timer.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/pid_namespace.h>
  29. #include <linux/notifier.h>
  30. #include <linux/thread_info.h>
  31. #include <linux/time.h>
  32. #include <linux/jiffies.h>
  33. #include <linux/posix-timers.h>
  34. #include <linux/cpu.h>
  35. #include <linux/syscalls.h>
  36. #include <linux/delay.h>
  37. #include <linux/tick.h>
  38. #include <linux/kallsyms.h>
  39. #include <linux/irq_work.h>
  40. #include <linux/sched.h>
  41. #include <linux/slab.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/unistd.h>
  44. #include <asm/div64.h>
  45. #include <asm/timex.h>
  46. #include <asm/io.h>
  47. #define CREATE_TRACE_POINTS
  48. #include <trace/events/timer.h>
  49. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  50. EXPORT_SYMBOL(jiffies_64);
  51. /*
  52. * per-CPU timer vector definitions:
  53. */
  54. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  55. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  56. #define TVN_SIZE (1 << TVN_BITS)
  57. #define TVR_SIZE (1 << TVR_BITS)
  58. #define TVN_MASK (TVN_SIZE - 1)
  59. #define TVR_MASK (TVR_SIZE - 1)
  60. struct tvec {
  61. struct list_head vec[TVN_SIZE];
  62. };
  63. struct tvec_root {
  64. struct list_head vec[TVR_SIZE];
  65. };
  66. struct tvec_base {
  67. spinlock_t lock;
  68. struct timer_list *running_timer;
  69. unsigned long timer_jiffies;
  70. unsigned long next_timer;
  71. struct tvec_root tv1;
  72. struct tvec tv2;
  73. struct tvec tv3;
  74. struct tvec tv4;
  75. struct tvec tv5;
  76. } ____cacheline_aligned;
  77. struct tvec_base boot_tvec_bases;
  78. EXPORT_SYMBOL(boot_tvec_bases);
  79. static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
  80. /* Functions below help us manage 'deferrable' flag */
  81. static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
  82. {
  83. return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
  84. }
  85. static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
  86. {
  87. return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
  88. }
  89. static inline void timer_set_deferrable(struct timer_list *timer)
  90. {
  91. timer->base = TBASE_MAKE_DEFERRED(timer->base);
  92. }
  93. static inline void
  94. timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
  95. {
  96. timer->base = (struct tvec_base *)((unsigned long)(new_base) |
  97. tbase_get_deferrable(timer->base));
  98. }
  99. static unsigned long round_jiffies_common(unsigned long j, int cpu,
  100. bool force_up)
  101. {
  102. int rem;
  103. unsigned long original = j;
  104. /*
  105. * We don't want all cpus firing their timers at once hitting the
  106. * same lock or cachelines, so we skew each extra cpu with an extra
  107. * 3 jiffies. This 3 jiffies came originally from the mm/ code which
  108. * already did this.
  109. * The skew is done by adding 3*cpunr, then round, then subtract this
  110. * extra offset again.
  111. */
  112. j += cpu * 3;
  113. rem = j % HZ;
  114. /*
  115. * If the target jiffie is just after a whole second (which can happen
  116. * due to delays of the timer irq, long irq off times etc etc) then
  117. * we should round down to the whole second, not up. Use 1/4th second
  118. * as cutoff for this rounding as an extreme upper bound for this.
  119. * But never round down if @force_up is set.
  120. */
  121. if (rem < HZ/4 && !force_up) /* round down */
  122. j = j - rem;
  123. else /* round up */
  124. j = j - rem + HZ;
  125. /* now that we have rounded, subtract the extra skew again */
  126. j -= cpu * 3;
  127. if (j <= jiffies) /* rounding ate our timeout entirely; */
  128. return original;
  129. return j;
  130. }
  131. /**
  132. * __round_jiffies - function to round jiffies to a full second
  133. * @j: the time in (absolute) jiffies that should be rounded
  134. * @cpu: the processor number on which the timeout will happen
  135. *
  136. * __round_jiffies() rounds an absolute time in the future (in jiffies)
  137. * up or down to (approximately) full seconds. This is useful for timers
  138. * for which the exact time they fire does not matter too much, as long as
  139. * they fire approximately every X seconds.
  140. *
  141. * By rounding these timers to whole seconds, all such timers will fire
  142. * at the same time, rather than at various times spread out. The goal
  143. * of this is to have the CPU wake up less, which saves power.
  144. *
  145. * The exact rounding is skewed for each processor to avoid all
  146. * processors firing at the exact same time, which could lead
  147. * to lock contention or spurious cache line bouncing.
  148. *
  149. * The return value is the rounded version of the @j parameter.
  150. */
  151. unsigned long __round_jiffies(unsigned long j, int cpu)
  152. {
  153. return round_jiffies_common(j, cpu, false);
  154. }
  155. EXPORT_SYMBOL_GPL(__round_jiffies);
  156. /**
  157. * __round_jiffies_relative - function to round jiffies to a full second
  158. * @j: the time in (relative) jiffies that should be rounded
  159. * @cpu: the processor number on which the timeout will happen
  160. *
  161. * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
  162. * up or down to (approximately) full seconds. This is useful for timers
  163. * for which the exact time they fire does not matter too much, as long as
  164. * they fire approximately every X seconds.
  165. *
  166. * By rounding these timers to whole seconds, all such timers will fire
  167. * at the same time, rather than at various times spread out. The goal
  168. * of this is to have the CPU wake up less, which saves power.
  169. *
  170. * The exact rounding is skewed for each processor to avoid all
  171. * processors firing at the exact same time, which could lead
  172. * to lock contention or spurious cache line bouncing.
  173. *
  174. * The return value is the rounded version of the @j parameter.
  175. */
  176. unsigned long __round_jiffies_relative(unsigned long j, int cpu)
  177. {
  178. unsigned long j0 = jiffies;
  179. /* Use j0 because jiffies might change while we run */
  180. return round_jiffies_common(j + j0, cpu, false) - j0;
  181. }
  182. EXPORT_SYMBOL_GPL(__round_jiffies_relative);
  183. /**
  184. * round_jiffies - function to round jiffies to a full second
  185. * @j: the time in (absolute) jiffies that should be rounded
  186. *
  187. * round_jiffies() rounds an absolute time in the future (in jiffies)
  188. * up or down to (approximately) full seconds. This is useful for timers
  189. * for which the exact time they fire does not matter too much, as long as
  190. * they fire approximately every X seconds.
  191. *
  192. * By rounding these timers to whole seconds, all such timers will fire
  193. * at the same time, rather than at various times spread out. The goal
  194. * of this is to have the CPU wake up less, which saves power.
  195. *
  196. * The return value is the rounded version of the @j parameter.
  197. */
  198. unsigned long round_jiffies(unsigned long j)
  199. {
  200. return round_jiffies_common(j, raw_smp_processor_id(), false);
  201. }
  202. EXPORT_SYMBOL_GPL(round_jiffies);
  203. /**
  204. * round_jiffies_relative - function to round jiffies to a full second
  205. * @j: the time in (relative) jiffies that should be rounded
  206. *
  207. * round_jiffies_relative() rounds a time delta in the future (in jiffies)
  208. * up or down to (approximately) full seconds. This is useful for timers
  209. * for which the exact time they fire does not matter too much, as long as
  210. * they fire approximately every X seconds.
  211. *
  212. * By rounding these timers to whole seconds, all such timers will fire
  213. * at the same time, rather than at various times spread out. The goal
  214. * of this is to have the CPU wake up less, which saves power.
  215. *
  216. * The return value is the rounded version of the @j parameter.
  217. */
  218. unsigned long round_jiffies_relative(unsigned long j)
  219. {
  220. return __round_jiffies_relative(j, raw_smp_processor_id());
  221. }
  222. EXPORT_SYMBOL_GPL(round_jiffies_relative);
  223. /**
  224. * __round_jiffies_up - function to round jiffies up to a full second
  225. * @j: the time in (absolute) jiffies that should be rounded
  226. * @cpu: the processor number on which the timeout will happen
  227. *
  228. * This is the same as __round_jiffies() except that it will never
  229. * round down. This is useful for timeouts for which the exact time
  230. * of firing does not matter too much, as long as they don't fire too
  231. * early.
  232. */
  233. unsigned long __round_jiffies_up(unsigned long j, int cpu)
  234. {
  235. return round_jiffies_common(j, cpu, true);
  236. }
  237. EXPORT_SYMBOL_GPL(__round_jiffies_up);
  238. /**
  239. * __round_jiffies_up_relative - function to round jiffies up to a full second
  240. * @j: the time in (relative) jiffies that should be rounded
  241. * @cpu: the processor number on which the timeout will happen
  242. *
  243. * This is the same as __round_jiffies_relative() except that it will never
  244. * round down. This is useful for timeouts for which the exact time
  245. * of firing does not matter too much, as long as they don't fire too
  246. * early.
  247. */
  248. unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
  249. {
  250. unsigned long j0 = jiffies;
  251. /* Use j0 because jiffies might change while we run */
  252. return round_jiffies_common(j + j0, cpu, true) - j0;
  253. }
  254. EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
  255. /**
  256. * round_jiffies_up - function to round jiffies up to a full second
  257. * @j: the time in (absolute) jiffies that should be rounded
  258. *
  259. * This is the same as round_jiffies() except that it will never
  260. * round down. This is useful for timeouts for which the exact time
  261. * of firing does not matter too much, as long as they don't fire too
  262. * early.
  263. */
  264. unsigned long round_jiffies_up(unsigned long j)
  265. {
  266. return round_jiffies_common(j, raw_smp_processor_id(), true);
  267. }
  268. EXPORT_SYMBOL_GPL(round_jiffies_up);
  269. /**
  270. * round_jiffies_up_relative - function to round jiffies up to a full second
  271. * @j: the time in (relative) jiffies that should be rounded
  272. *
  273. * This is the same as round_jiffies_relative() except that it will never
  274. * round down. This is useful for timeouts for which the exact time
  275. * of firing does not matter too much, as long as they don't fire too
  276. * early.
  277. */
  278. unsigned long round_jiffies_up_relative(unsigned long j)
  279. {
  280. return __round_jiffies_up_relative(j, raw_smp_processor_id());
  281. }
  282. EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
  283. /**
  284. * set_timer_slack - set the allowed slack for a timer
  285. * @timer: the timer to be modified
  286. * @slack_hz: the amount of time (in jiffies) allowed for rounding
  287. *
  288. * Set the amount of time, in jiffies, that a certain timer has
  289. * in terms of slack. By setting this value, the timer subsystem
  290. * will schedule the actual timer somewhere between
  291. * the time mod_timer() asks for, and that time plus the slack.
  292. *
  293. * By setting the slack to -1, a percentage of the delay is used
  294. * instead.
  295. */
  296. void set_timer_slack(struct timer_list *timer, int slack_hz)
  297. {
  298. timer->slack = slack_hz;
  299. }
  300. EXPORT_SYMBOL_GPL(set_timer_slack);
  301. static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
  302. {
  303. unsigned long expires = timer->expires;
  304. unsigned long idx = expires - base->timer_jiffies;
  305. struct list_head *vec;
  306. if (idx < TVR_SIZE) {
  307. int i = expires & TVR_MASK;
  308. vec = base->tv1.vec + i;
  309. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  310. int i = (expires >> TVR_BITS) & TVN_MASK;
  311. vec = base->tv2.vec + i;
  312. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  313. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  314. vec = base->tv3.vec + i;
  315. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  316. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  317. vec = base->tv4.vec + i;
  318. } else if ((signed long) idx < 0) {
  319. /*
  320. * Can happen if you add a timer with expires == jiffies,
  321. * or you set a timer to go off in the past
  322. */
  323. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  324. } else {
  325. int i;
  326. /* If the timeout is larger than 0xffffffff on 64-bit
  327. * architectures then we use the maximum timeout:
  328. */
  329. if (idx > 0xffffffffUL) {
  330. idx = 0xffffffffUL;
  331. expires = idx + base->timer_jiffies;
  332. }
  333. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  334. vec = base->tv5.vec + i;
  335. }
  336. /*
  337. * Timers are FIFO:
  338. */
  339. list_add_tail(&timer->entry, vec);
  340. }
  341. #ifdef CONFIG_TIMER_STATS
  342. void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
  343. {
  344. if (timer->start_site)
  345. return;
  346. timer->start_site = addr;
  347. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  348. timer->start_pid = current->pid;
  349. }
  350. static void timer_stats_account_timer(struct timer_list *timer)
  351. {
  352. unsigned int flag = 0;
  353. if (likely(!timer->start_site))
  354. return;
  355. if (unlikely(tbase_get_deferrable(timer->base)))
  356. flag |= TIMER_STATS_FLAG_DEFERRABLE;
  357. timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
  358. timer->function, timer->start_comm, flag);
  359. }
  360. #else
  361. static void timer_stats_account_timer(struct timer_list *timer) {}
  362. #endif
  363. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  364. static struct debug_obj_descr timer_debug_descr;
  365. static void *timer_debug_hint(void *addr)
  366. {
  367. return ((struct timer_list *) addr)->function;
  368. }
  369. /*
  370. * fixup_init is called when:
  371. * - an active object is initialized
  372. */
  373. static int timer_fixup_init(void *addr, enum debug_obj_state state)
  374. {
  375. struct timer_list *timer = addr;
  376. switch (state) {
  377. case ODEBUG_STATE_ACTIVE:
  378. del_timer_sync(timer);
  379. debug_object_init(timer, &timer_debug_descr);
  380. return 1;
  381. default:
  382. return 0;
  383. }
  384. }
  385. /*
  386. * fixup_activate is called when:
  387. * - an active object is activated
  388. * - an unknown object is activated (might be a statically initialized object)
  389. */
  390. static int timer_fixup_activate(void *addr, enum debug_obj_state state)
  391. {
  392. struct timer_list *timer = addr;
  393. switch (state) {
  394. case ODEBUG_STATE_NOTAVAILABLE:
  395. /*
  396. * This is not really a fixup. The timer was
  397. * statically initialized. We just make sure that it
  398. * is tracked in the object tracker.
  399. */
  400. if (timer->entry.next == NULL &&
  401. timer->entry.prev == TIMER_ENTRY_STATIC) {
  402. debug_object_init(timer, &timer_debug_descr);
  403. debug_object_activate(timer, &timer_debug_descr);
  404. return 0;
  405. } else {
  406. WARN_ON_ONCE(1);
  407. }
  408. return 0;
  409. case ODEBUG_STATE_ACTIVE:
  410. WARN_ON(1);
  411. default:
  412. return 0;
  413. }
  414. }
  415. /*
  416. * fixup_free is called when:
  417. * - an active object is freed
  418. */
  419. static int timer_fixup_free(void *addr, enum debug_obj_state state)
  420. {
  421. struct timer_list *timer = addr;
  422. switch (state) {
  423. case ODEBUG_STATE_ACTIVE:
  424. del_timer_sync(timer);
  425. debug_object_free(timer, &timer_debug_descr);
  426. return 1;
  427. default:
  428. return 0;
  429. }
  430. }
  431. static struct debug_obj_descr timer_debug_descr = {
  432. .name = "timer_list",
  433. .debug_hint = timer_debug_hint,
  434. .fixup_init = timer_fixup_init,
  435. .fixup_activate = timer_fixup_activate,
  436. .fixup_free = timer_fixup_free,
  437. };
  438. static inline void debug_timer_init(struct timer_list *timer)
  439. {
  440. debug_object_init(timer, &timer_debug_descr);
  441. }
  442. static inline void debug_timer_activate(struct timer_list *timer)
  443. {
  444. debug_object_activate(timer, &timer_debug_descr);
  445. }
  446. static inline void debug_timer_deactivate(struct timer_list *timer)
  447. {
  448. debug_object_deactivate(timer, &timer_debug_descr);
  449. }
  450. static inline void debug_timer_free(struct timer_list *timer)
  451. {
  452. debug_object_free(timer, &timer_debug_descr);
  453. }
  454. static void __init_timer(struct timer_list *timer,
  455. const char *name,
  456. struct lock_class_key *key);
  457. void init_timer_on_stack_key(struct timer_list *timer,
  458. const char *name,
  459. struct lock_class_key *key)
  460. {
  461. debug_object_init_on_stack(timer, &timer_debug_descr);
  462. __init_timer(timer, name, key);
  463. }
  464. EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
  465. void destroy_timer_on_stack(struct timer_list *timer)
  466. {
  467. debug_object_free(timer, &timer_debug_descr);
  468. }
  469. EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
  470. #else
  471. static inline void debug_timer_init(struct timer_list *timer) { }
  472. static inline void debug_timer_activate(struct timer_list *timer) { }
  473. static inline void debug_timer_deactivate(struct timer_list *timer) { }
  474. #endif
  475. static inline void debug_init(struct timer_list *timer)
  476. {
  477. debug_timer_init(timer);
  478. trace_timer_init(timer);
  479. }
  480. static inline void
  481. debug_activate(struct timer_list *timer, unsigned long expires)
  482. {
  483. debug_timer_activate(timer);
  484. trace_timer_start(timer, expires);
  485. }
  486. static inline void debug_deactivate(struct timer_list *timer)
  487. {
  488. debug_timer_deactivate(timer);
  489. trace_timer_cancel(timer);
  490. }
  491. static void __init_timer(struct timer_list *timer,
  492. const char *name,
  493. struct lock_class_key *key)
  494. {
  495. timer->entry.next = NULL;
  496. timer->base = __raw_get_cpu_var(tvec_bases);
  497. timer->slack = -1;
  498. #ifdef CONFIG_TIMER_STATS
  499. timer->start_site = NULL;
  500. timer->start_pid = -1;
  501. memset(timer->start_comm, 0, TASK_COMM_LEN);
  502. #endif
  503. lockdep_init_map(&timer->lockdep_map, name, key, 0);
  504. }
  505. void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
  506. const char *name,
  507. struct lock_class_key *key,
  508. void (*function)(unsigned long),
  509. unsigned long data)
  510. {
  511. timer->function = function;
  512. timer->data = data;
  513. init_timer_on_stack_key(timer, name, key);
  514. timer_set_deferrable(timer);
  515. }
  516. EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
  517. /**
  518. * init_timer_key - initialize a timer
  519. * @timer: the timer to be initialized
  520. * @name: name of the timer
  521. * @key: lockdep class key of the fake lock used for tracking timer
  522. * sync lock dependencies
  523. *
  524. * init_timer_key() must be done to a timer prior calling *any* of the
  525. * other timer functions.
  526. */
  527. void init_timer_key(struct timer_list *timer,
  528. const char *name,
  529. struct lock_class_key *key)
  530. {
  531. debug_init(timer);
  532. __init_timer(timer, name, key);
  533. }
  534. EXPORT_SYMBOL(init_timer_key);
  535. void init_timer_deferrable_key(struct timer_list *timer,
  536. const char *name,
  537. struct lock_class_key *key)
  538. {
  539. init_timer_key(timer, name, key);
  540. timer_set_deferrable(timer);
  541. }
  542. EXPORT_SYMBOL(init_timer_deferrable_key);
  543. static inline void detach_timer(struct timer_list *timer,
  544. int clear_pending)
  545. {
  546. struct list_head *entry = &timer->entry;
  547. debug_deactivate(timer);
  548. __list_del(entry->prev, entry->next);
  549. if (clear_pending)
  550. entry->next = NULL;
  551. entry->prev = LIST_POISON2;
  552. }
  553. /*
  554. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  555. * means that all timers which are tied to this base via timer->base are
  556. * locked, and the base itself is locked too.
  557. *
  558. * So __run_timers/migrate_timers can safely modify all timers which could
  559. * be found on ->tvX lists.
  560. *
  561. * When the timer's base is locked, and the timer removed from list, it is
  562. * possible to set timer->base = NULL and drop the lock: the timer remains
  563. * locked.
  564. */
  565. static struct tvec_base *lock_timer_base(struct timer_list *timer,
  566. unsigned long *flags)
  567. __acquires(timer->base->lock)
  568. {
  569. struct tvec_base *base;
  570. for (;;) {
  571. struct tvec_base *prelock_base = timer->base;
  572. base = tbase_get_base(prelock_base);
  573. if (likely(base != NULL)) {
  574. spin_lock_irqsave(&base->lock, *flags);
  575. if (likely(prelock_base == timer->base))
  576. return base;
  577. /* The timer has migrated to another CPU */
  578. spin_unlock_irqrestore(&base->lock, *flags);
  579. }
  580. cpu_relax();
  581. }
  582. }
  583. static inline int
  584. __mod_timer(struct timer_list *timer, unsigned long expires,
  585. bool pending_only, int pinned)
  586. {
  587. struct tvec_base *base, *new_base;
  588. unsigned long flags;
  589. int ret = 0 , cpu;
  590. timer_stats_timer_set_start_info(timer);
  591. BUG_ON(!timer->function);
  592. base = lock_timer_base(timer, &flags);
  593. if (timer_pending(timer)) {
  594. detach_timer(timer, 0);
  595. if (timer->expires == base->next_timer &&
  596. !tbase_get_deferrable(timer->base))
  597. base->next_timer = base->timer_jiffies;
  598. ret = 1;
  599. } else {
  600. if (pending_only)
  601. goto out_unlock;
  602. }
  603. debug_activate(timer, expires);
  604. cpu = smp_processor_id();
  605. #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
  606. if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
  607. cpu = get_nohz_timer_target();
  608. #endif
  609. new_base = per_cpu(tvec_bases, cpu);
  610. if (base != new_base) {
  611. /*
  612. * We are trying to schedule the timer on the local CPU.
  613. * However we can't change timer's base while it is running,
  614. * otherwise del_timer_sync() can't detect that the timer's
  615. * handler yet has not finished. This also guarantees that
  616. * the timer is serialized wrt itself.
  617. */
  618. if (likely(base->running_timer != timer)) {
  619. /* See the comment in lock_timer_base() */
  620. timer_set_base(timer, NULL);
  621. spin_unlock(&base->lock);
  622. base = new_base;
  623. spin_lock(&base->lock);
  624. timer_set_base(timer, base);
  625. }
  626. }
  627. timer->expires = expires;
  628. if (time_before(timer->expires, base->next_timer) &&
  629. !tbase_get_deferrable(timer->base))
  630. base->next_timer = timer->expires;
  631. internal_add_timer(base, timer);
  632. out_unlock:
  633. spin_unlock_irqrestore(&base->lock, flags);
  634. return ret;
  635. }
  636. /**
  637. * mod_timer_pending - modify a pending timer's timeout
  638. * @timer: the pending timer to be modified
  639. * @expires: new timeout in jiffies
  640. *
  641. * mod_timer_pending() is the same for pending timers as mod_timer(),
  642. * but will not re-activate and modify already deleted timers.
  643. *
  644. * It is useful for unserialized use of timers.
  645. */
  646. int mod_timer_pending(struct timer_list *timer, unsigned long expires)
  647. {
  648. return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
  649. }
  650. EXPORT_SYMBOL(mod_timer_pending);
  651. /*
  652. * Decide where to put the timer while taking the slack into account
  653. *
  654. * Algorithm:
  655. * 1) calculate the maximum (absolute) time
  656. * 2) calculate the highest bit where the expires and new max are different
  657. * 3) use this bit to make a mask
  658. * 4) use the bitmask to round down the maximum time, so that all last
  659. * bits are zeros
  660. */
  661. static inline
  662. unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
  663. {
  664. unsigned long expires_limit, mask;
  665. int bit;
  666. if (timer->slack >= 0) {
  667. expires_limit = expires + timer->slack;
  668. } else {
  669. long delta = expires - jiffies;
  670. if (delta < 256)
  671. return expires;
  672. expires_limit = expires + delta / 256;
  673. }
  674. mask = expires ^ expires_limit;
  675. if (mask == 0)
  676. return expires;
  677. bit = find_last_bit(&mask, BITS_PER_LONG);
  678. mask = (1 << bit) - 1;
  679. expires_limit = expires_limit & ~(mask);
  680. return expires_limit;
  681. }
  682. /**
  683. * mod_timer - modify a timer's timeout
  684. * @timer: the timer to be modified
  685. * @expires: new timeout in jiffies
  686. *
  687. * mod_timer() is a more efficient way to update the expire field of an
  688. * active timer (if the timer is inactive it will be activated)
  689. *
  690. * mod_timer(timer, expires) is equivalent to:
  691. *
  692. * del_timer(timer); timer->expires = expires; add_timer(timer);
  693. *
  694. * Note that if there are multiple unserialized concurrent users of the
  695. * same timer, then mod_timer() is the only safe way to modify the timeout,
  696. * since add_timer() cannot modify an already running timer.
  697. *
  698. * The function returns whether it has modified a pending timer or not.
  699. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  700. * active timer returns 1.)
  701. */
  702. int mod_timer(struct timer_list *timer, unsigned long expires)
  703. {
  704. expires = apply_slack(timer, expires);
  705. /*
  706. * This is a common optimization triggered by the
  707. * networking code - if the timer is re-modified
  708. * to be the same thing then just return:
  709. */
  710. if (timer_pending(timer) && timer->expires == expires)
  711. return 1;
  712. return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
  713. }
  714. EXPORT_SYMBOL(mod_timer);
  715. /**
  716. * mod_timer_pinned - modify a timer's timeout
  717. * @timer: the timer to be modified
  718. * @expires: new timeout in jiffies
  719. *
  720. * mod_timer_pinned() is a way to update the expire field of an
  721. * active timer (if the timer is inactive it will be activated)
  722. * and not allow the timer to be migrated to a different CPU.
  723. *
  724. * mod_timer_pinned(timer, expires) is equivalent to:
  725. *
  726. * del_timer(timer); timer->expires = expires; add_timer(timer);
  727. */
  728. int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
  729. {
  730. if (timer->expires == expires && timer_pending(timer))
  731. return 1;
  732. return __mod_timer(timer, expires, false, TIMER_PINNED);
  733. }
  734. EXPORT_SYMBOL(mod_timer_pinned);
  735. /**
  736. * add_timer - start a timer
  737. * @timer: the timer to be added
  738. *
  739. * The kernel will do a ->function(->data) callback from the
  740. * timer interrupt at the ->expires point in the future. The
  741. * current time is 'jiffies'.
  742. *
  743. * The timer's ->expires, ->function (and if the handler uses it, ->data)
  744. * fields must be set prior calling this function.
  745. *
  746. * Timers with an ->expires field in the past will be executed in the next
  747. * timer tick.
  748. */
  749. void add_timer(struct timer_list *timer)
  750. {
  751. BUG_ON(timer_pending(timer));
  752. mod_timer(timer, timer->expires);
  753. }
  754. EXPORT_SYMBOL(add_timer);
  755. /**
  756. * add_timer_on - start a timer on a particular CPU
  757. * @timer: the timer to be added
  758. * @cpu: the CPU to start it on
  759. *
  760. * This is not very scalable on SMP. Double adds are not possible.
  761. */
  762. void add_timer_on(struct timer_list *timer, int cpu)
  763. {
  764. struct tvec_base *base = per_cpu(tvec_bases, cpu);
  765. unsigned long flags;
  766. timer_stats_timer_set_start_info(timer);
  767. BUG_ON(timer_pending(timer) || !timer->function);
  768. spin_lock_irqsave(&base->lock, flags);
  769. timer_set_base(timer, base);
  770. debug_activate(timer, timer->expires);
  771. if (time_before(timer->expires, base->next_timer) &&
  772. !tbase_get_deferrable(timer->base))
  773. base->next_timer = timer->expires;
  774. internal_add_timer(base, timer);
  775. /*
  776. * Check whether the other CPU is idle and needs to be
  777. * triggered to reevaluate the timer wheel when nohz is
  778. * active. We are protected against the other CPU fiddling
  779. * with the timer by holding the timer base lock. This also
  780. * makes sure that a CPU on the way to idle can not evaluate
  781. * the timer wheel.
  782. */
  783. wake_up_idle_cpu(cpu);
  784. spin_unlock_irqrestore(&base->lock, flags);
  785. }
  786. EXPORT_SYMBOL_GPL(add_timer_on);
  787. /**
  788. * del_timer - deactive a timer.
  789. * @timer: the timer to be deactivated
  790. *
  791. * del_timer() deactivates a timer - this works on both active and inactive
  792. * timers.
  793. *
  794. * The function returns whether it has deactivated a pending timer or not.
  795. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  796. * active timer returns 1.)
  797. */
  798. int del_timer(struct timer_list *timer)
  799. {
  800. struct tvec_base *base;
  801. unsigned long flags;
  802. int ret = 0;
  803. timer_stats_timer_clear_start_info(timer);
  804. if (timer_pending(timer)) {
  805. base = lock_timer_base(timer, &flags);
  806. if (timer_pending(timer)) {
  807. detach_timer(timer, 1);
  808. if (timer->expires == base->next_timer &&
  809. !tbase_get_deferrable(timer->base))
  810. base->next_timer = base->timer_jiffies;
  811. ret = 1;
  812. }
  813. spin_unlock_irqrestore(&base->lock, flags);
  814. }
  815. return ret;
  816. }
  817. EXPORT_SYMBOL(del_timer);
  818. /**
  819. * try_to_del_timer_sync - Try to deactivate a timer
  820. * @timer: timer do del
  821. *
  822. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  823. * exit the timer is not queued and the handler is not running on any CPU.
  824. */
  825. int try_to_del_timer_sync(struct timer_list *timer)
  826. {
  827. struct tvec_base *base;
  828. unsigned long flags;
  829. int ret = -1;
  830. base = lock_timer_base(timer, &flags);
  831. if (base->running_timer == timer)
  832. goto out;
  833. timer_stats_timer_clear_start_info(timer);
  834. ret = 0;
  835. if (timer_pending(timer)) {
  836. detach_timer(timer, 1);
  837. if (timer->expires == base->next_timer &&
  838. !tbase_get_deferrable(timer->base))
  839. base->next_timer = base->timer_jiffies;
  840. ret = 1;
  841. }
  842. out:
  843. spin_unlock_irqrestore(&base->lock, flags);
  844. return ret;
  845. }
  846. EXPORT_SYMBOL(try_to_del_timer_sync);
  847. #ifdef CONFIG_SMP
  848. /**
  849. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  850. * @timer: the timer to be deactivated
  851. *
  852. * This function only differs from del_timer() on SMP: besides deactivating
  853. * the timer it also makes sure the handler has finished executing on other
  854. * CPUs.
  855. *
  856. * Synchronization rules: Callers must prevent restarting of the timer,
  857. * otherwise this function is meaningless. It must not be called from
  858. * interrupt contexts. The caller must not hold locks which would prevent
  859. * completion of the timer's handler. The timer's handler must not call
  860. * add_timer_on(). Upon exit the timer is not queued and the handler is
  861. * not running on any CPU.
  862. *
  863. * Note: You must not hold locks that are held in interrupt context
  864. * while calling this function. Even if the lock has nothing to do
  865. * with the timer in question. Here's why:
  866. *
  867. * CPU0 CPU1
  868. * ---- ----
  869. * <SOFTIRQ>
  870. * call_timer_fn();
  871. * base->running_timer = mytimer;
  872. * spin_lock_irq(somelock);
  873. * <IRQ>
  874. * spin_lock(somelock);
  875. * del_timer_sync(mytimer);
  876. * while (base->running_timer == mytimer);
  877. *
  878. * Now del_timer_sync() will never return and never release somelock.
  879. * The interrupt on the other CPU is waiting to grab somelock but
  880. * it has interrupted the softirq that CPU0 is waiting to finish.
  881. *
  882. * The function returns whether it has deactivated a pending timer or not.
  883. */
  884. int del_timer_sync(struct timer_list *timer)
  885. {
  886. #ifdef CONFIG_LOCKDEP
  887. unsigned long flags;
  888. /*
  889. * If lockdep gives a backtrace here, please reference
  890. * the synchronization rules above.
  891. */
  892. local_irq_save(flags);
  893. lock_map_acquire(&timer->lockdep_map);
  894. lock_map_release(&timer->lockdep_map);
  895. local_irq_restore(flags);
  896. #endif
  897. /*
  898. * don't use it in hardirq context, because it
  899. * could lead to deadlock.
  900. */
  901. WARN_ON(in_irq());
  902. for (;;) {
  903. int ret = try_to_del_timer_sync(timer);
  904. if (ret >= 0)
  905. return ret;
  906. cpu_relax();
  907. }
  908. }
  909. EXPORT_SYMBOL(del_timer_sync);
  910. #endif
  911. static int cascade(struct tvec_base *base, struct tvec *tv, int index)
  912. {
  913. /* cascade all the timers from tv up one level */
  914. struct timer_list *timer, *tmp;
  915. struct list_head tv_list;
  916. list_replace_init(tv->vec + index, &tv_list);
  917. /*
  918. * We are removing _all_ timers from the list, so we
  919. * don't have to detach them individually.
  920. */
  921. list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
  922. BUG_ON(tbase_get_base(timer->base) != base);
  923. internal_add_timer(base, timer);
  924. }
  925. return index;
  926. }
  927. static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
  928. unsigned long data)
  929. {
  930. int preempt_count = preempt_count();
  931. #ifdef CONFIG_LOCKDEP
  932. /*
  933. * It is permissible to free the timer from inside the
  934. * function that is called from it, this we need to take into
  935. * account for lockdep too. To avoid bogus "held lock freed"
  936. * warnings as well as problems when looking into
  937. * timer->lockdep_map, make a copy and use that here.
  938. */
  939. struct lockdep_map lockdep_map = timer->lockdep_map;
  940. #endif
  941. /*
  942. * Couple the lock chain with the lock chain at
  943. * del_timer_sync() by acquiring the lock_map around the fn()
  944. * call here and in del_timer_sync().
  945. */
  946. lock_map_acquire(&lockdep_map);
  947. trace_timer_expire_entry(timer);
  948. fn(data);
  949. trace_timer_expire_exit(timer);
  950. lock_map_release(&lockdep_map);
  951. if (preempt_count != preempt_count()) {
  952. WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
  953. fn, preempt_count, preempt_count());
  954. /*
  955. * Restore the preempt count. That gives us a decent
  956. * chance to survive and extract information. If the
  957. * callback kept a lock held, bad luck, but not worse
  958. * than the BUG() we had.
  959. */
  960. preempt_count() = preempt_count;
  961. }
  962. }
  963. #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
  964. /**
  965. * __run_timers - run all expired timers (if any) on this CPU.
  966. * @base: the timer vector to be processed.
  967. *
  968. * This function cascades all vectors and executes all expired timer
  969. * vectors.
  970. */
  971. static inline void __run_timers(struct tvec_base *base)
  972. {
  973. struct timer_list *timer;
  974. spin_lock_irq(&base->lock);
  975. while (time_after_eq(jiffies, base->timer_jiffies)) {
  976. struct list_head work_list;
  977. struct list_head *head = &work_list;
  978. int index = base->timer_jiffies & TVR_MASK;
  979. /*
  980. * Cascade timers:
  981. */
  982. if (!index &&
  983. (!cascade(base, &base->tv2, INDEX(0))) &&
  984. (!cascade(base, &base->tv3, INDEX(1))) &&
  985. !cascade(base, &base->tv4, INDEX(2)))
  986. cascade(base, &base->tv5, INDEX(3));
  987. ++base->timer_jiffies;
  988. list_replace_init(base->tv1.vec + index, &work_list);
  989. while (!list_empty(head)) {
  990. void (*fn)(unsigned long);
  991. unsigned long data;
  992. timer = list_first_entry(head, struct timer_list,entry);
  993. fn = timer->function;
  994. data = timer->data;
  995. timer_stats_account_timer(timer);
  996. base->running_timer = timer;
  997. detach_timer(timer, 1);
  998. spin_unlock_irq(&base->lock);
  999. call_timer_fn(timer, fn, data);
  1000. spin_lock_irq(&base->lock);
  1001. }
  1002. }
  1003. base->running_timer = NULL;
  1004. spin_unlock_irq(&base->lock);
  1005. }
  1006. #ifdef CONFIG_NO_HZ
  1007. /*
  1008. * Find out when the next timer event is due to happen. This
  1009. * is used on S/390 to stop all activity when a CPU is idle.
  1010. * This function needs to be called with interrupts disabled.
  1011. */
  1012. static unsigned long __next_timer_interrupt(struct tvec_base *base)
  1013. {
  1014. unsigned long timer_jiffies = base->timer_jiffies;
  1015. unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
  1016. int index, slot, array, found = 0;
  1017. struct timer_list *nte;
  1018. struct tvec *varray[4];
  1019. /* Look for timer events in tv1. */
  1020. index = slot = timer_jiffies & TVR_MASK;
  1021. do {
  1022. list_for_each_entry(nte, base->tv1.vec + slot, entry) {
  1023. if (tbase_get_deferrable(nte->base))
  1024. continue;
  1025. found = 1;
  1026. expires = nte->expires;
  1027. /* Look at the cascade bucket(s)? */
  1028. if (!index || slot < index)
  1029. goto cascade;
  1030. return expires;
  1031. }
  1032. slot = (slot + 1) & TVR_MASK;
  1033. } while (slot != index);
  1034. cascade:
  1035. /* Calculate the next cascade event */
  1036. if (index)
  1037. timer_jiffies += TVR_SIZE - index;
  1038. timer_jiffies >>= TVR_BITS;
  1039. /* Check tv2-tv5. */
  1040. varray[0] = &base->tv2;
  1041. varray[1] = &base->tv3;
  1042. varray[2] = &base->tv4;
  1043. varray[3] = &base->tv5;
  1044. for (array = 0; array < 4; array++) {
  1045. struct tvec *varp = varray[array];
  1046. index = slot = timer_jiffies & TVN_MASK;
  1047. do {
  1048. list_for_each_entry(nte, varp->vec + slot, entry) {
  1049. if (tbase_get_deferrable(nte->base))
  1050. continue;
  1051. found = 1;
  1052. if (time_before(nte->expires, expires))
  1053. expires = nte->expires;
  1054. }
  1055. /*
  1056. * Do we still search for the first timer or are
  1057. * we looking up the cascade buckets ?
  1058. */
  1059. if (found) {
  1060. /* Look at the cascade bucket(s)? */
  1061. if (!index || slot < index)
  1062. break;
  1063. return expires;
  1064. }
  1065. slot = (slot + 1) & TVN_MASK;
  1066. } while (slot != index);
  1067. if (index)
  1068. timer_jiffies += TVN_SIZE - index;
  1069. timer_jiffies >>= TVN_BITS;
  1070. }
  1071. return expires;
  1072. }
  1073. /*
  1074. * Check, if the next hrtimer event is before the next timer wheel
  1075. * event:
  1076. */
  1077. static unsigned long cmp_next_hrtimer_event(unsigned long now,
  1078. unsigned long expires)
  1079. {
  1080. ktime_t hr_delta = hrtimer_get_next_event();
  1081. struct timespec tsdelta;
  1082. unsigned long delta;
  1083. if (hr_delta.tv64 == KTIME_MAX)
  1084. return expires;
  1085. /*
  1086. * Expired timer available, let it expire in the next tick
  1087. */
  1088. if (hr_delta.tv64 <= 0)
  1089. return now + 1;
  1090. tsdelta = ktime_to_timespec(hr_delta);
  1091. delta = timespec_to_jiffies(&tsdelta);
  1092. /*
  1093. * Limit the delta to the max value, which is checked in
  1094. * tick_nohz_stop_sched_tick():
  1095. */
  1096. if (delta > NEXT_TIMER_MAX_DELTA)
  1097. delta = NEXT_TIMER_MAX_DELTA;
  1098. /*
  1099. * Take rounding errors in to account and make sure, that it
  1100. * expires in the next tick. Otherwise we go into an endless
  1101. * ping pong due to tick_nohz_stop_sched_tick() retriggering
  1102. * the timer softirq
  1103. */
  1104. if (delta < 1)
  1105. delta = 1;
  1106. now += delta;
  1107. if (time_before(now, expires))
  1108. return now;
  1109. return expires;
  1110. }
  1111. /**
  1112. * get_next_timer_interrupt - return the jiffy of the next pending timer
  1113. * @now: current time (in jiffies)
  1114. */
  1115. unsigned long get_next_timer_interrupt(unsigned long now)
  1116. {
  1117. struct tvec_base *base = __this_cpu_read(tvec_bases);
  1118. unsigned long expires;
  1119. /*
  1120. * Pretend that there is no timer pending if the cpu is offline.
  1121. * Possible pending timers will be migrated later to an active cpu.
  1122. */
  1123. if (cpu_is_offline(smp_processor_id()))
  1124. return now + NEXT_TIMER_MAX_DELTA;
  1125. spin_lock(&base->lock);
  1126. if (time_before_eq(base->next_timer, base->timer_jiffies))
  1127. base->next_timer = __next_timer_interrupt(base);
  1128. expires = base->next_timer;
  1129. spin_unlock(&base->lock);
  1130. if (time_before_eq(expires, now))
  1131. return now;
  1132. return cmp_next_hrtimer_event(now, expires);
  1133. }
  1134. #endif
  1135. /*
  1136. * Called from the timer interrupt handler to charge one tick to the current
  1137. * process. user_tick is 1 if the tick is user time, 0 for system.
  1138. */
  1139. void update_process_times(int user_tick)
  1140. {
  1141. struct task_struct *p = current;
  1142. int cpu = smp_processor_id();
  1143. /* Note: this timer irq context must be accounted for as well. */
  1144. account_process_tick(p, user_tick);
  1145. run_local_timers();
  1146. rcu_check_callbacks(cpu, user_tick);
  1147. printk_tick();
  1148. #ifdef CONFIG_IRQ_WORK
  1149. if (in_irq())
  1150. irq_work_run();
  1151. #endif
  1152. scheduler_tick();
  1153. run_posix_cpu_timers(p);
  1154. }
  1155. /*
  1156. * This function runs timers and the timer-tq in bottom half context.
  1157. */
  1158. static void run_timer_softirq(struct softirq_action *h)
  1159. {
  1160. struct tvec_base *base = __this_cpu_read(tvec_bases);
  1161. hrtimer_run_pending();
  1162. if (time_after_eq(jiffies, base->timer_jiffies))
  1163. __run_timers(base);
  1164. }
  1165. /*
  1166. * Called by the local, per-CPU timer interrupt on SMP.
  1167. */
  1168. void run_local_timers(void)
  1169. {
  1170. hrtimer_run_queues();
  1171. raise_softirq(TIMER_SOFTIRQ);
  1172. }
  1173. #ifdef __ARCH_WANT_SYS_ALARM
  1174. /*
  1175. * For backwards compatibility? This can be done in libc so Alpha
  1176. * and all newer ports shouldn't need it.
  1177. */
  1178. SYSCALL_DEFINE1(alarm, unsigned int, seconds)
  1179. {
  1180. return alarm_setitimer(seconds);
  1181. }
  1182. #endif
  1183. #ifndef __alpha__
  1184. /*
  1185. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  1186. * should be moved into arch/i386 instead?
  1187. */
  1188. /**
  1189. * sys_getpid - return the thread group id of the current process
  1190. *
  1191. * Note, despite the name, this returns the tgid not the pid. The tgid and
  1192. * the pid are identical unless CLONE_THREAD was specified on clone() in
  1193. * which case the tgid is the same in all threads of the same group.
  1194. *
  1195. * This is SMP safe as current->tgid does not change.
  1196. */
  1197. SYSCALL_DEFINE0(getpid)
  1198. {
  1199. return task_tgid_vnr(current);
  1200. }
  1201. /*
  1202. * Accessing ->real_parent is not SMP-safe, it could
  1203. * change from under us. However, we can use a stale
  1204. * value of ->real_parent under rcu_read_lock(), see
  1205. * release_task()->call_rcu(delayed_put_task_struct).
  1206. */
  1207. SYSCALL_DEFINE0(getppid)
  1208. {
  1209. int pid;
  1210. rcu_read_lock();
  1211. pid = task_tgid_vnr(current->real_parent);
  1212. rcu_read_unlock();
  1213. return pid;
  1214. }
  1215. SYSCALL_DEFINE0(getuid)
  1216. {
  1217. /* Only we change this so SMP safe */
  1218. return current_uid();
  1219. }
  1220. SYSCALL_DEFINE0(geteuid)
  1221. {
  1222. /* Only we change this so SMP safe */
  1223. return current_euid();
  1224. }
  1225. SYSCALL_DEFINE0(getgid)
  1226. {
  1227. /* Only we change this so SMP safe */
  1228. return current_gid();
  1229. }
  1230. SYSCALL_DEFINE0(getegid)
  1231. {
  1232. /* Only we change this so SMP safe */
  1233. return current_egid();
  1234. }
  1235. #endif
  1236. static void process_timeout(unsigned long __data)
  1237. {
  1238. wake_up_process((struct task_struct *)__data);
  1239. }
  1240. /**
  1241. * schedule_timeout - sleep until timeout
  1242. * @timeout: timeout value in jiffies
  1243. *
  1244. * Make the current task sleep until @timeout jiffies have
  1245. * elapsed. The routine will return immediately unless
  1246. * the current task state has been set (see set_current_state()).
  1247. *
  1248. * You can set the task state as follows -
  1249. *
  1250. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  1251. * pass before the routine returns. The routine will return 0
  1252. *
  1253. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1254. * delivered to the current task. In this case the remaining time
  1255. * in jiffies will be returned, or 0 if the timer expired in time
  1256. *
  1257. * The current task state is guaranteed to be TASK_RUNNING when this
  1258. * routine returns.
  1259. *
  1260. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  1261. * the CPU away without a bound on the timeout. In this case the return
  1262. * value will be %MAX_SCHEDULE_TIMEOUT.
  1263. *
  1264. * In all cases the return value is guaranteed to be non-negative.
  1265. */
  1266. signed long __sched schedule_timeout(signed long timeout)
  1267. {
  1268. struct timer_list timer;
  1269. unsigned long expire;
  1270. switch (timeout)
  1271. {
  1272. case MAX_SCHEDULE_TIMEOUT:
  1273. /*
  1274. * These two special cases are useful to be comfortable
  1275. * in the caller. Nothing more. We could take
  1276. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  1277. * but I' d like to return a valid offset (>=0) to allow
  1278. * the caller to do everything it want with the retval.
  1279. */
  1280. schedule();
  1281. goto out;
  1282. default:
  1283. /*
  1284. * Another bit of PARANOID. Note that the retval will be
  1285. * 0 since no piece of kernel is supposed to do a check
  1286. * for a negative retval of schedule_timeout() (since it
  1287. * should never happens anyway). You just have the printk()
  1288. * that will tell you if something is gone wrong and where.
  1289. */
  1290. if (timeout < 0) {
  1291. printk(KERN_ERR "schedule_timeout: wrong timeout "
  1292. "value %lx\n", timeout);
  1293. dump_stack();
  1294. current->state = TASK_RUNNING;
  1295. goto out;
  1296. }
  1297. }
  1298. expire = timeout + jiffies;
  1299. setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
  1300. __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
  1301. schedule();
  1302. del_singleshot_timer_sync(&timer);
  1303. /* Remove the timer from the object tracker */
  1304. destroy_timer_on_stack(&timer);
  1305. timeout = expire - jiffies;
  1306. out:
  1307. return timeout < 0 ? 0 : timeout;
  1308. }
  1309. EXPORT_SYMBOL(schedule_timeout);
  1310. /*
  1311. * We can use __set_current_state() here because schedule_timeout() calls
  1312. * schedule() unconditionally.
  1313. */
  1314. signed long __sched schedule_timeout_interruptible(signed long timeout)
  1315. {
  1316. __set_current_state(TASK_INTERRUPTIBLE);
  1317. return schedule_timeout(timeout);
  1318. }
  1319. EXPORT_SYMBOL(schedule_timeout_interruptible);
  1320. signed long __sched schedule_timeout_killable(signed long timeout)
  1321. {
  1322. __set_current_state(TASK_KILLABLE);
  1323. return schedule_timeout(timeout);
  1324. }
  1325. EXPORT_SYMBOL(schedule_timeout_killable);
  1326. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  1327. {
  1328. __set_current_state(TASK_UNINTERRUPTIBLE);
  1329. return schedule_timeout(timeout);
  1330. }
  1331. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1332. /* Thread ID - the internal kernel "pid" */
  1333. SYSCALL_DEFINE0(gettid)
  1334. {
  1335. return task_pid_vnr(current);
  1336. }
  1337. /**
  1338. * do_sysinfo - fill in sysinfo struct
  1339. * @info: pointer to buffer to fill
  1340. */
  1341. int do_sysinfo(struct sysinfo *info)
  1342. {
  1343. unsigned long mem_total, sav_total;
  1344. unsigned int mem_unit, bitcount;
  1345. struct timespec tp;
  1346. memset(info, 0, sizeof(struct sysinfo));
  1347. ktime_get_ts(&tp);
  1348. monotonic_to_bootbased(&tp);
  1349. info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1350. get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
  1351. info->procs = nr_threads;
  1352. si_meminfo(info);
  1353. si_swapinfo(info);
  1354. /*
  1355. * If the sum of all the available memory (i.e. ram + swap)
  1356. * is less than can be stored in a 32 bit unsigned long then
  1357. * we can be binary compatible with 2.2.x kernels. If not,
  1358. * well, in that case 2.2.x was broken anyways...
  1359. *
  1360. * -Erik Andersen <andersee@debian.org>
  1361. */
  1362. mem_total = info->totalram + info->totalswap;
  1363. if (mem_total < info->totalram || mem_total < info->totalswap)
  1364. goto out;
  1365. bitcount = 0;
  1366. mem_unit = info->mem_unit;
  1367. while (mem_unit > 1) {
  1368. bitcount++;
  1369. mem_unit >>= 1;
  1370. sav_total = mem_total;
  1371. mem_total <<= 1;
  1372. if (mem_total < sav_total)
  1373. goto out;
  1374. }
  1375. /*
  1376. * If mem_total did not overflow, multiply all memory values by
  1377. * info->mem_unit and set it to 1. This leaves things compatible
  1378. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1379. * kernels...
  1380. */
  1381. info->mem_unit = 1;
  1382. info->totalram <<= bitcount;
  1383. info->freeram <<= bitcount;
  1384. info->sharedram <<= bitcount;
  1385. info->bufferram <<= bitcount;
  1386. info->totalswap <<= bitcount;
  1387. info->freeswap <<= bitcount;
  1388. info->totalhigh <<= bitcount;
  1389. info->freehigh <<= bitcount;
  1390. out:
  1391. return 0;
  1392. }
  1393. SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
  1394. {
  1395. struct sysinfo val;
  1396. do_sysinfo(&val);
  1397. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1398. return -EFAULT;
  1399. return 0;
  1400. }
  1401. static int __cpuinit init_timers_cpu(int cpu)
  1402. {
  1403. int j;
  1404. struct tvec_base *base;
  1405. static char __cpuinitdata tvec_base_done[NR_CPUS];
  1406. if (!tvec_base_done[cpu]) {
  1407. static char boot_done;
  1408. if (boot_done) {
  1409. /*
  1410. * The APs use this path later in boot
  1411. */
  1412. base = kmalloc_node(sizeof(*base),
  1413. GFP_KERNEL | __GFP_ZERO,
  1414. cpu_to_node(cpu));
  1415. if (!base)
  1416. return -ENOMEM;
  1417. /* Make sure that tvec_base is 2 byte aligned */
  1418. if (tbase_get_deferrable(base)) {
  1419. WARN_ON(1);
  1420. kfree(base);
  1421. return -ENOMEM;
  1422. }
  1423. per_cpu(tvec_bases, cpu) = base;
  1424. } else {
  1425. /*
  1426. * This is for the boot CPU - we use compile-time
  1427. * static initialisation because per-cpu memory isn't
  1428. * ready yet and because the memory allocators are not
  1429. * initialised either.
  1430. */
  1431. boot_done = 1;
  1432. base = &boot_tvec_bases;
  1433. }
  1434. tvec_base_done[cpu] = 1;
  1435. } else {
  1436. base = per_cpu(tvec_bases, cpu);
  1437. }
  1438. spin_lock_init(&base->lock);
  1439. for (j = 0; j < TVN_SIZE; j++) {
  1440. INIT_LIST_HEAD(base->tv5.vec + j);
  1441. INIT_LIST_HEAD(base->tv4.vec + j);
  1442. INIT_LIST_HEAD(base->tv3.vec + j);
  1443. INIT_LIST_HEAD(base->tv2.vec + j);
  1444. }
  1445. for (j = 0; j < TVR_SIZE; j++)
  1446. INIT_LIST_HEAD(base->tv1.vec + j);
  1447. base->timer_jiffies = jiffies;
  1448. base->next_timer = base->timer_jiffies;
  1449. return 0;
  1450. }
  1451. #ifdef CONFIG_HOTPLUG_CPU
  1452. static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
  1453. {
  1454. struct timer_list *timer;
  1455. while (!list_empty(head)) {
  1456. timer = list_first_entry(head, struct timer_list, entry);
  1457. detach_timer(timer, 0);
  1458. timer_set_base(timer, new_base);
  1459. if (time_before(timer->expires, new_base->next_timer) &&
  1460. !tbase_get_deferrable(timer->base))
  1461. new_base->next_timer = timer->expires;
  1462. internal_add_timer(new_base, timer);
  1463. }
  1464. }
  1465. static void __cpuinit migrate_timers(int cpu)
  1466. {
  1467. struct tvec_base *old_base;
  1468. struct tvec_base *new_base;
  1469. int i;
  1470. BUG_ON(cpu_online(cpu));
  1471. old_base = per_cpu(tvec_bases, cpu);
  1472. new_base = get_cpu_var(tvec_bases);
  1473. /*
  1474. * The caller is globally serialized and nobody else
  1475. * takes two locks at once, deadlock is not possible.
  1476. */
  1477. spin_lock_irq(&new_base->lock);
  1478. spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1479. BUG_ON(old_base->running_timer);
  1480. for (i = 0; i < TVR_SIZE; i++)
  1481. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1482. for (i = 0; i < TVN_SIZE; i++) {
  1483. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1484. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1485. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1486. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1487. }
  1488. spin_unlock(&old_base->lock);
  1489. spin_unlock_irq(&new_base->lock);
  1490. put_cpu_var(tvec_bases);
  1491. }
  1492. #endif /* CONFIG_HOTPLUG_CPU */
  1493. static int __cpuinit timer_cpu_notify(struct notifier_block *self,
  1494. unsigned long action, void *hcpu)
  1495. {
  1496. long cpu = (long)hcpu;
  1497. int err;
  1498. switch(action) {
  1499. case CPU_UP_PREPARE:
  1500. case CPU_UP_PREPARE_FROZEN:
  1501. err = init_timers_cpu(cpu);
  1502. if (err < 0)
  1503. return notifier_from_errno(err);
  1504. break;
  1505. #ifdef CONFIG_HOTPLUG_CPU
  1506. case CPU_DEAD:
  1507. case CPU_DEAD_FROZEN:
  1508. migrate_timers(cpu);
  1509. break;
  1510. #endif
  1511. default:
  1512. break;
  1513. }
  1514. return NOTIFY_OK;
  1515. }
  1516. static struct notifier_block __cpuinitdata timers_nb = {
  1517. .notifier_call = timer_cpu_notify,
  1518. };
  1519. void __init init_timers(void)
  1520. {
  1521. int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1522. (void *)(long)smp_processor_id());
  1523. init_timer_stats();
  1524. BUG_ON(err != NOTIFY_OK);
  1525. register_cpu_notifier(&timers_nb);
  1526. open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
  1527. }
  1528. /**
  1529. * msleep - sleep safely even with waitqueue interruptions
  1530. * @msecs: Time in milliseconds to sleep for
  1531. */
  1532. void msleep(unsigned int msecs)
  1533. {
  1534. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1535. while (timeout)
  1536. timeout = schedule_timeout_uninterruptible(timeout);
  1537. }
  1538. EXPORT_SYMBOL(msleep);
  1539. /**
  1540. * msleep_interruptible - sleep waiting for signals
  1541. * @msecs: Time in milliseconds to sleep for
  1542. */
  1543. unsigned long msleep_interruptible(unsigned int msecs)
  1544. {
  1545. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1546. while (timeout && !signal_pending(current))
  1547. timeout = schedule_timeout_interruptible(timeout);
  1548. return jiffies_to_msecs(timeout);
  1549. }
  1550. EXPORT_SYMBOL(msleep_interruptible);
  1551. static int __sched do_usleep_range(unsigned long min, unsigned long max)
  1552. {
  1553. ktime_t kmin;
  1554. unsigned long delta;
  1555. kmin = ktime_set(0, min * NSEC_PER_USEC);
  1556. delta = (max - min) * NSEC_PER_USEC;
  1557. return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
  1558. }
  1559. /**
  1560. * usleep_range - Drop in replacement for udelay where wakeup is flexible
  1561. * @min: Minimum time in usecs to sleep
  1562. * @max: Maximum time in usecs to sleep
  1563. */
  1564. void usleep_range(unsigned long min, unsigned long max)
  1565. {
  1566. __set_current_state(TASK_UNINTERRUPTIBLE);
  1567. do_usleep_range(min, max);
  1568. }
  1569. EXPORT_SYMBOL(usleep_range);