123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931 |
- /*
- * Dynamic DMA mapping support.
- *
- * This implementation is a fallback for platforms that do not support
- * I/O TLBs (aka DMA address translation hardware).
- * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
- * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
- * Copyright (C) 2000, 2003 Hewlett-Packard Co
- * David Mosberger-Tang <davidm@hpl.hp.com>
- *
- * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
- * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
- * unnecessary i-cache flushing.
- * 04/07/.. ak Better overflow handling. Assorted fixes.
- * 05/09/10 linville Add support for syncing ranges, support syncing for
- * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
- * 08/12/11 beckyb Add highmem support
- */
- #include <linux/cache.h>
- #include <linux/dma-mapping.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/spinlock.h>
- #include <linux/string.h>
- #include <linux/swiotlb.h>
- #include <linux/pfn.h>
- #include <linux/types.h>
- #include <linux/ctype.h>
- #include <linux/highmem.h>
- #include <linux/gfp.h>
- #include <asm/io.h>
- #include <asm/dma.h>
- #include <asm/scatterlist.h>
- #include <linux/init.h>
- #include <linux/bootmem.h>
- #include <linux/iommu-helper.h>
- #define OFFSET(val,align) ((unsigned long) \
- ( (val) & ( (align) - 1)))
- #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
- /*
- * Minimum IO TLB size to bother booting with. Systems with mainly
- * 64bit capable cards will only lightly use the swiotlb. If we can't
- * allocate a contiguous 1MB, we're probably in trouble anyway.
- */
- #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
- int swiotlb_force;
- /*
- * Used to do a quick range check in swiotlb_tbl_unmap_single and
- * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
- * API.
- */
- static char *io_tlb_start, *io_tlb_end;
- /*
- * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
- * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
- */
- static unsigned long io_tlb_nslabs;
- /*
- * When the IOMMU overflows we return a fallback buffer. This sets the size.
- */
- static unsigned long io_tlb_overflow = 32*1024;
- static void *io_tlb_overflow_buffer;
- /*
- * This is a free list describing the number of free entries available from
- * each index
- */
- static unsigned int *io_tlb_list;
- static unsigned int io_tlb_index;
- /*
- * We need to save away the original address corresponding to a mapped entry
- * for the sync operations.
- */
- static phys_addr_t *io_tlb_orig_addr;
- /*
- * Protect the above data structures in the map and unmap calls
- */
- static DEFINE_SPINLOCK(io_tlb_lock);
- static int late_alloc;
- static int __init
- setup_io_tlb_npages(char *str)
- {
- if (isdigit(*str)) {
- io_tlb_nslabs = simple_strtoul(str, &str, 0);
- /* avoid tail segment of size < IO_TLB_SEGSIZE */
- io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
- }
- if (*str == ',')
- ++str;
- if (!strcmp(str, "force"))
- swiotlb_force = 1;
- return 1;
- }
- __setup("swiotlb=", setup_io_tlb_npages);
- /* make io_tlb_overflow tunable too? */
- unsigned long swioltb_nr_tbl(void)
- {
- return io_tlb_nslabs;
- }
- /* Note that this doesn't work with highmem page */
- static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
- volatile void *address)
- {
- return phys_to_dma(hwdev, virt_to_phys(address));
- }
- void swiotlb_print_info(void)
- {
- unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- phys_addr_t pstart, pend;
- pstart = virt_to_phys(io_tlb_start);
- pend = virt_to_phys(io_tlb_end);
- printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
- bytes >> 20, io_tlb_start, io_tlb_end);
- printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
- (unsigned long long)pstart,
- (unsigned long long)pend);
- }
- void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
- {
- unsigned long i, bytes;
- bytes = nslabs << IO_TLB_SHIFT;
- io_tlb_nslabs = nslabs;
- io_tlb_start = tlb;
- io_tlb_end = io_tlb_start + bytes;
- /*
- * Allocate and initialize the free list array. This array is used
- * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
- * between io_tlb_start and io_tlb_end.
- */
- io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
- for (i = 0; i < io_tlb_nslabs; i++)
- io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
- io_tlb_index = 0;
- io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
- /*
- * Get the overflow emergency buffer
- */
- io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
- if (!io_tlb_overflow_buffer)
- panic("Cannot allocate SWIOTLB overflow buffer!\n");
- if (verbose)
- swiotlb_print_info();
- }
- /*
- * Statically reserve bounce buffer space and initialize bounce buffer data
- * structures for the software IO TLB used to implement the DMA API.
- */
- void __init
- swiotlb_init_with_default_size(size_t default_size, int verbose)
- {
- unsigned long bytes;
- if (!io_tlb_nslabs) {
- io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
- io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
- }
- bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- /*
- * Get IO TLB memory from the low pages
- */
- io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
- if (!io_tlb_start)
- panic("Cannot allocate SWIOTLB buffer");
- swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
- }
- void __init
- swiotlb_init(int verbose)
- {
- swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
- }
- /*
- * Systems with larger DMA zones (those that don't support ISA) can
- * initialize the swiotlb later using the slab allocator if needed.
- * This should be just like above, but with some error catching.
- */
- int
- swiotlb_late_init_with_default_size(size_t default_size)
- {
- unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
- unsigned int order;
- if (!io_tlb_nslabs) {
- io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
- io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
- }
- /*
- * Get IO TLB memory from the low pages
- */
- order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
- io_tlb_nslabs = SLABS_PER_PAGE << order;
- bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
- io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
- order);
- if (io_tlb_start)
- break;
- order--;
- }
- if (!io_tlb_start)
- goto cleanup1;
- if (order != get_order(bytes)) {
- printk(KERN_WARNING "Warning: only able to allocate %ld MB "
- "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
- io_tlb_nslabs = SLABS_PER_PAGE << order;
- bytes = io_tlb_nslabs << IO_TLB_SHIFT;
- }
- io_tlb_end = io_tlb_start + bytes;
- memset(io_tlb_start, 0, bytes);
- /*
- * Allocate and initialize the free list array. This array is used
- * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
- * between io_tlb_start and io_tlb_end.
- */
- io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
- get_order(io_tlb_nslabs * sizeof(int)));
- if (!io_tlb_list)
- goto cleanup2;
- for (i = 0; i < io_tlb_nslabs; i++)
- io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
- io_tlb_index = 0;
- io_tlb_orig_addr = (phys_addr_t *)
- __get_free_pages(GFP_KERNEL,
- get_order(io_tlb_nslabs *
- sizeof(phys_addr_t)));
- if (!io_tlb_orig_addr)
- goto cleanup3;
- memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
- /*
- * Get the overflow emergency buffer
- */
- io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
- get_order(io_tlb_overflow));
- if (!io_tlb_overflow_buffer)
- goto cleanup4;
- swiotlb_print_info();
- late_alloc = 1;
- return 0;
- cleanup4:
- free_pages((unsigned long)io_tlb_orig_addr,
- get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
- io_tlb_orig_addr = NULL;
- cleanup3:
- free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
- sizeof(int)));
- io_tlb_list = NULL;
- cleanup2:
- io_tlb_end = NULL;
- free_pages((unsigned long)io_tlb_start, order);
- io_tlb_start = NULL;
- cleanup1:
- io_tlb_nslabs = req_nslabs;
- return -ENOMEM;
- }
- void __init swiotlb_free(void)
- {
- if (!io_tlb_overflow_buffer)
- return;
- if (late_alloc) {
- free_pages((unsigned long)io_tlb_overflow_buffer,
- get_order(io_tlb_overflow));
- free_pages((unsigned long)io_tlb_orig_addr,
- get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
- free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
- sizeof(int)));
- free_pages((unsigned long)io_tlb_start,
- get_order(io_tlb_nslabs << IO_TLB_SHIFT));
- } else {
- free_bootmem_late(__pa(io_tlb_overflow_buffer),
- PAGE_ALIGN(io_tlb_overflow));
- free_bootmem_late(__pa(io_tlb_orig_addr),
- PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
- free_bootmem_late(__pa(io_tlb_list),
- PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
- free_bootmem_late(__pa(io_tlb_start),
- PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
- }
- }
- static int is_swiotlb_buffer(phys_addr_t paddr)
- {
- return paddr >= virt_to_phys(io_tlb_start) &&
- paddr < virt_to_phys(io_tlb_end);
- }
- /*
- * Bounce: copy the swiotlb buffer back to the original dma location
- */
- void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
- enum dma_data_direction dir)
- {
- unsigned long pfn = PFN_DOWN(phys);
- if (PageHighMem(pfn_to_page(pfn))) {
- /* The buffer does not have a mapping. Map it in and copy */
- unsigned int offset = phys & ~PAGE_MASK;
- char *buffer;
- unsigned int sz = 0;
- unsigned long flags;
- while (size) {
- sz = min_t(size_t, PAGE_SIZE - offset, size);
- local_irq_save(flags);
- buffer = kmap_atomic(pfn_to_page(pfn),
- KM_BOUNCE_READ);
- if (dir == DMA_TO_DEVICE)
- memcpy(dma_addr, buffer + offset, sz);
- else
- memcpy(buffer + offset, dma_addr, sz);
- kunmap_atomic(buffer, KM_BOUNCE_READ);
- local_irq_restore(flags);
- size -= sz;
- pfn++;
- dma_addr += sz;
- offset = 0;
- }
- } else {
- if (dir == DMA_TO_DEVICE)
- memcpy(dma_addr, phys_to_virt(phys), size);
- else
- memcpy(phys_to_virt(phys), dma_addr, size);
- }
- }
- EXPORT_SYMBOL_GPL(swiotlb_bounce);
- void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
- phys_addr_t phys, size_t size,
- enum dma_data_direction dir)
- {
- unsigned long flags;
- char *dma_addr;
- unsigned int nslots, stride, index, wrap;
- int i;
- unsigned long mask;
- unsigned long offset_slots;
- unsigned long max_slots;
- mask = dma_get_seg_boundary(hwdev);
- tbl_dma_addr &= mask;
- offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
- /*
- * Carefully handle integer overflow which can occur when mask == ~0UL.
- */
- max_slots = mask + 1
- ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
- : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
- /*
- * For mappings greater than a page, we limit the stride (and
- * hence alignment) to a page size.
- */
- nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
- if (size > PAGE_SIZE)
- stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
- else
- stride = 1;
- BUG_ON(!nslots);
- /*
- * Find suitable number of IO TLB entries size that will fit this
- * request and allocate a buffer from that IO TLB pool.
- */
- spin_lock_irqsave(&io_tlb_lock, flags);
- index = ALIGN(io_tlb_index, stride);
- if (index >= io_tlb_nslabs)
- index = 0;
- wrap = index;
- do {
- while (iommu_is_span_boundary(index, nslots, offset_slots,
- max_slots)) {
- index += stride;
- if (index >= io_tlb_nslabs)
- index = 0;
- if (index == wrap)
- goto not_found;
- }
- /*
- * If we find a slot that indicates we have 'nslots' number of
- * contiguous buffers, we allocate the buffers from that slot
- * and mark the entries as '0' indicating unavailable.
- */
- if (io_tlb_list[index] >= nslots) {
- int count = 0;
- for (i = index; i < (int) (index + nslots); i++)
- io_tlb_list[i] = 0;
- for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
- io_tlb_list[i] = ++count;
- dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
- /*
- * Update the indices to avoid searching in the next
- * round.
- */
- io_tlb_index = ((index + nslots) < io_tlb_nslabs
- ? (index + nslots) : 0);
- goto found;
- }
- index += stride;
- if (index >= io_tlb_nslabs)
- index = 0;
- } while (index != wrap);
- not_found:
- spin_unlock_irqrestore(&io_tlb_lock, flags);
- return NULL;
- found:
- spin_unlock_irqrestore(&io_tlb_lock, flags);
- /*
- * Save away the mapping from the original address to the DMA address.
- * This is needed when we sync the memory. Then we sync the buffer if
- * needed.
- */
- for (i = 0; i < nslots; i++)
- io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
- if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
- swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
- return dma_addr;
- }
- EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
- /*
- * Allocates bounce buffer and returns its kernel virtual address.
- */
- static void *
- map_single(struct device *hwdev, phys_addr_t phys, size_t size,
- enum dma_data_direction dir)
- {
- dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
- return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
- }
- /*
- * dma_addr is the kernel virtual address of the bounce buffer to unmap.
- */
- void
- swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
- enum dma_data_direction dir)
- {
- unsigned long flags;
- int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
- int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
- phys_addr_t phys = io_tlb_orig_addr[index];
- /*
- * First, sync the memory before unmapping the entry
- */
- if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
- swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
- /*
- * Return the buffer to the free list by setting the corresponding
- * entries to indicate the number of contiguous entries available.
- * While returning the entries to the free list, we merge the entries
- * with slots below and above the pool being returned.
- */
- spin_lock_irqsave(&io_tlb_lock, flags);
- {
- count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
- io_tlb_list[index + nslots] : 0);
- /*
- * Step 1: return the slots to the free list, merging the
- * slots with superceeding slots
- */
- for (i = index + nslots - 1; i >= index; i--)
- io_tlb_list[i] = ++count;
- /*
- * Step 2: merge the returned slots with the preceding slots,
- * if available (non zero)
- */
- for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
- io_tlb_list[i] = ++count;
- }
- spin_unlock_irqrestore(&io_tlb_lock, flags);
- }
- EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
- void
- swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
- enum dma_data_direction dir,
- enum dma_sync_target target)
- {
- int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
- phys_addr_t phys = io_tlb_orig_addr[index];
- phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
- switch (target) {
- case SYNC_FOR_CPU:
- if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
- swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
- else
- BUG_ON(dir != DMA_TO_DEVICE);
- break;
- case SYNC_FOR_DEVICE:
- if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
- swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
- else
- BUG_ON(dir != DMA_FROM_DEVICE);
- break;
- default:
- BUG();
- }
- }
- EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
- void *
- swiotlb_alloc_coherent(struct device *hwdev, size_t size,
- dma_addr_t *dma_handle, gfp_t flags)
- {
- dma_addr_t dev_addr;
- void *ret;
- int order = get_order(size);
- u64 dma_mask = DMA_BIT_MASK(32);
- if (hwdev && hwdev->coherent_dma_mask)
- dma_mask = hwdev->coherent_dma_mask;
- ret = (void *)__get_free_pages(flags, order);
- if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
- /*
- * The allocated memory isn't reachable by the device.
- */
- free_pages((unsigned long) ret, order);
- ret = NULL;
- }
- if (!ret) {
- /*
- * We are either out of memory or the device can't DMA to
- * GFP_DMA memory; fall back on map_single(), which
- * will grab memory from the lowest available address range.
- */
- ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
- if (!ret)
- return NULL;
- }
- memset(ret, 0, size);
- dev_addr = swiotlb_virt_to_bus(hwdev, ret);
- /* Confirm address can be DMA'd by device */
- if (dev_addr + size - 1 > dma_mask) {
- printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
- (unsigned long long)dma_mask,
- (unsigned long long)dev_addr);
- /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
- swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
- return NULL;
- }
- *dma_handle = dev_addr;
- return ret;
- }
- EXPORT_SYMBOL(swiotlb_alloc_coherent);
- void
- swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
- dma_addr_t dev_addr)
- {
- phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
- WARN_ON(irqs_disabled());
- if (!is_swiotlb_buffer(paddr))
- free_pages((unsigned long)vaddr, get_order(size));
- else
- /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
- swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
- }
- EXPORT_SYMBOL(swiotlb_free_coherent);
- static void
- swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
- int do_panic)
- {
- /*
- * Ran out of IOMMU space for this operation. This is very bad.
- * Unfortunately the drivers cannot handle this operation properly.
- * unless they check for dma_mapping_error (most don't)
- * When the mapping is small enough return a static buffer to limit
- * the damage, or panic when the transfer is too big.
- */
- printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
- "device %s\n", size, dev ? dev_name(dev) : "?");
- if (size <= io_tlb_overflow || !do_panic)
- return;
- if (dir == DMA_BIDIRECTIONAL)
- panic("DMA: Random memory could be DMA accessed\n");
- if (dir == DMA_FROM_DEVICE)
- panic("DMA: Random memory could be DMA written\n");
- if (dir == DMA_TO_DEVICE)
- panic("DMA: Random memory could be DMA read\n");
- }
- /*
- * Map a single buffer of the indicated size for DMA in streaming mode. The
- * physical address to use is returned.
- *
- * Once the device is given the dma address, the device owns this memory until
- * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
- */
- dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
- unsigned long offset, size_t size,
- enum dma_data_direction dir,
- struct dma_attrs *attrs)
- {
- phys_addr_t phys = page_to_phys(page) + offset;
- dma_addr_t dev_addr = phys_to_dma(dev, phys);
- void *map;
- BUG_ON(dir == DMA_NONE);
- /*
- * If the address happens to be in the device's DMA window,
- * we can safely return the device addr and not worry about bounce
- * buffering it.
- */
- if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
- return dev_addr;
- /*
- * Oh well, have to allocate and map a bounce buffer.
- */
- map = map_single(dev, phys, size, dir);
- if (!map) {
- swiotlb_full(dev, size, dir, 1);
- map = io_tlb_overflow_buffer;
- }
- dev_addr = swiotlb_virt_to_bus(dev, map);
- /*
- * Ensure that the address returned is DMA'ble
- */
- if (!dma_capable(dev, dev_addr, size)) {
- swiotlb_tbl_unmap_single(dev, map, size, dir);
- dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
- }
- return dev_addr;
- }
- EXPORT_SYMBOL_GPL(swiotlb_map_page);
- /*
- * Unmap a single streaming mode DMA translation. The dma_addr and size must
- * match what was provided for in a previous swiotlb_map_page call. All
- * other usages are undefined.
- *
- * After this call, reads by the cpu to the buffer are guaranteed to see
- * whatever the device wrote there.
- */
- static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir)
- {
- phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
- BUG_ON(dir == DMA_NONE);
- if (is_swiotlb_buffer(paddr)) {
- swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
- return;
- }
- if (dir != DMA_FROM_DEVICE)
- return;
- /*
- * phys_to_virt doesn't work with hihgmem page but we could
- * call dma_mark_clean() with hihgmem page here. However, we
- * are fine since dma_mark_clean() is null on POWERPC. We can
- * make dma_mark_clean() take a physical address if necessary.
- */
- dma_mark_clean(phys_to_virt(paddr), size);
- }
- void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir,
- struct dma_attrs *attrs)
- {
- unmap_single(hwdev, dev_addr, size, dir);
- }
- EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
- /*
- * Make physical memory consistent for a single streaming mode DMA translation
- * after a transfer.
- *
- * If you perform a swiotlb_map_page() but wish to interrogate the buffer
- * using the cpu, yet do not wish to teardown the dma mapping, you must
- * call this function before doing so. At the next point you give the dma
- * address back to the card, you must first perform a
- * swiotlb_dma_sync_for_device, and then the device again owns the buffer
- */
- static void
- swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir,
- enum dma_sync_target target)
- {
- phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
- BUG_ON(dir == DMA_NONE);
- if (is_swiotlb_buffer(paddr)) {
- swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
- target);
- return;
- }
- if (dir != DMA_FROM_DEVICE)
- return;
- dma_mark_clean(phys_to_virt(paddr), size);
- }
- void
- swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir)
- {
- swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
- }
- EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
- void
- swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
- size_t size, enum dma_data_direction dir)
- {
- swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
- }
- EXPORT_SYMBOL(swiotlb_sync_single_for_device);
- /*
- * Map a set of buffers described by scatterlist in streaming mode for DMA.
- * This is the scatter-gather version of the above swiotlb_map_page
- * interface. Here the scatter gather list elements are each tagged with the
- * appropriate dma address and length. They are obtained via
- * sg_dma_{address,length}(SG).
- *
- * NOTE: An implementation may be able to use a smaller number of
- * DMA address/length pairs than there are SG table elements.
- * (for example via virtual mapping capabilities)
- * The routine returns the number of addr/length pairs actually
- * used, at most nents.
- *
- * Device ownership issues as mentioned above for swiotlb_map_page are the
- * same here.
- */
- int
- swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
- enum dma_data_direction dir, struct dma_attrs *attrs)
- {
- struct scatterlist *sg;
- int i;
- BUG_ON(dir == DMA_NONE);
- for_each_sg(sgl, sg, nelems, i) {
- phys_addr_t paddr = sg_phys(sg);
- dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
- if (swiotlb_force ||
- !dma_capable(hwdev, dev_addr, sg->length)) {
- void *map = map_single(hwdev, sg_phys(sg),
- sg->length, dir);
- if (!map) {
- /* Don't panic here, we expect map_sg users
- to do proper error handling. */
- swiotlb_full(hwdev, sg->length, dir, 0);
- swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
- attrs);
- sgl[0].dma_length = 0;
- return 0;
- }
- sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
- } else
- sg->dma_address = dev_addr;
- sg->dma_length = sg->length;
- }
- return nelems;
- }
- EXPORT_SYMBOL(swiotlb_map_sg_attrs);
- int
- swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
- enum dma_data_direction dir)
- {
- return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
- }
- EXPORT_SYMBOL(swiotlb_map_sg);
- /*
- * Unmap a set of streaming mode DMA translations. Again, cpu read rules
- * concerning calls here are the same as for swiotlb_unmap_page() above.
- */
- void
- swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
- int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
- {
- struct scatterlist *sg;
- int i;
- BUG_ON(dir == DMA_NONE);
- for_each_sg(sgl, sg, nelems, i)
- unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
- }
- EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
- void
- swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
- enum dma_data_direction dir)
- {
- return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
- }
- EXPORT_SYMBOL(swiotlb_unmap_sg);
- /*
- * Make physical memory consistent for a set of streaming mode DMA translations
- * after a transfer.
- *
- * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
- * and usage.
- */
- static void
- swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
- int nelems, enum dma_data_direction dir,
- enum dma_sync_target target)
- {
- struct scatterlist *sg;
- int i;
- for_each_sg(sgl, sg, nelems, i)
- swiotlb_sync_single(hwdev, sg->dma_address,
- sg->dma_length, dir, target);
- }
- void
- swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
- int nelems, enum dma_data_direction dir)
- {
- swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
- }
- EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
- void
- swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
- int nelems, enum dma_data_direction dir)
- {
- swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
- }
- EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
- int
- swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
- {
- return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
- }
- EXPORT_SYMBOL(swiotlb_dma_mapping_error);
- /*
- * Return whether the given device DMA address mask can be supported
- * properly. For example, if your device can only drive the low 24-bits
- * during bus mastering, then you would pass 0x00ffffff as the mask to
- * this function.
- */
- int
- swiotlb_dma_supported(struct device *hwdev, u64 mask)
- {
- return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
- }
- EXPORT_SYMBOL(swiotlb_dma_supported);
|