123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- /*
- * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
- *
- * Based on former do_div() implementation from asm-parisc/div64.h:
- * Copyright (C) 1999 Hewlett-Packard Co
- * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
- *
- *
- * Generic C version of 64bit/32bit division and modulo, with
- * 64bit result and 32bit remainder.
- *
- * The fast case for (n>>32 == 0) is handled inline by do_div().
- *
- * Code generated for this function might be very inefficient
- * for some CPUs. __div64_32() can be overridden by linking arch-specific
- * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
- */
- #include <linux/module.h>
- #include <linux/math64.h>
- /* Not needed on 64bit architectures */
- #if BITS_PER_LONG == 32
- uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
- {
- uint64_t rem = *n;
- uint64_t b = base;
- uint64_t res, d = 1;
- uint32_t high = rem >> 32;
- /* Reduce the thing a bit first */
- res = 0;
- if (high >= base) {
- high /= base;
- res = (uint64_t) high << 32;
- rem -= (uint64_t) (high*base) << 32;
- }
- while ((int64_t)b > 0 && b < rem) {
- b = b+b;
- d = d+d;
- }
- do {
- if (rem >= b) {
- rem -= b;
- res += d;
- }
- b >>= 1;
- d >>= 1;
- } while (d);
- *n = res;
- return rem;
- }
- EXPORT_SYMBOL(__div64_32);
- #ifndef div_s64_rem
- s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
- {
- u64 quotient;
- if (dividend < 0) {
- quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
- *remainder = -*remainder;
- if (divisor > 0)
- quotient = -quotient;
- } else {
- quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
- if (divisor < 0)
- quotient = -quotient;
- }
- return quotient;
- }
- EXPORT_SYMBOL(div_s64_rem);
- #endif
- /**
- * div64_u64 - unsigned 64bit divide with 64bit divisor
- * @dividend: 64bit dividend
- * @divisor: 64bit divisor
- *
- * This implementation is a modified version of the algorithm proposed
- * by the book 'Hacker's Delight'. The original source and full proof
- * can be found here and is available for use without restriction.
- *
- * 'http://www.hackersdelight.org/HDcode/newCode/divDouble.c'
- */
- #ifndef div64_u64
- u64 div64_u64(u64 dividend, u64 divisor)
- {
- u32 high = divisor >> 32;
- u64 quot;
- if (high == 0) {
- quot = div_u64(dividend, divisor);
- } else {
- int n = 1 + fls(high);
- quot = div_u64(dividend >> n, divisor >> n);
- if (quot != 0)
- quot--;
- if ((dividend - quot * divisor) >= divisor)
- quot++;
- }
- return quot;
- }
- EXPORT_SYMBOL(div64_u64);
- #endif
- /**
- * div64_s64 - signed 64bit divide with 64bit divisor
- * @dividend: 64bit dividend
- * @divisor: 64bit divisor
- */
- #ifndef div64_s64
- s64 div64_s64(s64 dividend, s64 divisor)
- {
- s64 quot, t;
- quot = div64_u64(abs64(dividend), abs64(divisor));
- t = (dividend ^ divisor) >> 63;
- return (quot ^ t) - t;
- }
- EXPORT_SYMBOL(div64_s64);
- #endif
- #endif /* BITS_PER_LONG == 32 */
- /*
- * Iterative div/mod for use when dividend is not expected to be much
- * bigger than divisor.
- */
- u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
- {
- return __iter_div_u64_rem(dividend, divisor, remainder);
- }
- EXPORT_SYMBOL(iter_div_u64_rem);
|