swiotlb.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. int swiotlb_force;
  47. /*
  48. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  49. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  50. * API.
  51. */
  52. static char *io_tlb_start, *io_tlb_end;
  53. /*
  54. * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
  55. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  56. */
  57. static unsigned long io_tlb_nslabs;
  58. /*
  59. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  60. */
  61. static unsigned long io_tlb_overflow = 32*1024;
  62. static void *io_tlb_overflow_buffer;
  63. /*
  64. * This is a free list describing the number of free entries available from
  65. * each index
  66. */
  67. static unsigned int *io_tlb_list;
  68. static unsigned int io_tlb_index;
  69. /*
  70. * We need to save away the original address corresponding to a mapped entry
  71. * for the sync operations.
  72. */
  73. static phys_addr_t *io_tlb_orig_addr;
  74. /*
  75. * Protect the above data structures in the map and unmap calls
  76. */
  77. static DEFINE_SPINLOCK(io_tlb_lock);
  78. static int late_alloc;
  79. static int __init
  80. setup_io_tlb_npages(char *str)
  81. {
  82. if (isdigit(*str)) {
  83. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  84. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  85. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  86. }
  87. if (*str == ',')
  88. ++str;
  89. if (!strcmp(str, "force"))
  90. swiotlb_force = 1;
  91. return 1;
  92. }
  93. __setup("swiotlb=", setup_io_tlb_npages);
  94. /* make io_tlb_overflow tunable too? */
  95. unsigned long swioltb_nr_tbl(void)
  96. {
  97. return io_tlb_nslabs;
  98. }
  99. /* Note that this doesn't work with highmem page */
  100. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  101. volatile void *address)
  102. {
  103. return phys_to_dma(hwdev, virt_to_phys(address));
  104. }
  105. void swiotlb_print_info(void)
  106. {
  107. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  108. phys_addr_t pstart, pend;
  109. pstart = virt_to_phys(io_tlb_start);
  110. pend = virt_to_phys(io_tlb_end);
  111. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  112. bytes >> 20, io_tlb_start, io_tlb_end);
  113. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  114. (unsigned long long)pstart,
  115. (unsigned long long)pend);
  116. }
  117. void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  118. {
  119. unsigned long i, bytes;
  120. bytes = nslabs << IO_TLB_SHIFT;
  121. io_tlb_nslabs = nslabs;
  122. io_tlb_start = tlb;
  123. io_tlb_end = io_tlb_start + bytes;
  124. /*
  125. * Allocate and initialize the free list array. This array is used
  126. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  127. * between io_tlb_start and io_tlb_end.
  128. */
  129. io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  130. for (i = 0; i < io_tlb_nslabs; i++)
  131. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  132. io_tlb_index = 0;
  133. io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  134. /*
  135. * Get the overflow emergency buffer
  136. */
  137. io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
  138. if (!io_tlb_overflow_buffer)
  139. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  140. if (verbose)
  141. swiotlb_print_info();
  142. }
  143. /*
  144. * Statically reserve bounce buffer space and initialize bounce buffer data
  145. * structures for the software IO TLB used to implement the DMA API.
  146. */
  147. void __init
  148. swiotlb_init_with_default_size(size_t default_size, int verbose)
  149. {
  150. unsigned long bytes;
  151. if (!io_tlb_nslabs) {
  152. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  153. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  154. }
  155. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  156. /*
  157. * Get IO TLB memory from the low pages
  158. */
  159. io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
  160. if (!io_tlb_start)
  161. panic("Cannot allocate SWIOTLB buffer");
  162. swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
  163. }
  164. void __init
  165. swiotlb_init(int verbose)
  166. {
  167. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  168. }
  169. /*
  170. * Systems with larger DMA zones (those that don't support ISA) can
  171. * initialize the swiotlb later using the slab allocator if needed.
  172. * This should be just like above, but with some error catching.
  173. */
  174. int
  175. swiotlb_late_init_with_default_size(size_t default_size)
  176. {
  177. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  178. unsigned int order;
  179. if (!io_tlb_nslabs) {
  180. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  181. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  182. }
  183. /*
  184. * Get IO TLB memory from the low pages
  185. */
  186. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  187. io_tlb_nslabs = SLABS_PER_PAGE << order;
  188. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  189. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  190. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  191. order);
  192. if (io_tlb_start)
  193. break;
  194. order--;
  195. }
  196. if (!io_tlb_start)
  197. goto cleanup1;
  198. if (order != get_order(bytes)) {
  199. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  200. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  201. io_tlb_nslabs = SLABS_PER_PAGE << order;
  202. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  203. }
  204. io_tlb_end = io_tlb_start + bytes;
  205. memset(io_tlb_start, 0, bytes);
  206. /*
  207. * Allocate and initialize the free list array. This array is used
  208. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  209. * between io_tlb_start and io_tlb_end.
  210. */
  211. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  212. get_order(io_tlb_nslabs * sizeof(int)));
  213. if (!io_tlb_list)
  214. goto cleanup2;
  215. for (i = 0; i < io_tlb_nslabs; i++)
  216. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  217. io_tlb_index = 0;
  218. io_tlb_orig_addr = (phys_addr_t *)
  219. __get_free_pages(GFP_KERNEL,
  220. get_order(io_tlb_nslabs *
  221. sizeof(phys_addr_t)));
  222. if (!io_tlb_orig_addr)
  223. goto cleanup3;
  224. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  225. /*
  226. * Get the overflow emergency buffer
  227. */
  228. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  229. get_order(io_tlb_overflow));
  230. if (!io_tlb_overflow_buffer)
  231. goto cleanup4;
  232. swiotlb_print_info();
  233. late_alloc = 1;
  234. return 0;
  235. cleanup4:
  236. free_pages((unsigned long)io_tlb_orig_addr,
  237. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  238. io_tlb_orig_addr = NULL;
  239. cleanup3:
  240. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  241. sizeof(int)));
  242. io_tlb_list = NULL;
  243. cleanup2:
  244. io_tlb_end = NULL;
  245. free_pages((unsigned long)io_tlb_start, order);
  246. io_tlb_start = NULL;
  247. cleanup1:
  248. io_tlb_nslabs = req_nslabs;
  249. return -ENOMEM;
  250. }
  251. void __init swiotlb_free(void)
  252. {
  253. if (!io_tlb_overflow_buffer)
  254. return;
  255. if (late_alloc) {
  256. free_pages((unsigned long)io_tlb_overflow_buffer,
  257. get_order(io_tlb_overflow));
  258. free_pages((unsigned long)io_tlb_orig_addr,
  259. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  260. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  261. sizeof(int)));
  262. free_pages((unsigned long)io_tlb_start,
  263. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  264. } else {
  265. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  266. PAGE_ALIGN(io_tlb_overflow));
  267. free_bootmem_late(__pa(io_tlb_orig_addr),
  268. PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
  269. free_bootmem_late(__pa(io_tlb_list),
  270. PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
  271. free_bootmem_late(__pa(io_tlb_start),
  272. PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
  273. }
  274. }
  275. static int is_swiotlb_buffer(phys_addr_t paddr)
  276. {
  277. return paddr >= virt_to_phys(io_tlb_start) &&
  278. paddr < virt_to_phys(io_tlb_end);
  279. }
  280. /*
  281. * Bounce: copy the swiotlb buffer back to the original dma location
  282. */
  283. void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  284. enum dma_data_direction dir)
  285. {
  286. unsigned long pfn = PFN_DOWN(phys);
  287. if (PageHighMem(pfn_to_page(pfn))) {
  288. /* The buffer does not have a mapping. Map it in and copy */
  289. unsigned int offset = phys & ~PAGE_MASK;
  290. char *buffer;
  291. unsigned int sz = 0;
  292. unsigned long flags;
  293. while (size) {
  294. sz = min_t(size_t, PAGE_SIZE - offset, size);
  295. local_irq_save(flags);
  296. buffer = kmap_atomic(pfn_to_page(pfn),
  297. KM_BOUNCE_READ);
  298. if (dir == DMA_TO_DEVICE)
  299. memcpy(dma_addr, buffer + offset, sz);
  300. else
  301. memcpy(buffer + offset, dma_addr, sz);
  302. kunmap_atomic(buffer, KM_BOUNCE_READ);
  303. local_irq_restore(flags);
  304. size -= sz;
  305. pfn++;
  306. dma_addr += sz;
  307. offset = 0;
  308. }
  309. } else {
  310. if (dir == DMA_TO_DEVICE)
  311. memcpy(dma_addr, phys_to_virt(phys), size);
  312. else
  313. memcpy(phys_to_virt(phys), dma_addr, size);
  314. }
  315. }
  316. EXPORT_SYMBOL_GPL(swiotlb_bounce);
  317. void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
  318. phys_addr_t phys, size_t size,
  319. enum dma_data_direction dir)
  320. {
  321. unsigned long flags;
  322. char *dma_addr;
  323. unsigned int nslots, stride, index, wrap;
  324. int i;
  325. unsigned long mask;
  326. unsigned long offset_slots;
  327. unsigned long max_slots;
  328. mask = dma_get_seg_boundary(hwdev);
  329. tbl_dma_addr &= mask;
  330. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  331. /*
  332. * Carefully handle integer overflow which can occur when mask == ~0UL.
  333. */
  334. max_slots = mask + 1
  335. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  336. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  337. /*
  338. * For mappings greater than a page, we limit the stride (and
  339. * hence alignment) to a page size.
  340. */
  341. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  342. if (size > PAGE_SIZE)
  343. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  344. else
  345. stride = 1;
  346. BUG_ON(!nslots);
  347. /*
  348. * Find suitable number of IO TLB entries size that will fit this
  349. * request and allocate a buffer from that IO TLB pool.
  350. */
  351. spin_lock_irqsave(&io_tlb_lock, flags);
  352. index = ALIGN(io_tlb_index, stride);
  353. if (index >= io_tlb_nslabs)
  354. index = 0;
  355. wrap = index;
  356. do {
  357. while (iommu_is_span_boundary(index, nslots, offset_slots,
  358. max_slots)) {
  359. index += stride;
  360. if (index >= io_tlb_nslabs)
  361. index = 0;
  362. if (index == wrap)
  363. goto not_found;
  364. }
  365. /*
  366. * If we find a slot that indicates we have 'nslots' number of
  367. * contiguous buffers, we allocate the buffers from that slot
  368. * and mark the entries as '0' indicating unavailable.
  369. */
  370. if (io_tlb_list[index] >= nslots) {
  371. int count = 0;
  372. for (i = index; i < (int) (index + nslots); i++)
  373. io_tlb_list[i] = 0;
  374. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  375. io_tlb_list[i] = ++count;
  376. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  377. /*
  378. * Update the indices to avoid searching in the next
  379. * round.
  380. */
  381. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  382. ? (index + nslots) : 0);
  383. goto found;
  384. }
  385. index += stride;
  386. if (index >= io_tlb_nslabs)
  387. index = 0;
  388. } while (index != wrap);
  389. not_found:
  390. spin_unlock_irqrestore(&io_tlb_lock, flags);
  391. return NULL;
  392. found:
  393. spin_unlock_irqrestore(&io_tlb_lock, flags);
  394. /*
  395. * Save away the mapping from the original address to the DMA address.
  396. * This is needed when we sync the memory. Then we sync the buffer if
  397. * needed.
  398. */
  399. for (i = 0; i < nslots; i++)
  400. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  401. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  402. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  403. return dma_addr;
  404. }
  405. EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
  406. /*
  407. * Allocates bounce buffer and returns its kernel virtual address.
  408. */
  409. static void *
  410. map_single(struct device *hwdev, phys_addr_t phys, size_t size,
  411. enum dma_data_direction dir)
  412. {
  413. dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
  414. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  415. }
  416. /*
  417. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  418. */
  419. void
  420. swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
  421. enum dma_data_direction dir)
  422. {
  423. unsigned long flags;
  424. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  425. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  426. phys_addr_t phys = io_tlb_orig_addr[index];
  427. /*
  428. * First, sync the memory before unmapping the entry
  429. */
  430. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  431. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  432. /*
  433. * Return the buffer to the free list by setting the corresponding
  434. * entries to indicate the number of contiguous entries available.
  435. * While returning the entries to the free list, we merge the entries
  436. * with slots below and above the pool being returned.
  437. */
  438. spin_lock_irqsave(&io_tlb_lock, flags);
  439. {
  440. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  441. io_tlb_list[index + nslots] : 0);
  442. /*
  443. * Step 1: return the slots to the free list, merging the
  444. * slots with superceeding slots
  445. */
  446. for (i = index + nslots - 1; i >= index; i--)
  447. io_tlb_list[i] = ++count;
  448. /*
  449. * Step 2: merge the returned slots with the preceding slots,
  450. * if available (non zero)
  451. */
  452. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  453. io_tlb_list[i] = ++count;
  454. }
  455. spin_unlock_irqrestore(&io_tlb_lock, flags);
  456. }
  457. EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
  458. void
  459. swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
  460. enum dma_data_direction dir,
  461. enum dma_sync_target target)
  462. {
  463. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  464. phys_addr_t phys = io_tlb_orig_addr[index];
  465. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  466. switch (target) {
  467. case SYNC_FOR_CPU:
  468. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  469. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  470. else
  471. BUG_ON(dir != DMA_TO_DEVICE);
  472. break;
  473. case SYNC_FOR_DEVICE:
  474. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  475. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  476. else
  477. BUG_ON(dir != DMA_FROM_DEVICE);
  478. break;
  479. default:
  480. BUG();
  481. }
  482. }
  483. EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
  484. void *
  485. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  486. dma_addr_t *dma_handle, gfp_t flags)
  487. {
  488. dma_addr_t dev_addr;
  489. void *ret;
  490. int order = get_order(size);
  491. u64 dma_mask = DMA_BIT_MASK(32);
  492. if (hwdev && hwdev->coherent_dma_mask)
  493. dma_mask = hwdev->coherent_dma_mask;
  494. ret = (void *)__get_free_pages(flags, order);
  495. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  496. /*
  497. * The allocated memory isn't reachable by the device.
  498. */
  499. free_pages((unsigned long) ret, order);
  500. ret = NULL;
  501. }
  502. if (!ret) {
  503. /*
  504. * We are either out of memory or the device can't DMA to
  505. * GFP_DMA memory; fall back on map_single(), which
  506. * will grab memory from the lowest available address range.
  507. */
  508. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  509. if (!ret)
  510. return NULL;
  511. }
  512. memset(ret, 0, size);
  513. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  514. /* Confirm address can be DMA'd by device */
  515. if (dev_addr + size - 1 > dma_mask) {
  516. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  517. (unsigned long long)dma_mask,
  518. (unsigned long long)dev_addr);
  519. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  520. swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  521. return NULL;
  522. }
  523. *dma_handle = dev_addr;
  524. return ret;
  525. }
  526. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  527. void
  528. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  529. dma_addr_t dev_addr)
  530. {
  531. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  532. WARN_ON(irqs_disabled());
  533. if (!is_swiotlb_buffer(paddr))
  534. free_pages((unsigned long)vaddr, get_order(size));
  535. else
  536. /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
  537. swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  538. }
  539. EXPORT_SYMBOL(swiotlb_free_coherent);
  540. static void
  541. swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
  542. int do_panic)
  543. {
  544. /*
  545. * Ran out of IOMMU space for this operation. This is very bad.
  546. * Unfortunately the drivers cannot handle this operation properly.
  547. * unless they check for dma_mapping_error (most don't)
  548. * When the mapping is small enough return a static buffer to limit
  549. * the damage, or panic when the transfer is too big.
  550. */
  551. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  552. "device %s\n", size, dev ? dev_name(dev) : "?");
  553. if (size <= io_tlb_overflow || !do_panic)
  554. return;
  555. if (dir == DMA_BIDIRECTIONAL)
  556. panic("DMA: Random memory could be DMA accessed\n");
  557. if (dir == DMA_FROM_DEVICE)
  558. panic("DMA: Random memory could be DMA written\n");
  559. if (dir == DMA_TO_DEVICE)
  560. panic("DMA: Random memory could be DMA read\n");
  561. }
  562. /*
  563. * Map a single buffer of the indicated size for DMA in streaming mode. The
  564. * physical address to use is returned.
  565. *
  566. * Once the device is given the dma address, the device owns this memory until
  567. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  568. */
  569. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  570. unsigned long offset, size_t size,
  571. enum dma_data_direction dir,
  572. struct dma_attrs *attrs)
  573. {
  574. phys_addr_t phys = page_to_phys(page) + offset;
  575. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  576. void *map;
  577. BUG_ON(dir == DMA_NONE);
  578. /*
  579. * If the address happens to be in the device's DMA window,
  580. * we can safely return the device addr and not worry about bounce
  581. * buffering it.
  582. */
  583. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  584. return dev_addr;
  585. /*
  586. * Oh well, have to allocate and map a bounce buffer.
  587. */
  588. map = map_single(dev, phys, size, dir);
  589. if (!map) {
  590. swiotlb_full(dev, size, dir, 1);
  591. map = io_tlb_overflow_buffer;
  592. }
  593. dev_addr = swiotlb_virt_to_bus(dev, map);
  594. /*
  595. * Ensure that the address returned is DMA'ble
  596. */
  597. if (!dma_capable(dev, dev_addr, size)) {
  598. swiotlb_tbl_unmap_single(dev, map, size, dir);
  599. dev_addr = swiotlb_virt_to_bus(dev, io_tlb_overflow_buffer);
  600. }
  601. return dev_addr;
  602. }
  603. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  604. /*
  605. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  606. * match what was provided for in a previous swiotlb_map_page call. All
  607. * other usages are undefined.
  608. *
  609. * After this call, reads by the cpu to the buffer are guaranteed to see
  610. * whatever the device wrote there.
  611. */
  612. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  613. size_t size, enum dma_data_direction dir)
  614. {
  615. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  616. BUG_ON(dir == DMA_NONE);
  617. if (is_swiotlb_buffer(paddr)) {
  618. swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  619. return;
  620. }
  621. if (dir != DMA_FROM_DEVICE)
  622. return;
  623. /*
  624. * phys_to_virt doesn't work with hihgmem page but we could
  625. * call dma_mark_clean() with hihgmem page here. However, we
  626. * are fine since dma_mark_clean() is null on POWERPC. We can
  627. * make dma_mark_clean() take a physical address if necessary.
  628. */
  629. dma_mark_clean(phys_to_virt(paddr), size);
  630. }
  631. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  632. size_t size, enum dma_data_direction dir,
  633. struct dma_attrs *attrs)
  634. {
  635. unmap_single(hwdev, dev_addr, size, dir);
  636. }
  637. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  638. /*
  639. * Make physical memory consistent for a single streaming mode DMA translation
  640. * after a transfer.
  641. *
  642. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  643. * using the cpu, yet do not wish to teardown the dma mapping, you must
  644. * call this function before doing so. At the next point you give the dma
  645. * address back to the card, you must first perform a
  646. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  647. */
  648. static void
  649. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  650. size_t size, enum dma_data_direction dir,
  651. enum dma_sync_target target)
  652. {
  653. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  654. BUG_ON(dir == DMA_NONE);
  655. if (is_swiotlb_buffer(paddr)) {
  656. swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
  657. target);
  658. return;
  659. }
  660. if (dir != DMA_FROM_DEVICE)
  661. return;
  662. dma_mark_clean(phys_to_virt(paddr), size);
  663. }
  664. void
  665. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  666. size_t size, enum dma_data_direction dir)
  667. {
  668. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  669. }
  670. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  671. void
  672. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  673. size_t size, enum dma_data_direction dir)
  674. {
  675. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  676. }
  677. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  678. /*
  679. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  680. * This is the scatter-gather version of the above swiotlb_map_page
  681. * interface. Here the scatter gather list elements are each tagged with the
  682. * appropriate dma address and length. They are obtained via
  683. * sg_dma_{address,length}(SG).
  684. *
  685. * NOTE: An implementation may be able to use a smaller number of
  686. * DMA address/length pairs than there are SG table elements.
  687. * (for example via virtual mapping capabilities)
  688. * The routine returns the number of addr/length pairs actually
  689. * used, at most nents.
  690. *
  691. * Device ownership issues as mentioned above for swiotlb_map_page are the
  692. * same here.
  693. */
  694. int
  695. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  696. enum dma_data_direction dir, struct dma_attrs *attrs)
  697. {
  698. struct scatterlist *sg;
  699. int i;
  700. BUG_ON(dir == DMA_NONE);
  701. for_each_sg(sgl, sg, nelems, i) {
  702. phys_addr_t paddr = sg_phys(sg);
  703. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  704. if (swiotlb_force ||
  705. !dma_capable(hwdev, dev_addr, sg->length)) {
  706. void *map = map_single(hwdev, sg_phys(sg),
  707. sg->length, dir);
  708. if (!map) {
  709. /* Don't panic here, we expect map_sg users
  710. to do proper error handling. */
  711. swiotlb_full(hwdev, sg->length, dir, 0);
  712. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  713. attrs);
  714. sgl[0].dma_length = 0;
  715. return 0;
  716. }
  717. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  718. } else
  719. sg->dma_address = dev_addr;
  720. sg->dma_length = sg->length;
  721. }
  722. return nelems;
  723. }
  724. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  725. int
  726. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  727. enum dma_data_direction dir)
  728. {
  729. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  730. }
  731. EXPORT_SYMBOL(swiotlb_map_sg);
  732. /*
  733. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  734. * concerning calls here are the same as for swiotlb_unmap_page() above.
  735. */
  736. void
  737. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  738. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  739. {
  740. struct scatterlist *sg;
  741. int i;
  742. BUG_ON(dir == DMA_NONE);
  743. for_each_sg(sgl, sg, nelems, i)
  744. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  745. }
  746. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  747. void
  748. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  749. enum dma_data_direction dir)
  750. {
  751. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  752. }
  753. EXPORT_SYMBOL(swiotlb_unmap_sg);
  754. /*
  755. * Make physical memory consistent for a set of streaming mode DMA translations
  756. * after a transfer.
  757. *
  758. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  759. * and usage.
  760. */
  761. static void
  762. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  763. int nelems, enum dma_data_direction dir,
  764. enum dma_sync_target target)
  765. {
  766. struct scatterlist *sg;
  767. int i;
  768. for_each_sg(sgl, sg, nelems, i)
  769. swiotlb_sync_single(hwdev, sg->dma_address,
  770. sg->dma_length, dir, target);
  771. }
  772. void
  773. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  774. int nelems, enum dma_data_direction dir)
  775. {
  776. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  777. }
  778. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  779. void
  780. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  781. int nelems, enum dma_data_direction dir)
  782. {
  783. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  784. }
  785. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  786. int
  787. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  788. {
  789. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  790. }
  791. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  792. /*
  793. * Return whether the given device DMA address mask can be supported
  794. * properly. For example, if your device can only drive the low 24-bits
  795. * during bus mastering, then you would pass 0x00ffffff as the mask to
  796. * this function.
  797. */
  798. int
  799. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  800. {
  801. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  802. }
  803. EXPORT_SYMBOL(swiotlb_dma_supported);