.1.
- * Idea by Alex Bligh (alex@cconcepts.co.uk)
- *
- * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
- * (Gerhard.Wichert@pdb.siemens.de)
- *
- * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
- */
- #include <linux/kernel_stat.h>
- #include <linux/mm.h>
- #include <linux/hugetlb.h>
- #include <linux/mman.h>
- #include <linux/swap.h>
- #include <linux/highmem.h>
- #include <linux/pagemap.h>
- #include <linux/ksm.h>
- #include <linux/rmap.h>
- #include <linux/module.h>
- #include <linux/delayacct.h>
- #include <linux/init.h>
- #include <linux/writeback.h>
- #include <linux/memcontrol.h>
- #include <linux/mmu_notifier.h>
- #include <linux/kallsyms.h>
- #include <linux/swapops.h>
- #include <linux/elf.h>
- #include <linux/gfp.h>
- #include <asm/io.h>
- #include <asm/pgalloc.h>
- #include <asm/uaccess.h>
- #include <asm/tlb.h>
- #include <asm/tlbflush.h>
- #include <asm/pgtable.h>
- #include "internal.h"
- #ifndef CONFIG_NEED_MULTIPLE_NODES
- /* use the per-pgdat data instead for discontigmem - mbligh */
- unsigned long max_mapnr;
- struct page *mem_map;
- EXPORT_SYMBOL(max_mapnr);
- EXPORT_SYMBOL(mem_map);
- #endif
- unsigned long num_physpages;
- /*
- * A number of key systems in x86 including ioremap() rely on the assumption
- * that high_memory defines the upper bound on direct map memory, then end
- * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
- * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
- * and ZONE_HIGHMEM.
- */
- void * high_memory;
- EXPORT_SYMBOL(num_physpages);
- EXPORT_SYMBOL(high_memory);
- /*
- * Randomize the address space (stacks, mmaps, brk, etc.).
- *
- * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
- * as ancient (libc5 based) binaries can segfault. )
- */
- int randomize_va_space __read_mostly =
- #ifdef CONFIG_COMPAT_BRK
- 1;
- #else
- 2;
- #endif
- static int __init disable_randmaps(char *s)
- {
- randomize_va_space = 0;
- return 1;
- }
- __setup("norandmaps", disable_randmaps);
- unsigned long zero_pfn __read_mostly;
- unsigned long highest_memmap_pfn __read_mostly;
- /*
- * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
- */
- static int __init init_zero_pfn(void)
- {
- zero_pfn = page_to_pfn(ZERO_PAGE(0));
- return 0;
- }
- core_initcall(init_zero_pfn);
- #if defined(SPLIT_RSS_COUNTING)
- static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
- {
- int i;
- for (i = 0; i < NR_MM_COUNTERS; i++) {
- if (task->rss_stat.count[i]) {
- add_mm_counter(mm, i, task->rss_stat.count[i]);
- task->rss_stat.count[i] = 0;
- }
- }
- task->rss_stat.events = 0;
- }
- static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
- {
- struct task_struct *task = current;
- if (likely(task->mm == mm))
- task->rss_stat.count[member] += val;
- else
- add_mm_counter(mm, member, val);
- }
- #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
- #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
- /* sync counter once per 64 page faults */
- #define TASK_RSS_EVENTS_THRESH (64)
- static void check_sync_rss_stat(struct task_struct *task)
- {
- if (unlikely(task != current))
- return;
- if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
- __sync_task_rss_stat(task, task->mm);
- }
- unsigned long get_mm_counter(struct mm_struct *mm, int member)
- {
- long val = 0;
- /*
- * Don't use task->mm here...for avoiding to use task_get_mm()..
- * The caller must guarantee task->mm is not invalid.
- */
- val = atomic_long_read(&mm->rss_stat.count[member]);
- /*
- * counter is updated in asynchronous manner and may go to minus.
- * But it's never be expected number for users.
- */
- if (val < 0)
- return 0;
- return (unsigned long)val;
- }
- void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
- {
- __sync_task_rss_stat(task, mm);
- }
- #else /* SPLIT_RSS_COUNTING */
- #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
- #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
- static void check_sync_rss_stat(struct task_struct *task)
- {
- }
- #endif /* SPLIT_RSS_COUNTING */
- #ifdef HAVE_GENERIC_MMU_GATHER
- static int tlb_next_batch(struct mmu_gather *tlb)
- {
- struct mmu_gather_batch *batch;
- batch = tlb->active;
- if (batch->next) {
- tlb->active = batch->next;
- return 1;
- }
- batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
- if (!batch)
- return 0;
- batch->next = NULL;
- batch->nr = 0;
- batch->max = MAX_GATHER_BATCH;
- tlb->active->next = batch;
- tlb->active = batch;
- return 1;
- }
- /* tlb_gather_mmu
- * Called to initialize an (on-stack) mmu_gather structure for page-table
- * tear-down from @mm. The @fullmm argument is used when @mm is without
- * users and we're going to destroy the full address space (exit/execve).
- */
- void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
- {
- tlb->mm = mm;
- tlb->fullmm = fullmm;
- tlb->need_flush = 0;
- tlb->fast_mode = (num_possible_cpus() == 1);
- tlb->local.next = NULL;
- tlb->local.nr = 0;
- tlb->local.max = ARRAY_SIZE(tlb->__pages);
- tlb->active = &tlb->local;
- #ifdef CONFIG_HAVE_RCU_TABLE_FREE
- tlb->batch = NULL;
- #endif
- }
- void tlb_flush_mmu(struct mmu_gather *tlb)
- {
- struct mmu_gather_batch *batch;
- if (!tlb->need_flush)
- return;
- tlb->need_flush = 0;
- tlb_flush(tlb);
- #ifdef CONFIG_HAVE_RCU_TABLE_FREE
- tlb_table_flush(tlb);
- #endif
- if (tlb_fast_mode(tlb))
- return;
- for (batch = &tlb->local; batch; batch = batch->next) {
- free_pages_and_swap_cache(batch->pages, batch->nr);
- batch->nr = 0;
- }
- tlb->active = &tlb->local;
- }
- /* tlb_finish_mmu
- * Called at the end of the shootdown operation to free up any resources
- * that were required.
- */
- void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
- {
- struct mmu_gather_batch *batch, *next;
- tlb_flush_mmu(tlb);
- /* keep the page table cache within bounds */
- check_pgt_cache();
- for (batch = tlb->local.next; batch; batch = next) {
- next = batch->next;
- free_pages((unsigned long)batch, 0);
- }
- tlb->local.next = NULL;
- }
- /* __tlb_remove_page
- * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
- * handling the additional races in SMP caused by other CPUs caching valid
- * mappings in their TLBs. Returns the number of free page slots left.
- * When out of page slots we must call tlb_flush_mmu().
- */
- int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
- {
- struct mmu_gather_batch *batch;
- tlb->need_flush = 1;
- if (tlb_fast_mode(tlb)) {
- free_page_and_swap_cache(page);
- return 1; /* avoid calling tlb_flush_mmu() */
- }
- batch = tlb->active;
- batch->pages[batch->nr++] = page;
- if (batch->nr == batch->max) {
- if (!tlb_next_batch(tlb))
- return 0;
- batch = tlb->active;
- }
- VM_BUG_ON(batch->nr > batch->max);
- return batch->max - batch->nr;
- }
- #endif /* HAVE_GENERIC_MMU_GATHER */
- #ifdef CONFIG_HAVE_RCU_TABLE_FREE
- /*
- * See the comment near struct mmu_table_batch.
- */
- static void tlb_remove_table_smp_sync(void *arg)
- {
- /* Simply deliver the interrupt */
- }
- static void tlb_remove_table_one(void *table)
- {
- /*
- * This isn't an RCU grace period and hence the page-tables cannot be
- * assumed to be actually RCU-freed.
- *
- * It is however sufficient for software page-table walkers that rely on
- * IRQ disabling. See the comment near struct mmu_table_batch.
- */
- smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
- __tlb_remove_table(table);
- }
- static void tlb_remove_table_rcu(struct rcu_head *head)
- {
- struct mmu_table_batch *batch;
- int i;
- batch = container_of(head, struct mmu_table_batch, rcu);
- for (i = 0; i < batch->nr; i++)
- __tlb_remove_table(batch->tables[i]);
- free_page((unsigned long)batch);
- }
- void tlb_table_flush(struct mmu_gather *tlb)
- {
- struct mmu_table_batch **batch = &tlb->batch;
- if (*batch) {
- call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
- *batch = NULL;
- }
- }
- void tlb_remove_table(struct mmu_gather *tlb, void *table)
- {
- struct mmu_table_batch **batch = &tlb->batch;
- tlb->need_flush = 1;
- /*
- * When there's less then two users of this mm there cannot be a
- * concurrent page-table walk.
- */
- if (atomic_read(&tlb->mm->mm_users) < 2) {
- __tlb_remove_table(table);
- return;
- }
- if (*batch == NULL) {
- *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
- if (*batch == NULL) {
- tlb_remove_table_one(table);
- return;
- }
- (*batch)->nr = 0;
- }
- (*batch)->tables[(*batch)->nr++] = table;
- if ((*batch)->nr == MAX_TABLE_BATCH)
- tlb_table_flush(tlb);
- }
- #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
- /*
- * If a p?d_bad entry is found while walking page tables, report
- * the error, before resetting entry to p?d_none. Usually (but
- * very seldom) called out from the p?d_none_or_clear_bad macros.
- */
- void pgd_clear_bad(pgd_t *pgd)
- {
- pgd_ERROR(*pgd);
- pgd_clear(pgd);
- }
- void pud_clear_bad(pud_t *pud)
- {
- pud_ERROR(*pud);
- pud_clear(pud);
- }
- void pmd_clear_bad(pmd_t *pmd)
- {
- pmd_ERROR(*pmd);
- pmd_clear(pmd);
- }
- /*
- * Note: this doesn't free the actual pages themselves. That
- * has been handled earlier when unmapping all the memory regions.
- */
- static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
- unsigned long addr)
- {
- pgtable_t token = pmd_pgtable(*pmd);
- pmd_clear(pmd);
- pte_free_tlb(tlb, token, addr);
- tlb->mm->nr_ptes--;
- }
- static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
- {
- pmd_t *pmd;
- unsigned long next;
- unsigned long start;
- start = addr;
- pmd = pmd_offset(pud, addr);
- do {
- next = pmd_addr_end(addr, end);
- if (pmd_none_or_clear_bad(pmd))
- continue;
- free_pte_range(tlb, pmd, addr);
- } while (pmd++, addr = next, addr != end);
- start &= PUD_MASK;
- if (start < floor)
- return;
- if (ceiling) {
- ceiling &= PUD_MASK;
- if (!ceiling)
- return;
- }
- if (end - 1 > ceiling - 1)
- return;
- pmd = pmd_offset(pud, start);
- pud_clear(pud);
- pmd_free_tlb(tlb, pmd, start);
- }
- static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
- {
- pud_t *pud;
- unsigned long next;
- unsigned long start;
- start = addr;
- pud = pud_offset(pgd, addr);
- do {
- next = pud_addr_end(addr, end);
- if (pud_none_or_clear_bad(pud))
- continue;
- free_pmd_range(tlb, pud, addr, next, floor, ceiling);
- } while (pud++, addr = next, addr != end);
- start &= PGDIR_MASK;
- if (start < floor)
- return;
- if (ceiling) {
- ceiling &= PGDIR_MASK;
- if (!ceiling)
- return;
- }
- if (end - 1 > ceiling - 1)
- return;
- pud = pud_offset(pgd, start);
- pgd_clear(pgd);
- pud_free_tlb(tlb, pud, start);
- }
- /*
- * This function frees user-level page tables of a process.
- *
- * Must be called with pagetable lock held.
- */
- void free_pgd_range(struct mmu_gather *tlb,
- unsigned long addr, unsigned long end,
- unsigned long floor, unsigned long ceiling)
- {
- pgd_t *pgd;
- unsigned long next;
- /*
- * The next few lines have given us lots of grief...
- *
- * Why are we testing PMD* at this top level? Because often
- * there will be no work to do at all, and we'd prefer not to
- * go all the way down to the bottom just to discover that.
- *
- * Why all these "- 1"s? Because 0 represents both the bottom
- * of the address space and the top of it (using -1 for the
- * top wouldn't help much: the masks would do the wrong thing).
- * The rule is that addr 0 and floor 0 refer to the bottom of
- * the address space, but end 0 and ceiling 0 refer to the top
- * Comparisons need to use "end - 1" and "ceiling - 1" (though
- * that end 0 case should be mythical).
- *
- * Wherever addr is brought up or ceiling brought down, we must
- * be careful to reject "the opposite 0" before it confuses the
- * subsequent tests. But what about where end is brought down
- * by PMD_SIZE below? no, end can't go down to 0 there.
- *
- * Whereas we round start (addr) and ceiling down, by different
- * masks at different levels, in order to test whether a table
- * now has no other vmas using it, so can be freed, we don't
- * bother to round floor or end up - the tests don't need that.
- */
- addr &= PMD_MASK;
- if (addr < floor) {
- addr += PMD_SIZE;
- if (!addr)
- return;
- }
- if (ceiling) {
- ceiling &= PMD_MASK;
- if (!ceiling)
- return;
- }
- if (end - 1 > ceiling - 1)
- end -= PMD_SIZE;
- if (addr > end - 1)
- return;
- pgd = pgd_offset(tlb->mm, addr);
- do {
- next = pgd_addr_end(addr, end);
- if (pgd_none_or_clear_bad(pgd))
- continue;
- free_pud_range(tlb, pgd, addr, next, floor, ceiling);
- } while (pgd++, addr = next, addr != end);
- }
- void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
- unsigned long floor, unsigned long ceiling)
- {
- while (vma) {
- struct vm_area_struct *next = vma->vm_next;
- unsigned long addr = vma->vm_start;
- /*
- * Hide vma from rmap and truncate_pagecache before freeing
- * pgtables
- */
- unlink_anon_vmas(vma);
- unlink_file_vma(vma);
- if (is_vm_hugetlb_page(vma)) {
- hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
- floor, next? next->vm_start: ceiling);
- } else {
- /*
- * Optimization: gather nearby vmas into one call down
- */
- while (next && next->vm_start <= vma->vm_end + PMD_SIZE
- && !is_vm_hugetlb_page(next)) {
- vma = next;
- next = vma->vm_next;
- unlink_anon_vmas(vma);
- unlink_file_vma(vma);
- }
- free_pgd_range(tlb, addr, vma->vm_end,
- floor, next? next->vm_start: ceiling);
- }
- vma = next;
- }
- }
- int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
- pmd_t *pmd, unsigned long address)
- {
- pgtable_t new = pte_alloc_one(mm, address);
- int wait_split_huge_page;
- if (!new)
- return -ENOMEM;
- /*
- * Ensure all pte setup (eg. pte page lock and page clearing) are
- * visible before the pte is made visible to other CPUs by being
- * put into page tables.
- *
- * The other side of the story is the pointer chasing in the page
- * table walking code (when walking the page table without locking;
- * ie. most of the time). Fortunately, these data accesses consist
- * of a chain of data-dependent loads, meaning most CPUs (alpha
- * being the notable exception) will already guarantee loads are
- * seen in-order. See the alpha page table accessors for the
- * smp_read_barrier_depends() barriers in page table walking code.
- */
- smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
- spin_lock(&mm->page_table_lock);
- wait_split_huge_page = 0;
- if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
- mm->nr_ptes++;
- pmd_populate(mm, pmd, new);
- new = NULL;
- } else if (unlikely(pmd_trans_splitting(*pmd)))
- wait_split_huge_page = 1;
- spin_unlock(&mm->page_table_lock);
- if (new)
- pte_free(mm, new);
- if (wait_split_huge_page)
- wait_split_huge_page(vma->anon_vma, pmd);
- return 0;
- }
- int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
- {
- pte_t *new = pte_alloc_one_kernel(&init_mm, address);
- if (!new)
- return -ENOMEM;
- smp_wmb(); /* See comment in __pte_alloc */
- spin_lock(&init_mm.page_table_lock);
- if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
- pmd_populate_kernel(&init_mm, pmd, new);
- new = NULL;
- } else
- VM_BUG_ON(pmd_trans_splitting(*pmd));
- spin_unlock(&init_mm.page_table_lock);
- if (new)
- pte_free_kernel(&init_mm, new);
- return 0;
- }
- static inline void init_rss_vec(int *rss)
- {
- memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
- }
- static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
- {
- int i;
- if (current->mm == mm)
- sync_mm_rss(current, mm);
- for (i = 0; i < NR_MM_COUNTERS; i++)
- if (rss[i])
- add_mm_counter(mm, i, rss[i]);
- }
- /*
- * This function is called to print an error when a bad pte
- * is found. For example, we might have a PFN-mapped pte in
- * a region that doesn't allow it.
- *
- * The calling function must still handle the error.
- */
- static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
- pte_t pte, struct page *page)
- {
- pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
- pud_t *pud = pud_offset(pgd, addr);
- pmd_t *pmd = pmd_offset(pud, addr);
- struct address_space *mapping;
- pgoff_t index;
- static unsigned long resume;
- static unsigned long nr_shown;
- static unsigned long nr_unshown;
- /*
- * Allow a burst of 60 reports, then keep quiet for that minute;
- * or allow a steady drip of one report per second.
- */
- if (nr_shown == 60) {
- if (time_before(jiffies, resume)) {
- nr_unshown++;
- return;
- }
- if (nr_unshown) {
- printk(KERN_ALERT
- "BUG: Bad page map: %lu messages suppressed\n",
- nr_unshown);
- nr_unshown = 0;
- }
- nr_shown = 0;
- }
- if (nr_shown++ == 0)
- resume = jiffies + 60 * HZ;
- mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
- index = linear_page_index(vma, addr);
- printk(KERN_ALERT
- "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
- current->comm,
- (long long)pte_val(pte), (long long)pmd_val(*pmd));
- if (page)
- dump_page(page);
- printk(KERN_ALERT
- "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
- (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
- /*
- * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
- */
- if (vma->vm_ops)
- print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
- (unsigned long)vma->vm_ops->fault);
- if (vma->vm_file && vma->vm_file->f_op)
- print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
- (unsigned long)vma->vm_file->f_op->mmap);
- dump_stack();
- add_taint(TAINT_BAD_PAGE);
- }
- static inline int is_cow_mapping(vm_flags_t flags)
- {
- return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
- }
- #ifndef is_zero_pfn
- static inline int is_zero_pfn(unsigned long pfn)
- {
- return pfn == zero_pfn;
- }
- #endif
- #ifndef my_zero_pfn
- static inline unsigned long my_zero_pfn(unsigned long addr)
- {
- return zero_pfn;
- }
- #endif
- /*
- * vm_normal_page -- This function gets the "struct page" associated with a pte.
- *
- * "Special" mappings do not wish to be associated with a "struct page" (either
- * it doesn't exist, or it exists but they don't want to touch it). In this
- * case, NULL is returned here. "Normal" mappings do have a struct page.
- *
- * There are 2 broad cases. Firstly, an architecture may define a pte_special()
- * pte bit, in which case this function is trivial. Secondly, an architecture
- * may not have a spare pte bit, which requires a more complicated scheme,
- * described below.
- *
- * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
- * special mapping (even if there are underlying and valid "struct pages").
- * COWed pages of a VM_PFNMAP are always normal.
- *
- * The way we recognize COWed pages within VM_PFNMAP mappings is through the
- * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
- * set, and the vm_pgoff will point to the first PFN mapped: thus every special
- * mapping will always honor the rule
- *
- * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
- *
- * And for normal mappings this is false.
- *
- * This restricts such mappings to be a linear translation from virtual address
- * to pfn. To get around this restriction, we allow arbitrary mappings so long
- * as the vma is not a COW mapping; in that case, we know that all ptes are
- * special (because none can have been COWed).
- *
- *
- * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
- *
- * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
- * page" backing, however the difference is that _all_ pages with a struct
- * page (that is, those where pfn_valid is true) are refcounted and considered
- * normal pages by the VM. The disadvantage is that pages are refcounted
- * (which can be slower and simply not an option for some PFNMAP users). The
- * advantage is that we don't have to follow the strict linearity rule of
- * PFNMAP mappings in order to support COWable mappings.
- *
- */
- #ifdef __HAVE_ARCH_PTE_SPECIAL
- # define HAVE_PTE_SPECIAL 1
- #else
- # define HAVE_PTE_SPECIAL 0
- #endif
- struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
- pte_t pte)
- {
- unsigned long pfn = pte_pfn(pte);
- if (HAVE_PTE_SPECIAL) {
- if (likely(!pte_special(pte)))
- goto check_pfn;
- if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
- return NULL;
- if (!is_zero_pfn(pfn))
- print_bad_pte(vma, addr, pte, NULL);
- return NULL;
- }
- /* !HAVE_PTE_SPECIAL case follows: */
- if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
- if (vma->vm_flags & VM_MIXEDMAP) {
- if (!pfn_valid(pfn))
- return NULL;
- goto out;
- } else {
- unsigned long off;
- off = (addr - vma->vm_start) >> PAGE_SHIFT;
- if (pfn == vma->vm_pgoff + off)
- return NULL;
- if (!is_cow_mapping(vma->vm_flags))
- return NULL;
- }
- }
- if (is_zero_pfn(pfn))
- return NULL;
- check_pfn:
- if (unlikely(pfn > highest_memmap_pfn)) {
- print_bad_pte(vma, addr, pte, NULL);
- return NULL;
- }
- /*
- * NOTE! We still have PageReserved() pages in the page tables.
- * eg. VDSO mappings can cause them to exist.
- */
- out:
- return pfn_to_page(pfn);
- }
- /*
- * copy one vm_area from one task to the other. Assumes the page tables
- * already present in the new task to be cleared in the whole range
- * covered by this vma.
- */
- static inline unsigned long
- copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
- unsigned long addr, int *rss)
- {
- unsigned long vm_flags = vma->vm_flags;
- pte_t pte = *src_pte;
- struct page *page;
- /* pte contains position in swap or file, so copy. */
- if (unlikely(!pte_present(pte))) {
- if (!pte_file(pte)) {
- swp_entry_t entry = pte_to_swp_entry(pte);
- if (swap_duplicate(entry) < 0)
- return entry.val;
- /* make sure dst_mm is on swapoff's mmlist. */
- if (unlikely(list_empty(&dst_mm->mmlist))) {
- spin_lock(&mmlist_lock);
- if (list_empty(&dst_mm->mmlist))
- list_add(&dst_mm->mmlist,
- &src_mm->mmlist);
- spin_unlock(&mmlist_lock);
- }
- if (likely(!non_swap_entry(entry)))
- rss[MM_SWAPENTS]++;
- else if (is_write_migration_entry(entry) &&
- is_cow_mapping(vm_flags)) {
- /*
- * COW mappings require pages in both parent
- * and child to be set to read.
- */
- make_migration_entry_read(&entry);
- pte = swp_entry_to_pte(entry);
- set_pte_at(src_mm, addr, src_pte, pte);
- }
- }
- goto out_set_pte;
- }
- /*
- * If it's a COW mapping, write protect it both
- * in the parent and the child
- */
- if (is_cow_mapping(vm_flags)) {
- ptep_set_wrprotect(src_mm, addr, src_pte);
- pte = pte_wrprotect(pte);
- }
- /*
- * If it's a shared mapping, mark it clean in
- * the child
- */
- if (vm_flags & VM_SHARED)
- pte = pte_mkclean(pte);
- pte = pte_mkold(pte);
- page = vm_normal_page(vma, addr, pte);
- if (page) {
- get_page(page);
- page_dup_rmap(page);
- if (PageAnon(page))
- rss[MM_ANONPAGES]++;
- else
- rss[MM_FILEPAGES]++;
- }
- out_set_pte:
- set_pte_at(dst_mm, addr, dst_pte, pte);
- return 0;
- }
- int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
- {
- pte_t *orig_src_pte, *orig_dst_pte;
- pte_t *src_pte, *dst_pte;
- spinlock_t *src_ptl, *dst_ptl;
- int progress = 0;
- int rss[NR_MM_COUNTERS];
- swp_entry_t entry = (swp_entry_t){0};
- again:
- init_rss_vec(rss);
- dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
- if (!dst_pte)
- return -ENOMEM;
- src_pte = pte_offset_map(src_pmd, addr);
- src_ptl = pte_lockptr(src_mm, src_pmd);
- spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
- orig_src_pte = src_pte;
- orig_dst_pte = dst_pte;
- arch_enter_lazy_mmu_mode();
- do {
- /*
- * We are holding two locks at this point - either of them
- * could generate latencies in another task on another CPU.
- */
- if (progress >= 32) {
- progress = 0;
- if (need_resched() ||
- spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
- break;
- }
- if (pte_none(*src_pte)) {
- progress++;
- continue;
- }
- entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
- vma, addr, rss);
- if (entry.val)
- break;
- progress += 8;
- } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
- arch_leave_lazy_mmu_mode();
- spin_unlock(src_ptl);
- pte_unmap(orig_src_pte);
- add_mm_rss_vec(dst_mm, rss);
- pte_unmap_unlock(orig_dst_pte, dst_ptl);
- cond_resched();
- if (entry.val) {
- if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
- return -ENOMEM;
- progress = 0;
- }
- if (addr != end)
- goto again;
- return 0;
- }
- static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
- {
- pmd_t *src_pmd, *dst_pmd;
- unsigned long next;
- dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
- if (!dst_pmd)
- return -ENOMEM;
- src_pmd = pmd_offset(src_pud, addr);
- do {
- next = pmd_addr_end(addr, end);
- if (pmd_trans_huge(*src_pmd)) {
- int err;
- VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
- err = copy_huge_pmd(dst_mm, src_mm,
- dst_pmd, src_pmd, addr, vma);
- if (err == -ENOMEM)
- return -ENOMEM;
- if (!err)
- continue;
- /* fall through */
- }
- if (pmd_none_or_clear_bad(src_pmd))
- continue;
- if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
- vma, addr, next))
- return -ENOMEM;
- } while (dst_pmd++, src_pmd++, addr = next, addr != end);
- return 0;
- }
- static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
- unsigned long addr, unsigned long end)
- {
- pud_t *src_pud, *dst_pud;
- unsigned long next;
- dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
- if (!dst_pud)
- return -ENOMEM;
- src_pud = pud_offset(src_pgd, addr);
- do {
- next = pud_addr_end(addr, end);
- if (pud_none_or_clear_bad(src_pud))
- continue;
- if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
- vma, addr, next))
- return -ENOMEM;
- } while (dst_pud++, src_pud++, addr = next, addr != end);
- return 0;
- }
- int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
- struct vm_area_struct *vma)
- {
- pgd_t *src_pgd, *dst_pgd;
- unsigned long next;
- unsigned long addr = vma->vm_start;
- unsigned long end = vma->vm_end;
- int ret;
- /*
- * Don't copy ptes where a page fault will fill them correctly.
- * Fork becomes much lighter when there are big shared or private
- * readonly mappings. The tradeoff is that copy_page_range is more
- * efficient than faulting.
- */
- if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
- if (!vma->anon_vma)
- return 0;
- }
- if (is_vm_hugetlb_page(vma))
- return copy_hugetlb_page_range(dst_mm, src_mm, vma);
- if (unlikely(is_pfn_mapping(vma))) {
- /*
- * We do not free on error cases below as remove_vma
- * gets called on error from higher level routine
- */
- ret = track_pfn_vma_copy(vma);
- if (ret)
- return ret;
- }
- /*
- * We need to invalidate the secondary MMU mappings only when
- * there could be a permission downgrade on the ptes of the
- * parent mm. And a permission downgrade will only happen if
- * is_cow_mapping() returns true.
- */
- if (is_cow_mapping(vma->vm_flags))
- mmu_notifier_invalidate_range_start(src_mm, addr, end);
- ret = 0;
- dst_pgd = pgd_offset(dst_mm, addr);
- src_pgd = pgd_offset(src_mm, addr);
- do {
- next = pgd_addr_end(addr, end);
- if (pgd_none_or_clear_bad(src_pgd))
- continue;
- if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
- vma, addr, next))) {
- ret = -ENOMEM;
- break;
- }
- } while (dst_pgd++, src_pgd++, addr = next, addr != end);
- if (is_cow_mapping(vma->vm_flags))
- mmu_notifier_invalidate_range_end(src_mm,
- vma->vm_start, end);
- return ret;
- }
- static unsigned long zap_pte_range(struct mmu_gather *tlb,
- struct vm_area_struct *vma, pmd_t *pmd,
- unsigned long addr, unsigned long end,
- struct zap_details *details)
- {
- struct mm_struct *mm = tlb->mm;
- int force_flush = 0;
- int rss[NR_MM_COUNTERS];
- spinlock_t *ptl;
- pte_t *start_pte;
- pte_t *pte;
- again:
- init_rss_vec(rss);
- start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
- pte = start_pte;
- arch_enter_lazy_mmu_mode();
- do {
- pte_t ptent = *pte;
- if (pte_none(ptent)) {
- continue;
- }
- if (pte_present(ptent)) {
- struct page *page;
- page = vm_normal_page(vma, addr, ptent);
- if (unlikely(details) && page) {
- /*
- * unmap_shared_mapping_pages() wants to
- * invalidate cache without truncating:
- * unmap shared but keep private pages.
- */
- if (details->check_mapping &&
- details->check_mapping != page->mapping)
- continue;
- /*
- * Each page->index must be checked when
- * invalidating or truncating nonlinear.
- */
- if (details->nonlinear_vma &&
- (page->index < details->first_index ||
- page->index > details->last_index))
- continue;
- }
- ptent = ptep_get_and_clear_full(mm, addr, pte,
- tlb->fullmm);
- tlb_remove_tlb_entry(tlb, pte, addr);
- if (unlikely(!page))
- continue;
- if (unlikely(details) && details->nonlinear_vma
- && linear_page_index(details->nonlinear_vma,
- addr) != page->index)
- set_pte_at(mm, addr, pte,
- pgoff_to_pte(page->index));
- if (PageAnon(page))
- rss[MM_ANONPAGES]--;
- else {
- if (pte_dirty(ptent))
- set_page_dirty(page);
- if (pte_young(ptent) &&
- likely(!VM_SequentialReadHint(vma)))
- mark_page_accessed(page);
- rss[MM_FILEPAGES]--;
- }
- page_remove_rmap(page);
- if (unlikely(page_mapcount(page) < 0))
- print_bad_pte(vma, addr, ptent, page);
- force_flush = !__tlb_remove_page(tlb, page);
- if (force_flush)
- break;
- continue;
- }
- /*
- * If details->check_mapping, we leave swap entries;
- * if details->nonlinear_vma, we leave file entries.
- */
- if (unlikely(details))
- continue;
- if (pte_file(ptent)) {
- if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
- print_bad_pte(vma, addr, ptent, NULL);
- } else {
- swp_entry_t entry = pte_to_swp_entry(ptent);
- if (!non_swap_entry(entry))
- rss[MM_SWAPENTS]--;
- if (unlikely(!free_swap_and_cache(entry)))
- print_bad_pte(vma, addr, ptent, NULL);
- }
- pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
- } while (pte++, addr += PAGE_SIZE, addr != end);
- add_mm_rss_vec(mm, rss);
- arch_leave_lazy_mmu_mode();
- pte_unmap_unlock(start_pte, ptl);
- /*
- * mmu_gather ran out of room to batch pages, we break out of
- * the PTE lock to avoid doing the potential expensive TLB invalidate
- * and page-free while holding it.
- */
- if (force_flush) {
- force_flush = 0;
- tlb_flush_mmu(tlb);
- if (addr != end)
- goto again;
- }
- return addr;
- }
- static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
- struct vm_area_struct *vma, pud_t *pud,
- unsigned long addr, unsigned long end,
- struct zap_details *details)
- {
- pmd_t *pmd;
- unsigned long next;
- pmd = pmd_offset(pud, addr);
- do {
- next = pmd_addr_end(addr, end);
- if (pmd_trans_huge(*pmd)) {
- if (next - addr != HPAGE_PMD_SIZE) {
- VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
- split_huge_page_pmd(vma->vm_mm, pmd);
- } else if (zap_huge_pmd(tlb, vma, pmd))
- goto next;
- /* fall through */
- }
- /*
- * Here there can be other concurrent MADV_DONTNEED or
- * trans huge page faults running, and if the pmd is
- * none or trans huge it can change under us. This is
- * because MADV_DONTNEED holds the mmap_sem in read
- * mode.
- */
- if (pmd_none_or_trans_huge_or_clear_bad(pmd))
- goto next;
- next = zap_pte_range(tlb, vma, pmd, addr, next, details);
- next:
- cond_resched();
- } while (pmd++, addr = next, addr != end);
- return addr;
- }
- static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
- struct vm_area_struct *vma, pgd_t *pgd,
- unsigned long addr, unsigned long end,
- struct zap_details *details)
- {
- pud_t *pud;
- unsigned long next;
- pud = pud_offset(pgd, addr);
- do {
- next = pud_addr_end(addr, end);
- if (pud_none_or_clear_bad(pud))
- continue;
- next = zap_pmd_range(tlb, vma, pud, addr, next, details);
- } while (pud++, addr = next, addr != end);
- return addr;
- }
- static unsigned long unmap_page_range(struct mmu_gather *tlb,
- struct vm_area_struct *vma,
- unsigned long addr, unsigned long end,
- struct zap_details *details)
- {
- pgd_t *pgd;
- unsigned long next;
- if (details && !details->check_mapping && !details->nonlinear_vma)
- details = NULL;
- BUG_ON(addr >= end);
- mem_cgroup_uncharge_start();
- tlb_start_vma(tlb, vma);
- pgd = pgd_offset(vma->vm_mm, addr);
- do {
- next = pgd_addr_end(addr, end);
- if (pgd_none_or_clear_bad(pgd))
- continue;
- next = zap_pud_range(tlb, vma, pgd, addr, next, details);
- } while (pgd++, addr = next, addr != end);
- tlb_end_vma(tlb, vma);
- mem_cgroup_uncharge_end();
- return addr;
- }
- #ifdef CONFIG_PREEMPT
- # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
- #else
- /* No preempt: go for improved straight-line efficiency */
- # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
- #endif
- /**
- * unmap_vmas - unmap a range of memory covered by a list of vma's
- * @tlb: address of the caller's struct mmu_gather
- * @vma: the starting vma
- * @start_addr: virtual address at which to start unmapping
- * @end_addr: virtual address at which to end unmapping
- * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
- * @details: details of nonlinear truncation or shared cache invalidation
- *
- * Returns the end address of the unmapping (restart addr if interrupted).
- *
- * Unmap all pages in the vma list.
- *
- * We aim to not hold locks for too long (for scheduling latency reasons).
- * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
- * return the ending mmu_gather to the caller.
- *
- * Only addresses between `start' and `end' will be unmapped.
- *
- * The VMA list must be sorted in ascending virtual address order.
- *
- * unmap_vmas() assumes that the caller will flush the whole unmapped address
- * range after unmap_vmas() returns. So the only responsibility here is to
- * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
- * drops the lock and schedules.
- */
- unsigned long unmap_vmas(struct mmu_gather *tlb,
- struct vm_area_struct *vma, unsigned long start_addr,
- unsigned long end_addr, unsigned long *nr_accounted,
- struct zap_details *details)
- {
- unsigned long start = start_addr;
- struct mm_struct *mm = vma->vm_mm;
- mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
- for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
- unsigned long end;
- start = max(vma->vm_start, start_addr);
- if (start >= vma->vm_end)
- continue;
- end = min(vma->vm_end, end_addr);
- if (end <= vma->vm_start)
- continue;
- if (vma->vm_flags & VM_ACCOUNT)
- *nr_accounted += (end - start) >> PAGE_SHIFT;
- if (unlikely(is_pfn_mapping(vma)))
- untrack_pfn_vma(vma, 0, 0);
- while (start != end) {
- if (unlikely(is_vm_hugetlb_page(vma))) {
- /*
- * It is undesirable to test vma->vm_file as it
- * should be non-null for valid hugetlb area.
- * However, vm_file will be NULL in the error
- * cleanup path of do_mmap_pgoff. When
- * hugetlbfs ->mmap method fails,
- * do_mmap_pgoff() nullifies vma->vm_file
- * before calling this function to clean up.
- * Since no pte has actually been setup, it is
- * safe to do nothing in this case.
- */
- if (vma->vm_file)
- unmap_hugepage_range(vma, start, end, NULL);
- start = end;
- } else
- start = unmap_page_range(tlb, vma, start, end, details);
- }
- }
- mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
- return start; /* which is now the end (or restart) address */
- }
- /**
- * zap_page_range - remove user pages in a given range
- * @vma: vm_area_struct holding the applicable pages
- * @address: starting address of pages to zap
- * @size: number of bytes to zap
- * @details: details of nonlinear truncation or shared cache invalidation
- */
- unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
- unsigned long size, struct zap_details *details)
- {
- struct mm_struct *mm = vma->vm_mm;
- struct mmu_gather tlb;
- unsigned long end = address + size;
- unsigned long nr_accounted = 0;
- lru_add_drain();
- tlb_gather_mmu(&tlb, mm, 0);
- update_hiwater_rss(mm);
- end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
- tlb_finish_mmu(&tlb, address, end);
- return end;
- }
- /**
- * zap_vma_ptes - remove ptes mapping the vma
- * @vma: vm_area_struct holding ptes to be zapped
- * @address: starting address of pages to zap
- * @size: number of bytes to zap
- *
- * This function only unmaps ptes assigned to VM_PFNMAP vmas.
- *
- * The entire address range must be fully contained within the vma.
- *
- * Returns 0 if successful.
- */
- int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
- unsigned long size)
- {
- if (address < vma->vm_start || address + size > vma->vm_end ||
- !(vma->vm_flags & VM_PFNMAP))
- return -1;
- zap_page_range(vma, address, size, NULL);
- return 0;
- }
- EXPORT_SYMBOL_GPL(zap_vma_ptes);
- /**
- * follow_page - look up a page descriptor from a user-virtual address
- * @vma: vm_area_struct mapping @address
- * @address: virtual address to look up
- * @flags: flags modifying lookup behaviour
- *
- * @flags can have FOLL_ flags set, defined in <linux/mm.h>
- *
- * Returns the mapped (struct page *), %NULL if no mapping exists, or
- * an error pointer if there is a mapping to something not represented
- * by a page descriptor (see also vm_normal_page()).
- */
- struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
- unsigned int flags)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep, pte;
- spinlock_t *ptl;
- struct page *page;
- struct mm_struct *mm = vma->vm_mm;
- page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
- if (!IS_ERR(page)) {
- BUG_ON(flags & FOLL_GET);
- goto out;
- }
- page = NULL;
- pgd = pgd_offset(mm, address);
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
- goto no_page_table;
- pud = pud_offset(pgd, address);
- if (pud_none(*pud))
- goto no_page_table;
- if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
- BUG_ON(flags & FOLL_GET);
- page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
- goto out;
- }
- if (unlikely(pud_bad(*pud)))
- goto no_page_table;
- pmd = pmd_offset(pud, address);
- if (pmd_none(*pmd))
- goto no_page_table;
- if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
- BUG_ON(flags & FOLL_GET);
- page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
- goto out;
- }
- if (pmd_trans_huge(*pmd)) {
- if (flags & FOLL_SPLIT) {
- split_huge_page_pmd(mm, pmd);
- goto split_fallthrough;
- }
- spin_lock(&mm->page_table_lock);
- if (likely(pmd_trans_huge(*pmd))) {
- if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(&mm->page_table_lock);
- wait_split_huge_page(vma->anon_vma, pmd);
- } else {
- page = follow_trans_huge_pmd(mm, address,
- pmd, flags);
- spin_unlock(&mm->page_table_lock);
- goto out;
- }
- } else
- spin_unlock(&mm->page_table_lock);
- /* fall through */
- }
- split_fallthrough:
- if (unlikely(pmd_bad(*pmd)))
- goto no_page_table;
- ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
- pte = *ptep;
- if (!pte_present(pte))
- goto no_page;
- if ((flags & FOLL_WRITE) && !pte_write(pte))
- goto unlock;
- page = vm_normal_page(vma, address, pte);
- if (unlikely(!page)) {
- if ((flags & FOLL_DUMP) ||
- !is_zero_pfn(pte_pfn(pte)))
- goto bad_page;
- page = pte_page(pte);
- }
- if (flags & FOLL_GET)
- get_page_foll(page);
- if (flags & FOLL_TOUCH) {
- if ((flags & FOLL_WRITE) &&
- !pte_dirty(pte) && !PageDirty(page))
- set_page_dirty(page);
- /*
- * pte_mkyoung() would be more correct here, but atomic care
- * is needed to avoid losing the dirty bit: it is easier to use
- * mark_page_accessed().
- */
- mark_page_accessed(page);
- }
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
- /*
- * The preliminary mapping check is mainly to avoid the
- * pointless overhead of lock_page on the ZERO_PAGE
- * which might bounce very badly if there is contention.
- *
- * If the page is already locked, we don't need to
- * handle it now - vmscan will handle it later if and
- * when it attempts to reclaim the page.
- */
- if (page->mapping && trylock_page(page)) {
- lru_add_drain(); /* push cached pages to LRU */
- /*
- * Because we lock page here and migration is
- * blocked by the pte's page reference, we need
- * only check for file-cache page truncation.
- */
- if (page->mapping)
- mlock_vma_page(page);
- unlock_page(page);
- }
- }
- unlock:
- pte_unmap_unlock(ptep, ptl);
- out:
- return page;
- bad_page:
- pte_unmap_unlock(ptep, ptl);
- return ERR_PTR(-EFAULT);
- no_page:
- pte_unmap_unlock(ptep, ptl);
- if (!pte_none(pte))
- return page;
- no_page_table:
- /*
- * When core dumping an enormous anonymous area that nobody
- * has touched so far, we don't want to allocate unnecessary pages or
- * page tables. Return error instead of NULL to skip handle_mm_fault,
- * then get_dump_page() will return NULL to leave a hole in the dump.
- * But we can only make this optimization where a hole would surely
- * be zero-filled if handle_mm_fault() actually did handle it.
- */
- if ((flags & FOLL_DUMP) &&
- (!vma->vm_ops || !vma->vm_ops->fault))
- return ERR_PTR(-EFAULT);
- return page;
- }
- static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
- {
- return stack_guard_page_start(vma, addr) ||
- stack_guard_page_end(vma, addr+PAGE_SIZE);
- }
- /**
- * __get_user_pages() - pin user pages in memory
- * @tsk: task_struct of target task
- * @mm: mm_struct of target mm
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @gup_flags: flags modifying pin behaviour
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long. Or NULL, if caller
- * only intends to ensure the pages are faulted in.
- * @vmas: array of pointers to vmas corresponding to each page.
- * Or NULL if the caller does not require them.
- * @nonblocking: whether waiting for disk IO or mmap_sem contention
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno. Each page returned must be released
- * with a put_page() call when it is finished with. vmas will only
- * remain valid while mmap_sem is held.
- *
- * Must be called with mmap_sem held for read or write.
- *
- * __get_user_pages walks a process's page tables and takes a reference to
- * each struct page that each user address corresponds to at a given
- * instant. That is, it takes the page that would be accessed if a user
- * thread accesses the given user virtual address at that instant.
- *
- * This does not guarantee that the page exists in the user mappings when
- * __get_user_pages returns, and there may even be a completely different
- * page there in some cases (eg. if mmapped pagecache has been invalidated
- * and subsequently re faulted). However it does guarantee that the page
- * won't be freed completely. And mostly callers simply care that the page
- * contains data that was valid *at some point in time*. Typically, an IO
- * or similar operation cannot guarantee anything stronger anyway because
- * locks can't be held over the syscall boundary.
- *
- * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
- * the page is written to, set_page_dirty (or set_page_dirty_lock, as
- * appropriate) must be called after the page is finished with, and
- * before put_page is called.
- *
- * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
- * or mmap_sem contention, and if waiting is needed to pin all pages,
- * *@nonblocking will be set to 0.
- *
- * In most cases, get_user_pages or get_user_pages_fast should be used
- * instead of __get_user_pages. __get_user_pages should be used only if
- * you need some special @gup_flags.
- */
- int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, int nr_pages, unsigned int gup_flags,
- struct page **pages, struct vm_area_struct **vmas,
- int *nonblocking)
- {
- int i;
- unsigned long vm_flags;
- if (nr_pages <= 0)
- return 0;
- VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
- /*
- * Require read or write permissions.
- * If FOLL_FORCE is set, we only require the "MAY" flags.
- */
- vm_flags = (gup_flags & FOLL_WRITE) ?
- (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
- vm_flags &= (gup_flags & FOLL_FORCE) ?
- (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
- i = 0;
- do {
- struct vm_area_struct *vma;
- vma = find_extend_vma(mm, start);
- if (!vma && in_gate_area(mm, start)) {
- unsigned long pg = start & PAGE_MASK;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- /* user gate pages are read-only */
- if (gup_flags & FOLL_WRITE)
- return i ? : -EFAULT;
- if (pg > TASK_SIZE)
- pgd = pgd_offset_k(pg);
- else
- pgd = pgd_offset_gate(mm, pg);
- BUG_ON(pgd_none(*pgd));
- pud = pud_offset(pgd, pg);
- BUG_ON(pud_none(*pud));
- pmd = pmd_offset(pud, pg);
- if (pmd_none(*pmd))
- return i ? : -EFAULT;
- VM_BUG_ON(pmd_trans_huge(*pmd));
- pte = pte_offset_map(pmd, pg);
- if (pte_none(*pte)) {
- pte_unmap(pte);
- return i ? : -EFAULT;
- }
- vma = get_gate_vma(mm);
- if (pages) {
- struct page *page;
- page = vm_normal_page(vma, start, *pte);
- if (!page) {
- if (!(gup_flags & FOLL_DUMP) &&
- is_zero_pfn(pte_pfn(*pte)))
- page = pte_page(*pte);
- else {
- pte_unmap(pte);
- return i ? : -EFAULT;
- }
- }
- pages[i] = page;
- get_page(page);
- }
- pte_unmap(pte);
- goto next_page;
- }
- if (!vma ||
- (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
- !(vm_flags & vma->vm_flags))
- return i ? : -EFAULT;
- if (is_vm_hugetlb_page(vma)) {
- i = follow_hugetlb_page(mm, vma, pages, vmas,
- &start, &nr_pages, i, gup_flags);
- continue;
- }
- do {
- struct page *page;
- unsigned int foll_flags = gup_flags;
- /*
- * If we have a pending SIGKILL, don't keep faulting
- * pages and potentially allocating memory.
- */
- if (unlikely(fatal_signal_pending(current)))
- return i ? i : -ERESTARTSYS;
- cond_resched();
- while (!(page = follow_page(vma, start, foll_flags))) {
- int ret;
- unsigned int fault_flags = 0;
- /* For mlock, just skip the stack guard page. */
- if (foll_flags & FOLL_MLOCK) {
- if (stack_guard_page(vma, start))
- goto next_page;
- }
- if (foll_flags & FOLL_WRITE)
- fault_flags |= FAULT_FLAG_WRITE;
- if (nonblocking)
- fault_flags |= FAULT_FLAG_ALLOW_RETRY;
- if (foll_flags & FOLL_NOWAIT)
- fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
- ret = handle_mm_fault(mm, vma, start,
- fault_flags);
- if (ret & VM_FAULT_ERROR) {
- if (ret & VM_FAULT_OOM)
- return i ? i : -ENOMEM;
- if (ret & (VM_FAULT_HWPOISON |
- VM_FAULT_HWPOISON_LARGE)) {
- if (i)
- return i;
- else if (gup_flags & FOLL_HWPOISON)
- return -EHWPOISON;
- else
- return -EFAULT;
- }
- if (ret & VM_FAULT_SIGBUS)
- return i ? i : -EFAULT;
- BUG();
- }
- if (tsk) {
- if (ret & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
- }
- if (ret & VM_FAULT_RETRY) {
- if (nonblocking)
- *nonblocking = 0;
- return i;
- }
- /*
- * The VM_FAULT_WRITE bit tells us that
- * do_wp_page has broken COW when necessary,
- * even if maybe_mkwrite decided not to set
- * pte_write. We can thus safely do subsequent
- * page lookups as if they were reads. But only
- * do so when looping for pte_write is futile:
- * in some cases userspace may also be wanting
- * to write to the gotten user page, which a
- * read fault here might prevent (a readonly
- * page might get reCOWed by userspace write).
- */
- if ((ret & VM_FAULT_WRITE) &&
- !(vma->vm_flags & VM_WRITE))
- foll_flags &= ~FOLL_WRITE;
- cond_resched();
- }
- if (IS_ERR(page))
- return i ? i : PTR_ERR(page);
- if (pages) {
- pages[i] = page;
- flush_anon_page(vma, page, start);
- flush_dcache_page(page);
- }
- next_page:
- if (vmas)
- vmas[i] = vma;
- i++;
- start += PAGE_SIZE;
- nr_pages--;
- } while (nr_pages && start < vma->vm_end);
- } while (nr_pages);
- return i;
- }
- EXPORT_SYMBOL(__get_user_pages);
- /*
- * fixup_user_fault() - manually resolve a user page fault
- * @tsk: the task_struct to use for page fault accounting, or
- * NULL if faults are not to be recorded.
- * @mm: mm_struct of target mm
- * @address: user address
- * @fault_flags:flags to pass down to handle_mm_fault()
- *
- * This is meant to be called in the specific scenario where for locking reasons
- * we try to access user memory in atomic context (within a pagefault_disable()
- * section), this returns -EFAULT, and we want to resolve the user fault before
- * trying again.
- *
- * Typically this is meant to be used by the futex code.
- *
- * The main difference with get_user_pages() is that this function will
- * unconditionally call handle_mm_fault() which will in turn perform all the
- * necessary SW fixup of the dirty and young bits in the PTE, while
- * handle_mm_fault() only guarantees to update these in the struct page.
- *
- * This is important for some architectures where those bits also gate the
- * access permission to the page because they are maintained in software. On
- * such architectures, gup() will not be enough to make a subsequent access
- * succeed.
- *
- * This should be called with the mm_sem held for read.
- */
- int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long address, unsigned int fault_flags)
- {
- struct vm_area_struct *vma;
- int ret;
- vma = find_extend_vma(mm, address);
- if (!vma || address < vma->vm_start)
- return -EFAULT;
- ret = handle_mm_fault(mm, vma, address, fault_flags);
- if (ret & VM_FAULT_ERROR) {
- if (ret & VM_FAULT_OOM)
- return -ENOMEM;
- if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
- return -EHWPOISON;
- if (ret & VM_FAULT_SIGBUS)
- return -EFAULT;
- BUG();
- }
- if (tsk) {
- if (ret & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
- }
- return 0;
- }
- /*
- * get_user_pages() - pin user pages in memory
- * @tsk: the task_struct to use for page fault accounting, or
- * NULL if faults are not to be recorded.
- * @mm: mm_struct of target mm
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @write: whether pages will be written to by the caller
- * @force: whether to force write access even if user mapping is
- * readonly. This will result in the page being COWed even
- * in MAP_SHARED mappings. You do not want this.
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long. Or NULL, if caller
- * only intends to ensure the pages are faulted in.
- * @vmas: array of pointers to vmas corresponding to each page.
- * Or NULL if the caller does not require them.
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno. Each page returned must be released
- * with a put_page() call when it is finished with. vmas will only
- * remain valid while mmap_sem is held.
- *
- * Must be called with mmap_sem held for read or write.
- *
- * get_user_pages walks a process's page tables and takes a reference to
- * each struct page that each user address corresponds to at a given
- * instant. That is, it takes the page that would be accessed if a user
- * thread accesses the given user virtual address at that instant.
- *
- * This does not guarantee that the page exists in the user mappings when
- * get_user_pages returns, and there may even be a completely different
- * page there in some cases (eg. if mmapped pagecache has been invalidated
- * and subsequently re faulted). However it does guarantee that the page
- * won't be freed completely. And mostly callers simply care that the page
- * contains data that was valid *at some point in time*. Typically, an IO
- * or similar operation cannot guarantee anything stronger anyway because
- * locks can't be held over the syscall boundary.
- *
- * If write=0, the page must not be written to. If the page is written to,
- * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
- * after the page is finished with, and before put_page is called.
- *
- * get_user_pages is typically used for fewer-copy IO operations, to get a
- * handle on the memory by some means other than accesses via the user virtual
- * addresses. The pages may be submitted for DMA to devices or accessed via
- * their kernel linear mapping (via the kmap APIs). Care should be taken to
- * use the correct cache flushing APIs.
- *
- * See also get_user_pages_fast, for performance critical applications.
- */
- int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, int nr_pages, int write, int force,
- struct page **pages, struct vm_area_struct **vmas)
- {
- int flags = FOLL_TOUCH;
- if (pages)
- flags |= FOLL_GET;
- if (write)
- flags |= FOLL_WRITE;
- if (force)
- flags |= FOLL_FORCE;
- return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
- NULL);
- }
- EXPORT_SYMBOL(get_user_pages);
- /**
- * get_dump_page() - pin user page in memory while writing it to core dump
- * @addr: user address
- *
- * Returns struct page pointer of user page pinned for dump,
- * to be freed afterwards by page_cache_release() or put_page().
- *
- * Returns NULL on any kind of failure - a hole must then be inserted into
- * the corefile, to preserve alignment with its headers; and also returns
- * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
- * allowing a hole to be left in the corefile to save diskspace.
- *
- * Called without mmap_sem, but after all other threads have been killed.
- */
- #ifdef CONFIG_ELF_CORE
- struct page *get_dump_page(unsigned long addr)
- {
- struct vm_area_struct *vma;
- struct page *page;
- if (__get_user_pages(current, current->mm, addr, 1,
- FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
- NULL) < 1)
- return NULL;
- flush_cache_page(vma, addr, page_to_pfn(page));
- return page;
- }
- #endif /* CONFIG_ELF_CORE */
- pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
- spinlock_t **ptl)
- {
- pgd_t * pgd = pgd_offset(mm, addr);
- pud_t * pud = pud_alloc(mm, pgd, addr);
- if (pud) {
- pmd_t * pmd = pmd_alloc(mm, pud, addr);
- if (pmd) {
- VM_BUG_ON(pmd_trans_huge(*pmd));
- return pte_alloc_map_lock(mm, pmd, addr, ptl);
- }
- }
- return NULL;
- }
- /*
- * This is the old fallback for page remapping.
- *
- * For historical reasons, it only allows reserved pages. Only
- * old drivers should use this, and they needed to mark their
- * pages reserved for the old functions anyway.
- */
- static int insert_page(struct vm_area_struct *vma, unsigned long addr,
- struct page *page, pgprot_t prot)
- {
- struct mm_struct *mm = vma->vm_mm;
- int retval;
- pte_t *pte;
- spinlock_t *ptl;
- retval = -EINVAL;
- if (PageAnon(page))
- goto out;
- retval = -ENOMEM;
- flush_dcache_page(page);
- pte = get_locked_pte(mm, addr, &ptl);
- if (!pte)
- goto out;
- retval = -EBUSY;
- if (!pte_none(*pte))
- goto out_unlock;
- /* Ok, finally just insert the thing.. */
- get_page(page);
- inc_mm_counter_fast(mm, MM_FILEPAGES);
- page_add_file_rmap(page);
- set_pte_at(mm, addr, pte, mk_pte(page, prot));
- retval = 0;
- pte_unmap_unlock(pte, ptl);
- return retval;
- out_unlock:
- pte_unmap_unlock(pte, ptl);
- out:
- return retval;
- }
- /**
- * vm_insert_page - insert single page into user vma
- * @vma: user vma to map to
- * @addr: target user address of this page
- * @page: source kernel page
- *
- * This allows drivers to insert individual pages they've allocated
- * into a user vma.
- *
- * The page has to be a nice clean _individual_ kernel allocation.
- * If you allocate a compound page, you need to have marked it as
- * such (__GFP_COMP), or manually just split the page up yourself
- * (see split_page()).
- *
- * NOTE! Traditionally this was done with "remap_pfn_range()" which
- * took an arbitrary page protection parameter. This doesn't allow
- * that. Your vma protection will have to be set up correctly, which
- * means that if you want a shared writable mapping, you'd better
- * ask for a shared writable mapping!
- *
- * The page does not need to be reserved.
- */
- int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
- struct page *page)
- {
- if (addr < vma->vm_start || addr >= vma->vm_end)
- return -EFAULT;
- if (!page_count(page))
- return -EINVAL;
- vma->vm_flags |= VM_INSERTPAGE;
- return insert_page(vma, addr, page, vma->vm_page_prot);
- }
- EXPORT_SYMBOL(vm_insert_page);
- static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn, pgprot_t prot)
- {
- struct mm_struct *mm = vma->vm_mm;
- int retval;
- pte_t *pte, entry;
- spinlock_t *ptl;
- retval = -ENOMEM;
- pte = get_locked_pte(mm, addr, &ptl);
- if (!pte)
- goto out;
- retval = -EBUSY;
- if (!pte_none(*pte))
- goto out_unlock;
- /* Ok, finally just insert the thing.. */
- entry = pte_mkspecial(pfn_pte(pfn, prot));
- set_pte_at(mm, addr, pte, entry);
- update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
- retval = 0;
- out_unlock:
- pte_unmap_unlock(pte, ptl);
- out:
- return retval;
- }
- /**
- * vm_insert_pfn - insert single pfn into user vma
- * @vma: user vma to map to
- * @addr: target user address of this page
- * @pfn: source kernel pfn
- *
- * Similar to vm_inert_page, this allows drivers to insert individual pages
- * they've allocated into a user vma. Same comments apply.
- *
- * This function should only be called from a vm_ops->fault handler, and
- * in that case the handler should return NULL.
- *
- * vma cannot be a COW mapping.
- *
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
- */
- int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn)
- {
- int ret;
- pgprot_t pgprot = vma->vm_page_prot;
- /*
- * Technically, architectures with pte_special can avoid all these
- * restrictions (same for remap_pfn_range). However we would like
- * consistency in testing and feature parity among all, so we should
- * try to keep these invariants in place for everybody.
- */
- BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
- BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
- (VM_PFNMAP|VM_MIXEDMAP));
- BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
- BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
- if (addr < vma->vm_start || addr >= vma->vm_end)
- return -EFAULT;
- if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
- return -EINVAL;
- ret = insert_pfn(vma, addr, pfn, pgprot);
- if (ret)
- untrack_pfn_vma(vma, pfn, PAGE_SIZE);
- return ret;
- }
- EXPORT_SYMBOL(vm_insert_pfn);
- int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn)
- {
- BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
- if (addr < vma->vm_start || addr >= vma->vm_end)
- return -EFAULT;
- /*
- * If we don't have pte special, then we have to use the pfn_valid()
- * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
- * refcount the page if pfn_valid is true (hence insert_page rather
- * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
- * without pte special, it would there be refcounted as a normal page.
- */
- if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
- struct page *page;
- page = pfn_to_page(pfn);
- return insert_page(vma, addr, page, vma->vm_page_prot);
- }
- return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
- }
- EXPORT_SYMBOL(vm_insert_mixed);
- /*
- * maps a range of physical memory into the requested pages. the old
- * mappings are removed. any references to nonexistent pages results
- * in null mappings (currently treated as "copy-on-access")
- */
- static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
- unsigned long addr, unsigned long end,
- unsigned long pfn, pgprot_t prot)
- {
- pte_t *pte;
- spinlock_t *ptl;
- pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
- if (!pte)
- return -ENOMEM;
- arch_enter_lazy_mmu_mode();
- do {
- BUG_ON(!pte_none(*pte));
- set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
- pfn++;
- } while (pte++, addr += PAGE_SIZE, addr != end);
- arch_leave_lazy_mmu_mode();
- pte_unmap_unlock(pte - 1, ptl);
- return 0;
- }
- static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
- unsigned long addr, unsigned long end,
- unsigned long pfn, pgprot_t prot)
- {
- pmd_t *pmd;
- unsigned long next;
- pfn -= addr >> PAGE_SHIFT;
- pmd = pmd_alloc(mm, pud, addr);
- if (!pmd)
- return -ENOMEM;
- VM_BUG_ON(pmd_trans_huge(*pmd));
- do {
- next = pmd_addr_end(addr, end);
- if (remap_pte_range(mm, pmd, addr, next,
- pfn + (addr >> PAGE_SHIFT), prot))
- return -ENOMEM;
- } while (pmd++, addr = next, addr != end);
- return 0;
- }
- static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
- unsigned long addr, unsigned long end,
- unsigned long pfn, pgprot_t prot)
- {
- pud_t *pud;
- unsigned long next;
- pfn -= addr >> PAGE_SHIFT;
- pud = pud_alloc(mm, pgd, addr);
- if (!pud)
- return -ENOMEM;
- do {
- next = pud_addr_end(addr, end);
- if (remap_pmd_range(mm, pud, addr, next,
- pfn + (addr >> PAGE_SHIFT), prot))
- return -ENOMEM;
- } while (pud++, addr = next, addr != end);
- return 0;
- }
- /**
- * remap_pfn_range - remap kernel memory to userspace
- * @vma: user vma to map to
- * @addr: target user address to start at
- * @pfn: physical address of kernel memory
- * @size: size of map area
- * @prot: page protection flags for this mapping
- *
- * Note: this is only safe if the mm semaphore is held when called.
- */
- int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
- unsigned long pfn, unsigned long size, pgprot_t prot)
- {
- pgd_t *pgd;
- unsigned long next;
- unsigned long end = addr + PAGE_ALIGN(size);
- struct mm_struct *mm = vma->vm_mm;
- int err;
- /*
- * Physically remapped pages are special. Tell the
- * rest of the world about it:
- * VM_IO tells people not to look at these pages
- * (accesses can have side effects).
- * VM_RESERVED is specified all over the place, because
- * in 2.4 it kept swapout's vma scan off this vma; but
- * in 2.6 the LRU scan won't even find its pages, so this
- * flag means no more than count its pages in reserved_vm,
- * and omit it from core dump, even when VM_IO turned off.
- * VM_PFNMAP tells the core MM that the base pages are just
- * raw PFN mappings, and do not have a "struct page" associated
- * with them.
- *
- * There's a horrible special case to handle copy-on-write
- * behaviour that some programs depend on. We mark the "original"
- * un-COW'ed pages by matching them up with "vma->vm_pgoff".
- */
- if (addr == vma->vm_start && end == vma->vm_end) {
- vma->vm_pgoff = pfn;
- vma->vm_flags |= VM_PFN_AT_MMAP;
- } else if (is_cow_mapping(vma->vm_flags))
- return -EINVAL;
- vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
- err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
- if (err) {
- /*
- * To indicate that track_pfn related cleanup is not
- * needed from higher level routine calling unmap_vmas
- */
- vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
- vma->vm_flags &= ~VM_PFN_AT_MMAP;
- return -EINVAL;
- }
- BUG_ON(addr >= end);
- pfn -= addr >> PAGE_SHIFT;
- pgd = pgd_offset(mm, addr);
- flush_cache_range(vma, addr, end);
- do {
- next = pgd_addr_end(addr, end);
- err = remap_pud_range(mm, pgd, addr, next,
- pfn + (addr >> PAGE_SHIFT), prot);
- if (err)
- break;
- } while (pgd++, addr = next, addr != end);
- if (err)
- untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
- return err;
- }
- EXPORT_SYMBOL(remap_pfn_range);
- static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
- unsigned long addr, unsigned long end,
- pte_fn_t fn, void *data)
- {
- pte_t *pte;
- int err;
- pgtable_t token;
- spinlock_t *uninitialized_var(ptl);
- pte = (mm == &init_mm) ?
- pte_alloc_kernel(pmd, addr) :
- pte_alloc_map_lock(mm, pmd, addr, &ptl);
- if (!pte)
- return -ENOMEM;
- BUG_ON(pmd_huge(*pmd));
- arch_enter_lazy_mmu_mode();
- token = pmd_pgtable(*pmd);
- do {
- err = fn(pte++, token, addr, data);
- if (err)
- break;
- } while (addr += PAGE_SIZE, addr != end);
- arch_leave_lazy_mmu_mode();
- if (mm != &init_mm)
- pte_unmap_unlock(pte-1, ptl);
- return err;
- }
- static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
- unsigned long addr, unsigned long end,
- pte_fn_t fn, void *data)
- {
- pmd_t *pmd;
- unsigned long next;
- int err;
- BUG_ON(pud_huge(*pud));
- pmd = pmd_alloc(mm, pud, addr);
- if (!pmd)
- return -ENOMEM;
- do {
- next = pmd_addr_end(addr, end);
- err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
- if (err)
- break;
- } while (pmd++, addr = next, addr != end);
- return err;
- }
- static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
- unsigned long addr, unsigned long end,
- pte_fn_t fn, void *data)
- {
- pud_t *pud;
- unsigned long next;
- int err;
- pud = pud_alloc(mm, pgd, addr);
- if (!pud)
- return -ENOMEM;
- do {
- next = pud_addr_end(addr, end);
- err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
- if (err)
- break;
- } while (pud++, addr = next, addr != end);
- return err;
- }
- /*
- * Scan a region of virtual memory, filling in page tables as necessary
- * and calling a provided function on each leaf page table.
- */
- int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
- unsigned long size, pte_fn_t fn, void *data)
- {
- pgd_t *pgd;
- unsigned long next;
- unsigned long end = addr + size;
- int err;
- BUG_ON(addr >= end);
- pgd = pgd_offset(mm, addr);
- do {
- next = pgd_addr_end(addr, end);
- err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
- if (err)
- break;
- } while (pgd++, addr = next, addr != end);
- return err;
- }
- EXPORT_SYMBOL_GPL(apply_to_page_range);
- /*
- * handle_pte_fault chooses page fault handler according to an entry
- * which was read non-atomically. Before making any commitment, on
- * those architectures or configurations (e.g. i386 with PAE) which
- * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
- * must check under lock before unmapping the pte and proceeding
- * (but do_wp_page is only called after already making such a check;
- * and do_anonymous_page can safely check later on).
- */
- static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
- pte_t *page_table, pte_t orig_pte)
- {
- int same = 1;
- #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
- if (sizeof(pte_t) > sizeof(unsigned long)) {
- spinlock_t *ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- same = pte_same(*page_table, orig_pte);
- spin_unlock(ptl);
- }
- #endif
- pte_unmap(page_table);
- return same;
- }
- static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
- {
- /*
- * If the source page was a PFN mapping, we don't have
- * a "struct page" for it. We do a best-effort copy by
- * just copying from the original user address. If that
- * fails, we just zero-fill it. Live with it.
- */
- if (unlikely(!src)) {
- void *kaddr = kmap_atomic(dst, KM_USER0);
- void __user *uaddr = (void __user *)(va & PAGE_MASK);
- /*
- * This really shouldn't fail, because the page is there
- * in the page tables. But it might just be unreadable,
- * in which case we just give up and fill the result with
- * zeroes.
- */
- if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
- clear_page(kaddr);
- kunmap_atomic(kaddr, KM_USER0);
- flush_dcache_page(dst);
- } else
- copy_user_highpage(dst, src, va, vma);
- }
- /*
- * This routine handles present pages, when users try to write
- * to a shared page. It is done by copying the page to a new address
- * and decrementing the shared-page counter for the old page.
- *
- * Note that this routine assumes that the protection checks have been
- * done by the caller (the low-level page fault routine in most cases).
- * Thus we can safely just mark it writable once we've done any necessary
- * COW.
- *
- * We also mark the page dirty at this point even though the page will
- * change only once the write actually happens. This avoids a few races,
- * and potentially makes it more efficient.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), with pte both mapped and locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
- static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- spinlock_t *ptl, pte_t orig_pte)
- __releases(ptl)
- {
- struct page *old_page, *new_page;
- pte_t entry;
- int ret = 0;
- int page_mkwrite = 0;
- struct page *dirty_page = NULL;
- old_page = vm_normal_page(vma, address, orig_pte);
- if (!old_page) {
- /*
- * VM_MIXEDMAP !pfn_valid() case
- *
- * We should not cow pages in a shared writeable mapping.
- * Just mark the pages writable as we can't do any dirty
- * accounting on raw pfn maps.
- */
- if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))
- goto reuse;
- goto gotten;
- }
- /*
- * Take out anonymous pages first, anonymous shared vmas are
- * not dirty accountable.
- */
- if (PageAnon(old_page) && !PageKsm(old_page)) {
- if (!trylock_page(old_page)) {
- page_cache_get(old_page);
- pte_unmap_unlock(page_table, ptl);
- lock_page(old_page);
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- goto unlock;
- }
- page_cache_release(old_page);
- }
- if (reuse_swap_page(old_page)) {
- /*
- * The page is all ours. Move it to our anon_vma so
- * the rmap code will not search our parent or siblings.
- * Protected against the rmap code by the page lock.
- */
- page_move_anon_rmap(old_page, vma, address);
- unlock_page(old_page);
- goto reuse;
- }
- unlock_page(old_page);
- } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))) {
- /*
- * Only catch write-faults on shared writable pages,
- * read-only shared pages can get COWed by
- * get_user_pages(.write=1, .force=1).
- */
- if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
- struct vm_fault vmf;
- int tmp;
- vmf.virtual_address = (void __user *)(address &
- PAGE_MASK);
- vmf.pgoff = old_page->index;
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- vmf.page = old_page;
- /*
- * Notify the address space that the page is about to
- * become writable so that it can prohibit this or wait
- * for the page to get into an appropriate state.
- *
- * We do this without the lock held, so that it can
- * sleep if it needs to.
- */
- page_cache_get(old_page);
- pte_unmap_unlock(page_table, ptl);
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
- }
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(old_page);
- if (!old_page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(old_page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON(!PageLocked(old_page));
- /*
- * Since we dropped the lock we need to revalidate
- * the PTE as someone else may have changed it. If
- * they did, we just return, as we can count on the
- * MMU to tell us if they didn't also make it writable.
- */
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- goto unlock;
- }
- page_mkwrite = 1;
- }
- dirty_page = old_page;
- get_page(dirty_page);
- reuse:
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = pte_mkyoung(orig_pte);
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (ptep_set_access_flags(vma, address, page_table, entry,1))
- update_mmu_cache(vma, address, page_table);
- pte_unmap_unlock(page_table, ptl);
- ret |= VM_FAULT_WRITE;
- if (!dirty_page)
- return ret;
- /*
- * Yes, Virginia, this is actually required to prevent a race
- * with clear_page_dirty_for_io() from clearing the page dirty
- * bit after it clear all dirty ptes, but before a racing
- * do_wp_page installs a dirty pte.
- *
- * __do_fault is protected similarly.
- */
- if (!page_mkwrite) {
- wait_on_page_locked(dirty_page);
- set_page_dirty_balance(dirty_page, page_mkwrite);
- }
- put_page(dirty_page);
- if (page_mkwrite) {
- struct address_space *mapping = dirty_page->mapping;
- set_page_dirty(dirty_page);
- unlock_page(dirty_page);
- page_cache_release(dirty_page);
- if (mapping) {
- /*
- * Some device drivers do not set page.mapping
- * but still dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
- }
- /* file_update_time outside page_lock */
- if (vma->vm_file)
- file_update_time(vma->vm_file);
- return ret;
- }
- /*
- * Ok, we need to copy. Oh, well..
- */
- page_cache_get(old_page);
- gotten:
- pte_unmap_unlock(page_table, ptl);
- if (unlikely(anon_vma_prepare(vma)))
- goto oom;
- if (is_zero_pfn(pte_pfn(orig_pte))) {
- new_page = alloc_zeroed_user_highpage_movable(vma, address);
- if (!new_page)
- goto oom;
- } else {
- new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
- if (!new_page)
- goto oom;
- cow_user_page(new_page, old_page, address, vma);
- }
- __SetPageUptodate(new_page);
- if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
- goto oom_free_new;
- /*
- * Re-check the pte - we dropped the lock
- */
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (likely(pte_same(*page_table, orig_pte))) {
- if (old_page) {
- if (!PageAnon(old_page)) {
- dec_mm_counter_fast(mm, MM_FILEPAGES);
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- }
- } else
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = mk_pte(new_page, vma->vm_page_prot);
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- /*
- * Clear the pte entry and flush it first, before updating the
- * pte with the new entry. This will avoid a race condition
- * seen in the presence of one thread doing SMC and another
- * thread doing COW.
- */
- ptep_clear_flush(vma, address, page_table);
- page_add_new_anon_rmap(new_page, vma, address);
- /*
- * We call the notify macro here because, when using secondary
- * mmu page tables (such as kvm shadow page tables), we want the
- * new page to be mapped directly into the secondary page table.
- */
- set_pte_at_notify(mm, address, page_table, entry);
- update_mmu_cache(vma, address, page_table);
- if (old_page) {
- /*
- * Only after switching the pte to the new page may
- * we remove the mapcount here. Otherwise another
- * process may come and find the rmap count decremented
- * before the pte is switched to the new page, and
- * "reuse" the old page writing into it while our pte
- * here still points into it and can be read by other
- * threads.
- *
- * The critical issue is to order this
- * page_remove_rmap with the ptp_clear_flush above.
- * Those stores are ordered by (if nothing else,)
- * the barrier present in the atomic_add_negative
- * in page_remove_rmap.
- *
- * Then the TLB flush in ptep_clear_flush ensures that
- * no process can access the old page before the
- * decremented mapcount is visible. And the old page
- * cannot be reused until after the decremented
- * mapcount is visible. So transitively, TLBs to
- * old page will be flushed before it can be reused.
- */
- page_remove_rmap(old_page);
- }
- /* Free the old page.. */
- new_page = old_page;
- ret |= VM_FAULT_WRITE;
- } else
- mem_cgroup_uncharge_page(new_page);
- if (new_page)
- page_cache_release(new_page);
- unlock:
- pte_unmap_unlock(page_table, ptl);
- if (old_page) {
- /*
- * Don't let another task, with possibly unlocked vma,
- * keep the mlocked page.
- */
- if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
- lock_page(old_page); /* LRU manipulation */
- munlock_vma_page(old_page);
- unlock_page(old_page);
- }
- page_cache_release(old_page);
- }
- return ret;
- oom_free_new:
- page_cache_release(new_page);
- oom:
- if (old_page) {
- if (page_mkwrite) {
- unlock_page(old_page);
- page_cache_release(old_page);
- }
- page_cache_release(old_page);
- }
- return VM_FAULT_OOM;
- unwritable_page:
- page_cache_release(old_page);
- return ret;
- }
- static void unmap_mapping_range_vma(struct vm_area_struct *vma,
- unsigned long start_addr, unsigned long end_addr,
- struct zap_details *details)
- {
- zap_page_range(vma, start_addr, end_addr - start_addr, details);
- }
- static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
- struct zap_details *details)
- {
- struct vm_area_struct *vma;
- struct prio_tree_iter iter;
- pgoff_t vba, vea, zba, zea;
- vma_prio_tree_foreach(vma, &iter, root,
- details->first_index, details->last_index) {
- vba = vma->vm_pgoff;
- vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
- /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
- zba = details->first_index;
- if (zba < vba)
- zba = vba;
- zea = details->last_index;
- if (zea > vea)
- zea = vea;
- unmap_mapping_range_vma(vma,
- ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
- ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
- details);
- }
- }
- static inline void unmap_mapping_range_list(struct list_head *head,
- struct zap_details *details)
- {
- struct vm_area_struct *vma;
- /*
- * In nonlinear VMAs there is no correspondence between virtual address
- * offset and file offset. So we must perform an exhaustive search
- * across *all* the pages in each nonlinear VMA, not just the pages
- * whose virtual address lies outside the file truncation point.
- */
- list_for_each_entry(vma, head, shared.vm_set.list) {
- details->nonlinear_vma = vma;
- unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
- }
- }
- /**
- * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
- * @mapping: the address space containing mmaps to be unmapped.
- * @holebegin: byte in first page to unmap, relative to the start of
- * the underlying file. This will be rounded down to a PAGE_SIZE
- * boundary. Note that this is different from truncate_pagecache(), which
- * must keep the partial page. In contrast, we must get rid of
- * partial pages.
- * @holelen: size of prospective hole in bytes. This will be rounded
- * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
- * end of the file.
- * @even_cows: 1 when truncating a file, unmap even private COWed pages;
- * but 0 when invalidating pagecache, don't throw away private data.
- */
- void unmap_mapping_range(struct address_space *mapping,
- loff_t const holebegin, loff_t const holelen, int even_cows)
- {
- struct zap_details details;
- pgoff_t hba = holebegin >> PAGE_SHIFT;
- pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
- /* Check for overflow. */
- if (sizeof(holelen) > sizeof(hlen)) {
- long long holeend =
- (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
- if (holeend & ~(long long)ULONG_MAX)
- hlen = ULONG_MAX - hba + 1;
- }
- details.check_mapping = even_cows? NULL: mapping;
- details.nonlinear_vma = NULL;
- details.first_index = hba;
- details.last_index = hba + hlen - 1;
- if (details.last_index < details.first_index)
- details.last_index = ULONG_MAX;
- mutex_lock(&mapping->i_mmap_mutex);
- if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
- unmap_mapping_range_tree(&mapping->i_mmap, &details);
- if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
- unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
- mutex_unlock(&mapping->i_mmap_mutex);
- }
- EXPORT_SYMBOL(unmap_mapping_range);
- /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
- static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags, pte_t orig_pte)
- {
- spinlock_t *ptl;
- struct page *page, *swapcache = NULL;
- swp_entry_t entry;
- pte_t pte;
- int locked;
- struct mem_cgroup *ptr;
- int exclusive = 0;
- int ret = 0;
- if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
- goto out;
- entry = pte_to_swp_entry(orig_pte);
- if (unlikely(non_swap_entry(entry))) {
- if (is_migration_entry(entry)) {
- migration_entry_wait(mm, pmd, address);
- } else if (is_hwpoison_entry(entry)) {
- ret = VM_FAULT_HWPOISON;
- } else {
- print_bad_pte(vma, address, orig_pte, NULL);
- ret = VM_FAULT_SIGBUS;
- }
- goto out;
- }
- delayacct_set_flag(DELAYACCT_PF_SWAPIN);
- page = lookup_swap_cache(entry);
- if (!page) {
- grab_swap_token(mm); /* Contend for token _before_ read-in */
- page = swapin_readahead(entry,
- GFP_HIGHUSER_MOVABLE, vma, address);
- if (!page) {
- /*
- * Back out if somebody else faulted in this pte
- * while we released the pte lock.
- */
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (likely(pte_same(*page_table, orig_pte)))
- ret = VM_FAULT_OOM;
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
- goto unlock;
- }
- /* Had to read the page from swap area: Major fault */
- ret = VM_FAULT_MAJOR;
- count_vm_event(PGMAJFAULT);
- mem_cgroup_count_vm_event(mm, PGMAJFAULT);
- } else if (PageHWPoison(page)) {
- /*
- * hwpoisoned dirty swapcache pages are kept for killing
- * owner processes (which may be unknown at hwpoison time)
- */
- ret = VM_FAULT_HWPOISON;
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
- goto out_release;
- }
- locked = lock_page_or_retry(page, mm, flags);
- delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
- if (!locked) {
- ret |= VM_FAULT_RETRY;
- goto out_release;
- }
- /*
- * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
- * release the swapcache from under us. The page pin, and pte_same
- * test below, are not enough to exclude that. Even if it is still
- * swapcache, we need to check that the page's swap has not changed.
- */
- if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
- goto out_page;
- if (ksm_might_need_to_copy(page, vma, address)) {
- swapcache = page;
- page = ksm_does_need_to_copy(page, vma, address);
- if (unlikely(!page)) {
- ret = VM_FAULT_OOM;
- page = swapcache;
- swapcache = NULL;
- goto out_page;
- }
- }
- if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
- ret = VM_FAULT_OOM;
- goto out_page;
- }
- /*
- * Back out if somebody else already faulted in this pte.
- */
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (unlikely(!pte_same(*page_table, orig_pte)))
- goto out_nomap;
- if (unlikely(!PageUptodate(page))) {
- ret = VM_FAULT_SIGBUS;
- goto out_nomap;
- }
- /*
- * The page isn't present yet, go ahead with the fault.
- *
- * Be careful about the sequence of operations here.
- * To get its accounting right, reuse_swap_page() must be called
- * while the page is counted on swap but not yet in mapcount i.e.
- * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
- * must be called after the swap_free(), or it will never succeed.
- * Because delete_from_swap_page() may be called by reuse_swap_page(),
- * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
- * in page->private. In this case, a record in swap_cgroup is silently
- * discarded at swap_free().
- */
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- dec_mm_counter_fast(mm, MM_SWAPENTS);
- pte = mk_pte(page, vma->vm_page_prot);
- if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
- pte = maybe_mkwrite(pte_mkdirty(pte), vma);
- flags &= ~FAULT_FLAG_WRITE;
- ret |= VM_FAULT_WRITE;
- exclusive = 1;
- }
- flush_icache_page(vma, page);
- set_pte_at(mm, address, page_table, pte);
- do_page_add_anon_rmap(page, vma, address, exclusive);
- /* It's better to call commit-charge after rmap is established */
- mem_cgroup_commit_charge_swapin(page, ptr);
- swap_free(entry);
- if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
- try_to_free_swap(page);
- unlock_page(page);
- if (swapcache) {
- /*
- * Hold the lock to avoid the swap entry to be reused
- * until we take the PT lock for the pte_same() check
- * (to avoid false positives from pte_same). For
- * further safety release the lock after the swap_free
- * so that the swap count won't change under a
- * parallel locked swapcache.
- */
- unlock_page(swapcache);
- page_cache_release(swapcache);
- }
- if (flags & FAULT_FLAG_WRITE) {
- ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
- if (ret & VM_FAULT_ERROR)
- ret &= VM_FAULT_ERROR;
- goto out;
- }
- /* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, address, page_table);
- unlock:
- pte_unmap_unlock(page_table, ptl);
- out:
- return ret;
- out_nomap:
- mem_cgroup_cancel_charge_swapin(ptr);
- pte_unmap_unlock(page_table, ptl);
- out_page:
- unlock_page(page);
- out_release:
- page_cache_release(page);
- if (swapcache) {
- unlock_page(swapcache);
- page_cache_release(swapcache);
- }
- return ret;
- }
- /*
- * This is like a special single-page "expand_{down|up}wards()",
- * except we must first make sure that 'address{-|+}PAGE_SIZE'
- * doesn't hit another vma.
- */
- static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
- {
- address &= PAGE_MASK;
- if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
- struct vm_area_struct *prev = vma->vm_prev;
- /*
- * Is there a mapping abutting this one below?
- *
- * That's only ok if it's the same stack mapping
- * that has gotten split..
- */
- if (prev && prev->vm_end == address)
- return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
- expand_downwards(vma, address - PAGE_SIZE);
- }
- if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
- struct vm_area_struct *next = vma->vm_next;
- /* As VM_GROWSDOWN but s/below/above/ */
- if (next && next->vm_start == address + PAGE_SIZE)
- return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
- expand_upwards(vma, address + PAGE_SIZE);
- }
- return 0;
- }
- /*
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
- static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags)
- {
- struct page *page;
- spinlock_t *ptl;
- pte_t entry;
- pte_unmap(page_table);
- /* Check if we need to add a guard page to the stack */
- if (check_stack_guard_page(vma, address) < 0)
- return VM_FAULT_SIGBUS;
- /* Use the zero-page for reads */
- if (!(flags & FAULT_FLAG_WRITE)) {
- entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
- vma->vm_page_prot));
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (!pte_none(*page_table))
- goto unlock;
- goto setpte;
- }
- /* Allocate our own private page. */
- if (unlikely(anon_vma_prepare(vma)))
- goto oom;
- page = alloc_zeroed_user_highpage_movable(vma, address);
- if (!page)
- goto oom;
- __SetPageUptodate(page);
- if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
- goto oom_free_page;
- entry = mk_pte(page, vma->vm_page_prot);
- if (vma->vm_flags & VM_WRITE)
- entry = pte_mkwrite(pte_mkdirty(entry));
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- if (!pte_none(*page_table))
- goto release;
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- page_add_new_anon_rmap(page, vma, address);
- setpte:
- set_pte_at(mm, address, page_table, entry);
- /* No need to invalidate - it was non-present before */
- update_mmu_cache(vma, address, page_table);
- unlock:
- pte_unmap_unlock(page_table, ptl);
- return 0;
- release:
- mem_cgroup_uncharge_page(page);
- page_cache_release(page);
- goto unlock;
- oom_free_page:
- page_cache_release(page);
- oom:
- return VM_FAULT_OOM;
- }
- /*
- * __do_fault() tries to create a new page mapping. It aggressively
- * tries to share with existing pages, but makes a separate copy if
- * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
- * the next page fault.
- *
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte neither mapped nor locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
- static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmd,
- pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
- {
- pte_t *page_table;
- spinlock_t *ptl;
- struct page *page;
- pte_t entry;
- int anon = 0;
- int charged = 0;
- struct page *dirty_page = NULL;
- struct vm_fault vmf;
- int ret;
- int page_mkwrite = 0;
- vmf.virtual_address = (void __user *)(address & PAGE_MASK);
- vmf.pgoff = pgoff;
- vmf.flags = flags;
- vmf.page = NULL;
- ret = vma->vm_ops->fault(vma, &vmf);
- if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
- VM_FAULT_RETRY)))
- return ret;
- if (unlikely(PageHWPoison(vmf.page))) {
- if (ret & VM_FAULT_LOCKED)
- unlock_page(vmf.page);
- return VM_FAULT_HWPOISON;
- }
- /*
- * For consistency in subsequent calls, make the faulted page always
- * locked.
- */
- if (unlikely(!(ret & VM_FAULT_LOCKED)))
- lock_page(vmf.page);
- else
- VM_BUG_ON(!PageLocked(vmf.page));
- /*
- * Should we do an early C-O-W break?
- */
- page = vmf.page;
- if (flags & FAULT_FLAG_WRITE) {
- if (!(vma->vm_flags & VM_SHARED)) {
- anon = 1;
- if (unlikely(anon_vma_prepare(vma))) {
- ret = VM_FAULT_OOM;
- goto out;
- }
- page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
- vma, address);
- if (!page) {
- ret = VM_FAULT_OOM;
- goto out;
- }
- if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
- ret = VM_FAULT_OOM;
- page_cache_release(page);
- goto out;
- }
- charged = 1;
- copy_user_highpage(page, vmf.page, address, vma);
- __SetPageUptodate(page);
- } else {
- /*
- * If the page will be shareable, see if the backing
- * address space wants to know that the page is about
- * to become writable
- */
- if (vma->vm_ops->page_mkwrite) {
- int tmp;
- unlock_page(page);
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
- }
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(page);
- if (!page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON(!PageLocked(page));
- page_mkwrite = 1;
- }
- }
- }
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
- /*
- * This silly early PAGE_DIRTY setting removes a race
- * due to the bad i386 page protection. But it's valid
- * for other architectures too.
- *
- * Note that if FAULT_FLAG_WRITE is set, we either now have
- * an exclusive copy of the page, or this is a shared mapping,
- * so we can make it writable and dirty to avoid having to
- * handle that later.
- */
- /* Only go through if we didn't race with anybody else... */
- if (likely(pte_same(*page_table, orig_pte))) {
- flush_icache_page(vma, page);
- entry = mk_pte(page, vma->vm_page_prot);
- if (flags & FAULT_FLAG_WRITE)
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (anon) {
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- page_add_new_anon_rmap(page, vma, address);
- } else {
- inc_mm_counter_fast(mm, MM_FILEPAGES);
- page_add_file_rmap(page);
- if (flags & FAULT_FLAG_WRITE) {
- dirty_page = page;
- get_page(dirty_page);
- }
- }
- set_pte_at(mm, address, page_table, entry);
- /* no need to invalidate: a not-present page won't be cached */
- update_mmu_cache(vma, address, page_table);
- } else {
- if (charged)
- mem_cgroup_uncharge_page(page);
- if (anon)
- page_cache_release(page);
- else
- anon = 1; /* no anon but release faulted_page */
- }
- pte_unmap_unlock(page_table, ptl);
- out:
- if (dirty_page) {
- struct address_space *mapping = page->mapping;
- if (set_page_dirty(dirty_page))
- page_mkwrite = 1;
- unlock_page(dirty_page);
- put_page(dirty_page);
- if (page_mkwrite && mapping) {
- /*
- * Some device drivers do not set page.mapping but still
- * dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
- /* file_update_time outside page_lock */
- if (vma->vm_file)
- file_update_time(vma->vm_file);
- } else {
- unlock_page(vmf.page);
- if (anon)
- page_cache_release(vmf.page);
- }
- return ret;
- unwritable_page:
- page_cache_release(page);
- return ret;
- }
- static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags, pte_t orig_pte)
- {
- pgoff_t pgoff = (((address & PAGE_MASK)
- - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
- pte_unmap(page_table);
- return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
- }
- /*
- * Fault of a previously existing named mapping. Repopulate the pte
- * from the encoded file_pte if possible. This enables swappable
- * nonlinear vmas.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
- static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- unsigned int flags, pte_t orig_pte)
- {
- pgoff_t pgoff;
- flags |= FAULT_FLAG_NONLINEAR;
- if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
- return 0;
- if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
- /*
- * Page table corrupted: show pte and kill process.
- */
- print_bad_pte(vma, address, orig_pte, NULL);
- return VM_FAULT_SIGBUS;
- }
- pgoff = pte_to_pgoff(orig_pte);
- return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
- }
- /*
- * These routines also need to handle stuff like marking pages dirty
- * and/or accessed for architectures that don't do it in hardware (most
- * RISC architectures). The early dirtying is also good on the i386.
- *
- * There is also a hook called "update_mmu_cache()" that architectures
- * with external mmu caches can use to update those (ie the Sparc or
- * PowerPC hashed page tables that act as extended TLBs).
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte mapped but not yet locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
- int handle_pte_fault(struct mm_struct *mm,
- struct vm_area_struct *vma, unsigned long address,
- pte_t *pte, pmd_t *pmd, unsigned int flags)
- {
- pte_t entry;
- spinlock_t *ptl;
- entry = *pte;
- if (!pte_present(entry)) {
- if (pte_none(entry)) {
- if (vma->vm_ops) {
- if (likely(vma->vm_ops->fault))
- return do_linear_fault(mm, vma, address,
- pte, pmd, flags, entry);
- }
- return do_anonymous_page(mm, vma, address,
- pte, pmd, flags);
- }
- if (pte_file(entry))
- return do_nonlinear_fault(mm, vma, address,
- pte, pmd, flags, entry);
- return do_swap_page(mm, vma, address,
- pte, pmd, flags, entry);
- }
- ptl = pte_lockptr(mm, pmd);
- spin_lock(ptl);
- if (unlikely(!pte_same(*pte, entry)))
- goto unlock;
- if (flags & FAULT_FLAG_WRITE) {
- if (!pte_write(entry))
- return do_wp_page(mm, vma, address,
- pte, pmd, ptl, entry);
- entry = pte_mkdirty(entry);
- }
- entry = pte_mkyoung(entry);
- if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
- update_mmu_cache(vma, address, pte);
- } else {
- /*
- * This is needed only for protection faults but the arch code
- * is not yet telling us if this is a protection fault or not.
- * This still avoids useless tlb flushes for .text page faults
- * with threads.
- */
- if (flags & FAULT_FLAG_WRITE)
- flush_tlb_fix_spurious_fault(vma, address);
- }
- unlock:
- pte_unmap_unlock(pte, ptl);
- return 0;
- }
- /*
- * By the time we get here, we already hold the mm semaphore
- */
- int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, unsigned int flags)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- __set_current_state(TASK_RUNNING);
- count_vm_event(PGFAULT);
- mem_cgroup_count_vm_event(mm, PGFAULT);
- /* do counter updates before entering really critical section. */
- check_sync_rss_stat(current);
- if (unlikely(is_vm_hugetlb_page(vma)))
- return hugetlb_fault(mm, vma, address, flags);
- pgd = pgd_offset(mm, address);
- pud = pud_alloc(mm, pgd, address);
- if (!pud)
- return VM_FAULT_OOM;
- pmd = pmd_alloc(mm, pud, address);
- if (!pmd)
- return VM_FAULT_OOM;
- if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
- if (!vma->vm_ops)
- return do_huge_pmd_anonymous_page(mm, vma, address,
- pmd, flags);
- } else {
- pmd_t orig_pmd = *pmd;
- barrier();
- if (pmd_trans_huge(orig_pmd)) {
- if (flags & FAULT_FLAG_WRITE &&
- !pmd_write(orig_pmd) &&
- !pmd_trans_splitting(orig_pmd))
- return do_huge_pmd_wp_page(mm, vma, address,
- pmd, orig_pmd);
- return 0;
- }
- }
- /*
- * Use __pte_alloc instead of pte_alloc_map, because we can't
- * run pte_offset_map on the pmd, if an huge pmd could
- * materialize from under us from a different thread.
- */
- if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
- return VM_FAULT_OOM;
- /* if an huge pmd materialized from under us just retry later */
- if (unlikely(pmd_trans_huge(*pmd)))
- return 0;
- /*
- * A regular pmd is established and it can't morph into a huge pmd
- * from under us anymore at this point because we hold the mmap_sem
- * read mode and khugepaged takes it in write mode. So now it's
- * safe to run pte_offset_map().
- */
- pte = pte_offset_map(pmd, address);
- return handle_pte_fault(mm, vma, address, pte, pmd, flags);
- }
- #ifndef __PAGETABLE_PUD_FOLDED
- /*
- * Allocate page upper directory.
- * We've already handled the fast-path in-line.
- */
- int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
- {
- pud_t *new = pud_alloc_one(mm, address);
- if (!new)
- return -ENOMEM;
- smp_wmb(); /* See comment in __pte_alloc */
- spin_lock(&mm->page_table_lock);
- if (pgd_present(*pgd)) /* Another has populated it */
- pud_free(mm, new);
- else
- pgd_populate(mm, pgd, new);
- spin_unlock(&mm->page_table_lock);
- return 0;
- }
- #endif /* __PAGETABLE_PUD_FOLDED */
- #ifndef __PAGETABLE_PMD_FOLDED
- /*
- * Allocate page middle directory.
- * We've already handled the fast-path in-line.
- */
- int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
- {
- pmd_t *new = pmd_alloc_one(mm, address);
- if (!new)
- return -ENOMEM;
- smp_wmb(); /* See comment in __pte_alloc */
- spin_lock(&mm->page_table_lock);
- #ifndef __ARCH_HAS_4LEVEL_HACK
- if (pud_present(*pud)) /* Another has populated it */
- pmd_free(mm, new);
- else
- pud_populate(mm, pud, new);
- #else
- if (pgd_present(*pud)) /* Another has populated it */
- pmd_free(mm, new);
- else
- pgd_populate(mm, pud, new);
- #endif /* __ARCH_HAS_4LEVEL_HACK */
- spin_unlock(&mm->page_table_lock);
- return 0;
- }
- #endif /* __PAGETABLE_PMD_FOLDED */
- int make_pages_present(unsigned long addr, unsigned long end)
- {
- int ret, len, write;
- struct vm_area_struct * vma;
- vma = find_vma(current->mm, addr);
- if (!vma)
- return -ENOMEM;
- /*
- * We want to touch writable mappings with a write fault in order
- * to break COW, except for shared mappings because these don't COW
- * and we would not want to dirty them for nothing.
- */
- write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
- BUG_ON(addr >= end);
- BUG_ON(end > vma->vm_end);
- len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
- ret = get_user_pages(current, current->mm, addr,
- len, write, 0, NULL, NULL);
- if (ret < 0)
- return ret;
- return ret == len ? 0 : -EFAULT;
- }
- #if !defined(__HAVE_ARCH_GATE_AREA)
- #if defined(AT_SYSINFO_EHDR)
- static struct vm_area_struct gate_vma;
- static int __init gate_vma_init(void)
- {
- gate_vma.vm_mm = NULL;
- gate_vma.vm_start = FIXADDR_USER_START;
- gate_vma.vm_end = FIXADDR_USER_END;
- gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
- gate_vma.vm_page_prot = __P101;
- /*
- * Make sure the vDSO gets into every core dump.
- * Dumping its contents makes post-mortem fully interpretable later
- * without matching up the same kernel and hardware config to see
- * what PC values meant.
- */
- gate_vma.vm_flags |= VM_ALWAYSDUMP;
- return 0;
- }
- __initcall(gate_vma_init);
- #endif
- struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
- {
- #ifdef AT_SYSINFO_EHDR
- return &gate_vma;
- #else
- return NULL;
- #endif
- }
- int in_gate_area_no_mm(unsigned long addr)
- {
- #ifdef AT_SYSINFO_EHDR
- if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
- return 1;
- #endif
- return 0;
- }
- #endif /* __HAVE_ARCH_GATE_AREA */
- static int __follow_pte(struct mm_struct *mm, unsigned long address,
- pte_t **ptepp, spinlock_t **ptlp)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep;
- pgd = pgd_offset(mm, address);
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
- goto out;
- pud = pud_offset(pgd, address);
- if (pud_none(*pud) || unlikely(pud_bad(*pud)))
- goto out;
- pmd = pmd_offset(pud, address);
- VM_BUG_ON(pmd_trans_huge(*pmd));
- if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
- goto out;
- /* We cannot handle huge page PFN maps. Luckily they don't exist. */
- if (pmd_huge(*pmd))
- goto out;
- ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
- if (!ptep)
- goto out;
- if (!pte_present(*ptep))
- goto unlock;
- *ptepp = ptep;
- return 0;
- unlock:
- pte_unmap_unlock(ptep, *ptlp);
- out:
- return -EINVAL;
- }
- static inline int follow_pte(struct mm_struct *mm, unsigned long address,
- pte_t **ptepp, spinlock_t **ptlp)
- {
- int res;
- /* (void) is needed to make gcc happy */
- (void) __cond_lock(*ptlp,
- !(res = __follow_pte(mm, address, ptepp, ptlp)));
- return res;
- }
- /**
- * follow_pfn - look up PFN at a user virtual address
- * @vma: memory mapping
- * @address: user virtual address
- * @pfn: location to store found PFN
- *
- * Only IO mappings and raw PFN mappings are allowed.
- *
- * Returns zero and the pfn at @pfn on success, -ve otherwise.
- */
- int follow_pfn(struct vm_area_struct *vma, unsigned long address,
- unsigned long *pfn)
- {
- int ret = -EINVAL;
- spinlock_t *ptl;
- pte_t *ptep;
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- return ret;
- ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
- if (ret)
- return ret;
- *pfn = pte_pfn(*ptep);
- pte_unmap_unlock(ptep, ptl);
- return 0;
- }
- EXPORT_SYMBOL(follow_pfn);
- #ifdef CONFIG_HAVE_IOREMAP_PROT
- int follow_phys(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned long *prot, resource_size_t *phys)
- {
- int ret = -EINVAL;
- pte_t *ptep, pte;
- spinlock_t *ptl;
- if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
- goto out;
- if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
- goto out;
- pte = *ptep;
- if ((flags & FOLL_WRITE) && !pte_write(pte))
- goto unlock;
- *prot = pgprot_val(pte_pgprot(pte));
- *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
- ret = 0;
- unlock:
- pte_unmap_unlock(ptep, ptl);
- out:
- return ret;
- }
- int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
- void *buf, int len, int write)
- {
- resource_size_t phys_addr;
- unsigned long prot = 0;
- void __iomem *maddr;
- int offset = addr & (PAGE_SIZE-1);
- if (follow_phys(vma, addr, write, &prot, &phys_addr))
- return -EINVAL;
- maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
- if (write)
- memcpy_toio(maddr + offset, buf, len);
- else
- memcpy_fromio(buf, maddr + offset, len);
- iounmap(maddr);
- return len;
- }
- #endif
- /*
- * Access another process' address space as given in mm. If non-NULL, use the
- * given task for page fault accounting.
- */
- static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long addr, void *buf, int len, int write)
- {
- struct vm_area_struct *vma;
- void *old_buf = buf;
- down_read(&mm->mmap_sem);
- /* ignore errors, just check how much was successfully transferred */
- while (len) {
- int bytes, ret, offset;
- void *maddr;
- struct page *page = NULL;
- ret = get_user_pages(tsk, mm, addr, 1,
- write, 1, &page, &vma);
- if (ret <= 0) {
- /*
- * Check if this is a VM_IO | VM_PFNMAP VMA, which
- * we can access using slightly different code.
- */
- #ifdef CONFIG_HAVE_IOREMAP_PROT
- vma = find_vma(mm, addr);
- if (!vma || vma->vm_start > addr)
- break;
- if (vma->vm_ops && vma->vm_ops->access)
- ret = vma->vm_ops->access(vma, addr, buf,
- len, write);
- if (ret <= 0)
- #endif
- break;
- bytes = ret;
- } else {
- bytes = len;
- offset = addr & (PAGE_SIZE-1);
- if (bytes > PAGE_SIZE-offset)
- bytes = PAGE_SIZE-offset;
- maddr = kmap(page);
- if (write) {
- copy_to_user_page(vma, page, addr,
- maddr + offset, buf, bytes);
- set_page_dirty_lock(page);
- } else {
- copy_from_user_page(vma, page, addr,
- buf, maddr + offset, bytes);
- }
- kunmap(page);
- page_cache_release(page);
- }
- len -= bytes;
- buf += bytes;
- addr += bytes;
- }
- up_read(&mm->mmap_sem);
- return buf - old_buf;
- }
- /**
- * access_remote_vm - access another process' address space
- * @mm: the mm_struct of the target address space
- * @addr: start address to access
- * @buf: source or destination buffer
- * @len: number of bytes to transfer
- * @write: whether the access is a write
- *
- * The caller must hold a reference on @mm.
- */
- int access_remote_vm(struct mm_struct *mm, unsigned long addr,
- void *buf, int len, int write)
- {
- return __access_remote_vm(NULL, mm, addr, buf, len, write);
- }
- /*
- * Access another process' address space.
- * Source/target buffer must be kernel space,
- * Do not walk the page table directly, use get_user_pages
- */
- int access_process_vm(struct task_struct *tsk, unsigned long addr,
- void *buf, int len, int write)
- {
- struct mm_struct *mm;
- int ret;
- mm = get_task_mm(tsk);
- if (!mm)
- return 0;
- ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
- mmput(mm);
- return ret;
- }
- /*
- * Print the name of a VMA.
- */
- void print_vma_addr(char *prefix, unsigned long ip)
- {
- struct mm_struct *mm = current->mm;
- struct vm_area_struct *vma;
- /*
- * Do not print if we are in atomic
- * contexts (in exception stacks, etc.):
- */
- if (preempt_count())
- return;
- down_read(&mm->mmap_sem);
- vma = find_vma(mm, ip);
- if (vma && vma->vm_file) {
- struct file *f = vma->vm_file;
- char *buf = (char *)__get_free_page(GFP_KERNEL);
- if (buf) {
- char *p, *s;
- p = d_path(&f->f_path, buf, PAGE_SIZE);
- if (IS_ERR(p))
- p = "?";
- s = strrchr(p, '/');
- if (s)
- p = s+1;
- printk("%s%s[%lx+%lx]", prefix, p,
- vma->vm_start,
- vma->vm_end - vma->vm_start);
- free_page((unsigned long)buf);
- }
- }
- up_read(¤t->mm->mmap_sem);
- }
- #ifdef CONFIG_PROVE_LOCKING
- void might_fault(void)
- {
- /*
- * Some code (nfs/sunrpc) uses socket ops on kernel memory while
- * holding the mmap_sem, this is safe because kernel memory doesn't
- * get paged out, therefore we'll never actually fault, and the
- * below annotations will generate false positives.
- */
- if (segment_eq(get_fs(), KERNEL_DS))
- return;
- might_sleep();
- /*
- * it would be nicer only to annotate paths which are not under
- * pagefault_disable, however that requires a larger audit and
- * providing helpers like get_user_atomic.
- */
- if (!in_atomic() && current->mm)
- might_lock_read(¤t->mm->mmap_sem);
- }
- EXPORT_SYMBOL(might_fault);
- #endif
- #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
- static void clear_gigantic_page(struct page *page,
- unsigned long addr,
- unsigned int pages_per_huge_page)
- {
- int i;
- struct page *p = page;
- might_sleep();
- for (i = 0; i < pages_per_huge_page;
- i++, p = mem_map_next(p, page, i)) {
- cond_resched();
- clear_user_highpage(p, addr + i * PAGE_SIZE);
- }
- }
- void clear_huge_page(struct page *page,
- unsigned long addr, unsigned int pages_per_huge_page)
- {
- int i;
- if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
- clear_gigantic_page(page, addr, pages_per_huge_page);
- return;
- }
- might_sleep();
- for (i = 0; i < pages_per_huge_page; i++) {
- cond_resched();
- clear_user_highpage(page + i, addr + i * PAGE_SIZE);
- }
- }
- static void copy_user_gigantic_page(struct page *dst, struct page *src,
- unsigned long addr,
- struct vm_area_struct *vma,
- unsigned int pages_per_huge_page)
- {
- int i;
- struct page *dst_base = dst;
- struct page *src_base = src;
- for (i = 0; i < pages_per_huge_page; ) {
- cond_resched();
- copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
- i++;
- dst = mem_map_next(dst, dst_base, i);
- src = mem_map_next(src, src_base, i);
- }
- }
- void copy_user_huge_page(struct page *dst, struct page *src,
- unsigned long addr, struct vm_area_struct *vma,
- unsigned int pages_per_huge_page)
- {
- int i;
- if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
- copy_user_gigantic_page(dst, src, addr, vma,
- pages_per_huge_page);
- return;
- }
- might_sleep();
- for (i = 0; i < pages_per_huge_page; i++) {
- cond_resched();
- copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
- }
- }
- #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
|