123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- /*
- * lib/reed_solomon/decode_rs.c
- *
- * Overview:
- * Generic Reed Solomon encoder / decoder library
- *
- * Copyright 2002, Phil Karn, KA9Q
- * May be used under the terms of the GNU General Public License (GPL)
- *
- * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
- *
- * $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
- *
- */
- /* Generic data width independent code which is included by the
- * wrappers.
- */
- {
- int deg_lambda, el, deg_omega;
- int i, j, r, k, pad;
- int nn = rs->nn;
- int nroots = rs->nroots;
- int fcr = rs->fcr;
- int prim = rs->prim;
- int iprim = rs->iprim;
- uint16_t *alpha_to = rs->alpha_to;
- uint16_t *index_of = rs->index_of;
- uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
- /* Err+Eras Locator poly and syndrome poly The maximum value
- * of nroots is 8. So the necessary stack size will be about
- * 220 bytes max.
- */
- uint16_t lambda[nroots + 1], syn[nroots];
- uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
- uint16_t root[nroots], reg[nroots + 1], loc[nroots];
- int count = 0;
- uint16_t msk = (uint16_t) rs->nn;
- /* Check length parameter for validity */
- pad = nn - nroots - len;
- BUG_ON(pad < 0 || pad >= nn);
- /* Does the caller provide the syndrome ? */
- if (s != NULL)
- goto decode;
- /* form the syndromes; i.e., evaluate data(x) at roots of
- * g(x) */
- for (i = 0; i < nroots; i++)
- syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
- for (j = 1; j < len; j++) {
- for (i = 0; i < nroots; i++) {
- if (syn[i] == 0) {
- syn[i] = (((uint16_t) data[j]) ^
- invmsk) & msk;
- } else {
- syn[i] = ((((uint16_t) data[j]) ^
- invmsk) & msk) ^
- alpha_to[rs_modnn(rs, index_of[syn[i]] +
- (fcr + i) * prim)];
- }
- }
- }
- for (j = 0; j < nroots; j++) {
- for (i = 0; i < nroots; i++) {
- if (syn[i] == 0) {
- syn[i] = ((uint16_t) par[j]) & msk;
- } else {
- syn[i] = (((uint16_t) par[j]) & msk) ^
- alpha_to[rs_modnn(rs, index_of[syn[i]] +
- (fcr+i)*prim)];
- }
- }
- }
- s = syn;
- /* Convert syndromes to index form, checking for nonzero condition */
- syn_error = 0;
- for (i = 0; i < nroots; i++) {
- syn_error |= s[i];
- s[i] = index_of[s[i]];
- }
- if (!syn_error) {
- /* if syndrome is zero, data[] is a codeword and there are no
- * errors to correct. So return data[] unmodified
- */
- count = 0;
- goto finish;
- }
- decode:
- memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
- lambda[0] = 1;
- if (no_eras > 0) {
- /* Init lambda to be the erasure locator polynomial */
- lambda[1] = alpha_to[rs_modnn(rs,
- prim * (nn - 1 - eras_pos[0]))];
- for (i = 1; i < no_eras; i++) {
- u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
- for (j = i + 1; j > 0; j--) {
- tmp = index_of[lambda[j - 1]];
- if (tmp != nn) {
- lambda[j] ^=
- alpha_to[rs_modnn(rs, u + tmp)];
- }
- }
- }
- }
- for (i = 0; i < nroots + 1; i++)
- b[i] = index_of[lambda[i]];
- /*
- * Begin Berlekamp-Massey algorithm to determine error+erasure
- * locator polynomial
- */
- r = no_eras;
- el = no_eras;
- while (++r <= nroots) { /* r is the step number */
- /* Compute discrepancy at the r-th step in poly-form */
- discr_r = 0;
- for (i = 0; i < r; i++) {
- if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
- discr_r ^=
- alpha_to[rs_modnn(rs,
- index_of[lambda[i]] +
- s[r - i - 1])];
- }
- }
- discr_r = index_of[discr_r]; /* Index form */
- if (discr_r == nn) {
- /* 2 lines below: B(x) <-- x*B(x) */
- memmove (&b[1], b, nroots * sizeof (b[0]));
- b[0] = nn;
- } else {
- /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
- t[0] = lambda[0];
- for (i = 0; i < nroots; i++) {
- if (b[i] != nn) {
- t[i + 1] = lambda[i + 1] ^
- alpha_to[rs_modnn(rs, discr_r +
- b[i])];
- } else
- t[i + 1] = lambda[i + 1];
- }
- if (2 * el <= r + no_eras - 1) {
- el = r + no_eras - el;
- /*
- * 2 lines below: B(x) <-- inv(discr_r) *
- * lambda(x)
- */
- for (i = 0; i <= nroots; i++) {
- b[i] = (lambda[i] == 0) ? nn :
- rs_modnn(rs, index_of[lambda[i]]
- - discr_r + nn);
- }
- } else {
- /* 2 lines below: B(x) <-- x*B(x) */
- memmove(&b[1], b, nroots * sizeof(b[0]));
- b[0] = nn;
- }
- memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
- }
- }
- /* Convert lambda to index form and compute deg(lambda(x)) */
- deg_lambda = 0;
- for (i = 0; i < nroots + 1; i++) {
- lambda[i] = index_of[lambda[i]];
- if (lambda[i] != nn)
- deg_lambda = i;
- }
- /* Find roots of error+erasure locator polynomial by Chien search */
- memcpy(®[1], &lambda[1], nroots * sizeof(reg[0]));
- count = 0; /* Number of roots of lambda(x) */
- for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
- q = 1; /* lambda[0] is always 0 */
- for (j = deg_lambda; j > 0; j--) {
- if (reg[j] != nn) {
- reg[j] = rs_modnn(rs, reg[j] + j);
- q ^= alpha_to[reg[j]];
- }
- }
- if (q != 0)
- continue; /* Not a root */
- /* store root (index-form) and error location number */
- root[count] = i;
- loc[count] = k;
- /* If we've already found max possible roots,
- * abort the search to save time
- */
- if (++count == deg_lambda)
- break;
- }
- if (deg_lambda != count) {
- /*
- * deg(lambda) unequal to number of roots => uncorrectable
- * error detected
- */
- count = -EBADMSG;
- goto finish;
- }
- /*
- * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
- * x**nroots). in index form. Also find deg(omega).
- */
- deg_omega = deg_lambda - 1;
- for (i = 0; i <= deg_omega; i++) {
- tmp = 0;
- for (j = i; j >= 0; j--) {
- if ((s[i - j] != nn) && (lambda[j] != nn))
- tmp ^=
- alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
- }
- omega[i] = index_of[tmp];
- }
- /*
- * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
- * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
- */
- for (j = count - 1; j >= 0; j--) {
- num1 = 0;
- for (i = deg_omega; i >= 0; i--) {
- if (omega[i] != nn)
- num1 ^= alpha_to[rs_modnn(rs, omega[i] +
- i * root[j])];
- }
- num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
- den = 0;
- /* lambda[i+1] for i even is the formal derivative
- * lambda_pr of lambda[i] */
- for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
- if (lambda[i + 1] != nn) {
- den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
- i * root[j])];
- }
- }
- /* Apply error to data */
- if (num1 != 0 && loc[j] >= pad) {
- uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
- index_of[num2] +
- nn - index_of[den])];
- /* Store the error correction pattern, if a
- * correction buffer is available */
- if (corr) {
- corr[j] = cor;
- } else {
- /* If a data buffer is given and the
- * error is inside the message,
- * correct it */
- if (data && (loc[j] < (nn - nroots)))
- data[loc[j] - pad] ^= cor;
- }
- }
- }
- finish:
- if (eras_pos != NULL) {
- for (i = 0; i < count; i++)
- eras_pos[i] = loc[i] - pad;
- }
- return count;
- }
|