sched_fair.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. static const struct sched_class fair_sched_class;
  83. /**************************************************************
  84. * CFS operations on generic schedulable entities:
  85. */
  86. #ifdef CONFIG_FAIR_GROUP_SCHED
  87. /* cpu runqueue to which this cfs_rq is attached */
  88. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  89. {
  90. return cfs_rq->rq;
  91. }
  92. /* An entity is a task if it doesn't "own" a runqueue */
  93. #define entity_is_task(se) (!se->my_q)
  94. static inline struct task_struct *task_of(struct sched_entity *se)
  95. {
  96. #ifdef CONFIG_SCHED_DEBUG
  97. WARN_ON_ONCE(!entity_is_task(se));
  98. #endif
  99. return container_of(se, struct task_struct, se);
  100. }
  101. /* Walk up scheduling entities hierarchy */
  102. #define for_each_sched_entity(se) \
  103. for (; se; se = se->parent)
  104. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  105. {
  106. return p->se.cfs_rq;
  107. }
  108. /* runqueue on which this entity is (to be) queued */
  109. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  110. {
  111. return se->cfs_rq;
  112. }
  113. /* runqueue "owned" by this group */
  114. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  115. {
  116. return grp->my_q;
  117. }
  118. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  119. * another cpu ('this_cpu')
  120. */
  121. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  122. {
  123. return cfs_rq->tg->cfs_rq[this_cpu];
  124. }
  125. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  126. {
  127. if (!cfs_rq->on_list) {
  128. /*
  129. * Ensure we either appear before our parent (if already
  130. * enqueued) or force our parent to appear after us when it is
  131. * enqueued. The fact that we always enqueue bottom-up
  132. * reduces this to two cases.
  133. */
  134. if (cfs_rq->tg->parent &&
  135. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  136. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  137. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  138. } else {
  139. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  140. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  141. }
  142. cfs_rq->on_list = 1;
  143. }
  144. }
  145. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  146. {
  147. if (cfs_rq->on_list) {
  148. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  149. cfs_rq->on_list = 0;
  150. }
  151. }
  152. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  153. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  154. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  155. /* Do the two (enqueued) entities belong to the same group ? */
  156. static inline int
  157. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  158. {
  159. if (se->cfs_rq == pse->cfs_rq)
  160. return 1;
  161. return 0;
  162. }
  163. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  164. {
  165. return se->parent;
  166. }
  167. /* return depth at which a sched entity is present in the hierarchy */
  168. static inline int depth_se(struct sched_entity *se)
  169. {
  170. int depth = 0;
  171. for_each_sched_entity(se)
  172. depth++;
  173. return depth;
  174. }
  175. static void
  176. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  177. {
  178. int se_depth, pse_depth;
  179. /*
  180. * preemption test can be made between sibling entities who are in the
  181. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  182. * both tasks until we find their ancestors who are siblings of common
  183. * parent.
  184. */
  185. /* First walk up until both entities are at same depth */
  186. se_depth = depth_se(*se);
  187. pse_depth = depth_se(*pse);
  188. while (se_depth > pse_depth) {
  189. se_depth--;
  190. *se = parent_entity(*se);
  191. }
  192. while (pse_depth > se_depth) {
  193. pse_depth--;
  194. *pse = parent_entity(*pse);
  195. }
  196. while (!is_same_group(*se, *pse)) {
  197. *se = parent_entity(*se);
  198. *pse = parent_entity(*pse);
  199. }
  200. }
  201. #else /* !CONFIG_FAIR_GROUP_SCHED */
  202. static inline struct task_struct *task_of(struct sched_entity *se)
  203. {
  204. return container_of(se, struct task_struct, se);
  205. }
  206. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  207. {
  208. return container_of(cfs_rq, struct rq, cfs);
  209. }
  210. #define entity_is_task(se) 1
  211. #define for_each_sched_entity(se) \
  212. for (; se; se = NULL)
  213. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  214. {
  215. return &task_rq(p)->cfs;
  216. }
  217. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  218. {
  219. struct task_struct *p = task_of(se);
  220. struct rq *rq = task_rq(p);
  221. return &rq->cfs;
  222. }
  223. /* runqueue "owned" by this group */
  224. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  225. {
  226. return NULL;
  227. }
  228. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  229. {
  230. return &cpu_rq(this_cpu)->cfs;
  231. }
  232. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  233. {
  234. }
  235. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  236. {
  237. }
  238. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  239. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  240. static inline int
  241. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  242. {
  243. return 1;
  244. }
  245. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  246. {
  247. return NULL;
  248. }
  249. static inline void
  250. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  251. {
  252. }
  253. #endif /* CONFIG_FAIR_GROUP_SCHED */
  254. /**************************************************************
  255. * Scheduling class tree data structure manipulation methods:
  256. */
  257. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  258. {
  259. s64 delta = (s64)(vruntime - min_vruntime);
  260. if (delta > 0)
  261. min_vruntime = vruntime;
  262. return min_vruntime;
  263. }
  264. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  265. {
  266. s64 delta = (s64)(vruntime - min_vruntime);
  267. if (delta < 0)
  268. min_vruntime = vruntime;
  269. return min_vruntime;
  270. }
  271. static inline int entity_before(struct sched_entity *a,
  272. struct sched_entity *b)
  273. {
  274. return (s64)(a->vruntime - b->vruntime) < 0;
  275. }
  276. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  277. {
  278. return se->vruntime - cfs_rq->min_vruntime;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. #ifndef CONFIG_64BIT
  296. smp_wmb();
  297. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  298. #endif
  299. }
  300. /*
  301. * Enqueue an entity into the rb-tree:
  302. */
  303. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  306. struct rb_node *parent = NULL;
  307. struct sched_entity *entry;
  308. s64 key = entity_key(cfs_rq, se);
  309. int leftmost = 1;
  310. /*
  311. * Find the right place in the rbtree:
  312. */
  313. while (*link) {
  314. parent = *link;
  315. entry = rb_entry(parent, struct sched_entity, run_node);
  316. /*
  317. * We dont care about collisions. Nodes with
  318. * the same key stay together.
  319. */
  320. if (key < entity_key(cfs_rq, entry)) {
  321. link = &parent->rb_left;
  322. } else {
  323. link = &parent->rb_right;
  324. leftmost = 0;
  325. }
  326. }
  327. /*
  328. * Maintain a cache of leftmost tree entries (it is frequently
  329. * used):
  330. */
  331. if (leftmost)
  332. cfs_rq->rb_leftmost = &se->run_node;
  333. rb_link_node(&se->run_node, parent, link);
  334. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  335. }
  336. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  337. {
  338. if (cfs_rq->rb_leftmost == &se->run_node) {
  339. struct rb_node *next_node;
  340. next_node = rb_next(&se->run_node);
  341. cfs_rq->rb_leftmost = next_node;
  342. }
  343. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  344. }
  345. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  346. {
  347. struct rb_node *left = cfs_rq->rb_leftmost;
  348. if (!left)
  349. return NULL;
  350. return rb_entry(left, struct sched_entity, run_node);
  351. }
  352. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  353. {
  354. struct rb_node *next = rb_next(&se->run_node);
  355. if (!next)
  356. return NULL;
  357. return rb_entry(next, struct sched_entity, run_node);
  358. }
  359. #ifdef CONFIG_SCHED_DEBUG
  360. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  361. {
  362. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  363. if (!last)
  364. return NULL;
  365. return rb_entry(last, struct sched_entity, run_node);
  366. }
  367. /**************************************************************
  368. * Scheduling class statistics methods:
  369. */
  370. int sched_proc_update_handler(struct ctl_table *table, int write,
  371. void __user *buffer, size_t *lenp,
  372. loff_t *ppos)
  373. {
  374. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  375. int factor = get_update_sysctl_factor();
  376. if (ret || !write)
  377. return ret;
  378. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  379. sysctl_sched_min_granularity);
  380. #define WRT_SYSCTL(name) \
  381. (normalized_sysctl_##name = sysctl_##name / (factor))
  382. WRT_SYSCTL(sched_min_granularity);
  383. WRT_SYSCTL(sched_latency);
  384. WRT_SYSCTL(sched_wakeup_granularity);
  385. #undef WRT_SYSCTL
  386. return 0;
  387. }
  388. #endif
  389. /*
  390. * delta /= w
  391. */
  392. static inline unsigned long
  393. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  394. {
  395. if (unlikely(se->load.weight != NICE_0_LOAD))
  396. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  397. return delta;
  398. }
  399. /*
  400. * The idea is to set a period in which each task runs once.
  401. *
  402. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  403. * this period because otherwise the slices get too small.
  404. *
  405. * p = (nr <= nl) ? l : l*nr/nl
  406. */
  407. static u64 __sched_period(unsigned long nr_running)
  408. {
  409. u64 period = sysctl_sched_latency;
  410. unsigned long nr_latency = sched_nr_latency;
  411. if (unlikely(nr_running > nr_latency)) {
  412. period = sysctl_sched_min_granularity;
  413. period *= nr_running;
  414. }
  415. return period;
  416. }
  417. /*
  418. * We calculate the wall-time slice from the period by taking a part
  419. * proportional to the weight.
  420. *
  421. * s = p*P[w/rw]
  422. */
  423. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  424. {
  425. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  426. for_each_sched_entity(se) {
  427. struct load_weight *load;
  428. struct load_weight lw;
  429. cfs_rq = cfs_rq_of(se);
  430. load = &cfs_rq->load;
  431. if (unlikely(!se->on_rq)) {
  432. lw = cfs_rq->load;
  433. update_load_add(&lw, se->load.weight);
  434. load = &lw;
  435. }
  436. slice = calc_delta_mine(slice, se->load.weight, load);
  437. }
  438. return slice;
  439. }
  440. /*
  441. * We calculate the vruntime slice of a to be inserted task
  442. *
  443. * vs = s/w
  444. */
  445. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  446. {
  447. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  448. }
  449. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  450. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  451. /*
  452. * Update the current task's runtime statistics. Skip current tasks that
  453. * are not in our scheduling class.
  454. */
  455. static inline void
  456. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  457. unsigned long delta_exec)
  458. {
  459. unsigned long delta_exec_weighted;
  460. schedstat_set(curr->statistics.exec_max,
  461. max((u64)delta_exec, curr->statistics.exec_max));
  462. curr->sum_exec_runtime += delta_exec;
  463. schedstat_add(cfs_rq, exec_clock, delta_exec);
  464. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  465. curr->vruntime += delta_exec_weighted;
  466. update_min_vruntime(cfs_rq);
  467. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  468. cfs_rq->load_unacc_exec_time += delta_exec;
  469. #endif
  470. }
  471. static void update_curr(struct cfs_rq *cfs_rq)
  472. {
  473. struct sched_entity *curr = cfs_rq->curr;
  474. u64 now = rq_of(cfs_rq)->clock_task;
  475. unsigned long delta_exec;
  476. if (unlikely(!curr))
  477. return;
  478. /*
  479. * Get the amount of time the current task was running
  480. * since the last time we changed load (this cannot
  481. * overflow on 32 bits):
  482. */
  483. delta_exec = (unsigned long)(now - curr->exec_start);
  484. if (!delta_exec)
  485. return;
  486. __update_curr(cfs_rq, curr, delta_exec);
  487. curr->exec_start = now;
  488. if (entity_is_task(curr)) {
  489. struct task_struct *curtask = task_of(curr);
  490. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  491. cpuacct_charge(curtask, delta_exec);
  492. account_group_exec_runtime(curtask, delta_exec);
  493. }
  494. }
  495. static inline void
  496. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  499. }
  500. /*
  501. * Task is being enqueued - update stats:
  502. */
  503. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. /*
  506. * Are we enqueueing a waiting task? (for current tasks
  507. * a dequeue/enqueue event is a NOP)
  508. */
  509. if (se != cfs_rq->curr)
  510. update_stats_wait_start(cfs_rq, se);
  511. }
  512. static void
  513. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  516. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  517. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  518. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. #ifdef CONFIG_SCHEDSTATS
  521. if (entity_is_task(se)) {
  522. trace_sched_stat_wait(task_of(se),
  523. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  524. }
  525. #endif
  526. schedstat_set(se->statistics.wait_start, 0);
  527. }
  528. static inline void
  529. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. /*
  532. * Mark the end of the wait period if dequeueing a
  533. * waiting task:
  534. */
  535. if (se != cfs_rq->curr)
  536. update_stats_wait_end(cfs_rq, se);
  537. }
  538. /*
  539. * We are picking a new current task - update its stats:
  540. */
  541. static inline void
  542. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. /*
  545. * We are starting a new run period:
  546. */
  547. se->exec_start = rq_of(cfs_rq)->clock_task;
  548. }
  549. /**************************************************
  550. * Scheduling class queueing methods:
  551. */
  552. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  553. static void
  554. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  555. {
  556. cfs_rq->task_weight += weight;
  557. }
  558. #else
  559. static inline void
  560. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  561. {
  562. }
  563. #endif
  564. static void
  565. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. update_load_add(&cfs_rq->load, se->load.weight);
  568. if (!parent_entity(se))
  569. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  570. if (entity_is_task(se)) {
  571. add_cfs_task_weight(cfs_rq, se->load.weight);
  572. list_add(&se->group_node, &cfs_rq->tasks);
  573. }
  574. cfs_rq->nr_running++;
  575. }
  576. static void
  577. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  578. {
  579. update_load_sub(&cfs_rq->load, se->load.weight);
  580. if (!parent_entity(se))
  581. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  582. if (entity_is_task(se)) {
  583. add_cfs_task_weight(cfs_rq, -se->load.weight);
  584. list_del_init(&se->group_node);
  585. }
  586. cfs_rq->nr_running--;
  587. }
  588. #ifdef CONFIG_FAIR_GROUP_SCHED
  589. # ifdef CONFIG_SMP
  590. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  591. int global_update)
  592. {
  593. struct task_group *tg = cfs_rq->tg;
  594. long load_avg;
  595. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  596. load_avg -= cfs_rq->load_contribution;
  597. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  598. atomic_add(load_avg, &tg->load_weight);
  599. cfs_rq->load_contribution += load_avg;
  600. }
  601. }
  602. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  603. {
  604. u64 period = sysctl_sched_shares_window;
  605. u64 now, delta;
  606. unsigned long load = cfs_rq->load.weight;
  607. if (cfs_rq->tg == &root_task_group)
  608. return;
  609. now = rq_of(cfs_rq)->clock_task;
  610. delta = now - cfs_rq->load_stamp;
  611. /* truncate load history at 4 idle periods */
  612. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  613. now - cfs_rq->load_last > 4 * period) {
  614. cfs_rq->load_period = 0;
  615. cfs_rq->load_avg = 0;
  616. delta = period - 1;
  617. }
  618. cfs_rq->load_stamp = now;
  619. cfs_rq->load_unacc_exec_time = 0;
  620. cfs_rq->load_period += delta;
  621. if (load) {
  622. cfs_rq->load_last = now;
  623. cfs_rq->load_avg += delta * load;
  624. }
  625. /* consider updating load contribution on each fold or truncate */
  626. if (global_update || cfs_rq->load_period > period
  627. || !cfs_rq->load_period)
  628. update_cfs_rq_load_contribution(cfs_rq, global_update);
  629. while (cfs_rq->load_period > period) {
  630. /*
  631. * Inline assembly required to prevent the compiler
  632. * optimising this loop into a divmod call.
  633. * See __iter_div_u64_rem() for another example of this.
  634. */
  635. asm("" : "+rm" (cfs_rq->load_period));
  636. cfs_rq->load_period /= 2;
  637. cfs_rq->load_avg /= 2;
  638. }
  639. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  640. list_del_leaf_cfs_rq(cfs_rq);
  641. }
  642. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  643. {
  644. long load_weight, load, shares;
  645. load = cfs_rq->load.weight;
  646. load_weight = atomic_read(&tg->load_weight);
  647. load_weight += load;
  648. load_weight -= cfs_rq->load_contribution;
  649. shares = (tg->shares * load);
  650. if (load_weight)
  651. shares /= load_weight;
  652. if (shares < MIN_SHARES)
  653. shares = MIN_SHARES;
  654. if (shares > tg->shares)
  655. shares = tg->shares;
  656. return shares;
  657. }
  658. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  659. {
  660. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  661. update_cfs_load(cfs_rq, 0);
  662. update_cfs_shares(cfs_rq);
  663. }
  664. }
  665. # else /* CONFIG_SMP */
  666. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  667. {
  668. }
  669. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  670. {
  671. return tg->shares;
  672. }
  673. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  674. {
  675. }
  676. # endif /* CONFIG_SMP */
  677. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  678. unsigned long weight)
  679. {
  680. if (se->on_rq) {
  681. /* commit outstanding execution time */
  682. if (cfs_rq->curr == se)
  683. update_curr(cfs_rq);
  684. account_entity_dequeue(cfs_rq, se);
  685. }
  686. update_load_set(&se->load, weight);
  687. if (se->on_rq)
  688. account_entity_enqueue(cfs_rq, se);
  689. }
  690. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  691. {
  692. struct task_group *tg;
  693. struct sched_entity *se;
  694. long shares;
  695. tg = cfs_rq->tg;
  696. se = tg->se[cpu_of(rq_of(cfs_rq))];
  697. if (!se)
  698. return;
  699. #ifndef CONFIG_SMP
  700. if (likely(se->load.weight == tg->shares))
  701. return;
  702. #endif
  703. shares = calc_cfs_shares(cfs_rq, tg);
  704. reweight_entity(cfs_rq_of(se), se, shares);
  705. }
  706. #else /* CONFIG_FAIR_GROUP_SCHED */
  707. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  708. {
  709. }
  710. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  711. {
  712. }
  713. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  714. {
  715. }
  716. #endif /* CONFIG_FAIR_GROUP_SCHED */
  717. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  718. {
  719. #ifdef CONFIG_SCHEDSTATS
  720. struct task_struct *tsk = NULL;
  721. if (entity_is_task(se))
  722. tsk = task_of(se);
  723. if (se->statistics.sleep_start) {
  724. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  725. if ((s64)delta < 0)
  726. delta = 0;
  727. if (unlikely(delta > se->statistics.sleep_max))
  728. se->statistics.sleep_max = delta;
  729. se->statistics.sleep_start = 0;
  730. se->statistics.sum_sleep_runtime += delta;
  731. if (tsk) {
  732. account_scheduler_latency(tsk, delta >> 10, 1);
  733. trace_sched_stat_sleep(tsk, delta);
  734. }
  735. }
  736. if (se->statistics.block_start) {
  737. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  738. if ((s64)delta < 0)
  739. delta = 0;
  740. if (unlikely(delta > se->statistics.block_max))
  741. se->statistics.block_max = delta;
  742. se->statistics.block_start = 0;
  743. se->statistics.sum_sleep_runtime += delta;
  744. if (tsk) {
  745. if (tsk->in_iowait) {
  746. se->statistics.iowait_sum += delta;
  747. se->statistics.iowait_count++;
  748. trace_sched_stat_iowait(tsk, delta);
  749. }
  750. /*
  751. * Blocking time is in units of nanosecs, so shift by
  752. * 20 to get a milliseconds-range estimation of the
  753. * amount of time that the task spent sleeping:
  754. */
  755. if (unlikely(prof_on == SLEEP_PROFILING)) {
  756. profile_hits(SLEEP_PROFILING,
  757. (void *)get_wchan(tsk),
  758. delta >> 20);
  759. }
  760. account_scheduler_latency(tsk, delta >> 10, 0);
  761. }
  762. }
  763. #endif
  764. }
  765. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  766. {
  767. #ifdef CONFIG_SCHED_DEBUG
  768. s64 d = se->vruntime - cfs_rq->min_vruntime;
  769. if (d < 0)
  770. d = -d;
  771. if (d > 3*sysctl_sched_latency)
  772. schedstat_inc(cfs_rq, nr_spread_over);
  773. #endif
  774. }
  775. static void
  776. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  777. {
  778. u64 vruntime = cfs_rq->min_vruntime;
  779. /*
  780. * The 'current' period is already promised to the current tasks,
  781. * however the extra weight of the new task will slow them down a
  782. * little, place the new task so that it fits in the slot that
  783. * stays open at the end.
  784. */
  785. if (initial && sched_feat(START_DEBIT))
  786. vruntime += sched_vslice(cfs_rq, se);
  787. /* sleeps up to a single latency don't count. */
  788. if (!initial) {
  789. unsigned long thresh = sysctl_sched_latency;
  790. /*
  791. * Halve their sleep time's effect, to allow
  792. * for a gentler effect of sleepers:
  793. */
  794. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  795. thresh >>= 1;
  796. vruntime -= thresh;
  797. }
  798. /* ensure we never gain time by being placed backwards. */
  799. vruntime = max_vruntime(se->vruntime, vruntime);
  800. se->vruntime = vruntime;
  801. }
  802. static void
  803. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  804. {
  805. /*
  806. * Update the normalized vruntime before updating min_vruntime
  807. * through callig update_curr().
  808. */
  809. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  810. se->vruntime += cfs_rq->min_vruntime;
  811. /*
  812. * Update run-time statistics of the 'current'.
  813. */
  814. update_curr(cfs_rq);
  815. update_cfs_load(cfs_rq, 0);
  816. account_entity_enqueue(cfs_rq, se);
  817. update_cfs_shares(cfs_rq);
  818. if (flags & ENQUEUE_WAKEUP) {
  819. place_entity(cfs_rq, se, 0);
  820. enqueue_sleeper(cfs_rq, se);
  821. }
  822. update_stats_enqueue(cfs_rq, se);
  823. check_spread(cfs_rq, se);
  824. if (se != cfs_rq->curr)
  825. __enqueue_entity(cfs_rq, se);
  826. se->on_rq = 1;
  827. if (cfs_rq->nr_running == 1)
  828. list_add_leaf_cfs_rq(cfs_rq);
  829. }
  830. static void __clear_buddies_last(struct sched_entity *se)
  831. {
  832. for_each_sched_entity(se) {
  833. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  834. if (cfs_rq->last == se)
  835. cfs_rq->last = NULL;
  836. else
  837. break;
  838. }
  839. }
  840. static void __clear_buddies_next(struct sched_entity *se)
  841. {
  842. for_each_sched_entity(se) {
  843. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  844. if (cfs_rq->next == se)
  845. cfs_rq->next = NULL;
  846. else
  847. break;
  848. }
  849. }
  850. static void __clear_buddies_skip(struct sched_entity *se)
  851. {
  852. for_each_sched_entity(se) {
  853. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  854. if (cfs_rq->skip == se)
  855. cfs_rq->skip = NULL;
  856. else
  857. break;
  858. }
  859. }
  860. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  861. {
  862. if (cfs_rq->last == se)
  863. __clear_buddies_last(se);
  864. if (cfs_rq->next == se)
  865. __clear_buddies_next(se);
  866. if (cfs_rq->skip == se)
  867. __clear_buddies_skip(se);
  868. }
  869. static void
  870. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  871. {
  872. /*
  873. * Update run-time statistics of the 'current'.
  874. */
  875. update_curr(cfs_rq);
  876. update_stats_dequeue(cfs_rq, se);
  877. if (flags & DEQUEUE_SLEEP) {
  878. #ifdef CONFIG_SCHEDSTATS
  879. if (entity_is_task(se)) {
  880. struct task_struct *tsk = task_of(se);
  881. if (tsk->state & TASK_INTERRUPTIBLE)
  882. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  883. if (tsk->state & TASK_UNINTERRUPTIBLE)
  884. se->statistics.block_start = rq_of(cfs_rq)->clock;
  885. }
  886. #endif
  887. }
  888. clear_buddies(cfs_rq, se);
  889. if (se != cfs_rq->curr)
  890. __dequeue_entity(cfs_rq, se);
  891. se->on_rq = 0;
  892. update_cfs_load(cfs_rq, 0);
  893. account_entity_dequeue(cfs_rq, se);
  894. /*
  895. * Normalize the entity after updating the min_vruntime because the
  896. * update can refer to the ->curr item and we need to reflect this
  897. * movement in our normalized position.
  898. */
  899. if (!(flags & DEQUEUE_SLEEP))
  900. se->vruntime -= cfs_rq->min_vruntime;
  901. update_min_vruntime(cfs_rq);
  902. update_cfs_shares(cfs_rq);
  903. }
  904. /*
  905. * Preempt the current task with a newly woken task if needed:
  906. */
  907. static void
  908. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  909. {
  910. unsigned long ideal_runtime, delta_exec;
  911. ideal_runtime = sched_slice(cfs_rq, curr);
  912. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  913. if (delta_exec > ideal_runtime) {
  914. resched_task(rq_of(cfs_rq)->curr);
  915. /*
  916. * The current task ran long enough, ensure it doesn't get
  917. * re-elected due to buddy favours.
  918. */
  919. clear_buddies(cfs_rq, curr);
  920. return;
  921. }
  922. /*
  923. * Ensure that a task that missed wakeup preemption by a
  924. * narrow margin doesn't have to wait for a full slice.
  925. * This also mitigates buddy induced latencies under load.
  926. */
  927. if (!sched_feat(WAKEUP_PREEMPT))
  928. return;
  929. if (delta_exec < sysctl_sched_min_granularity)
  930. return;
  931. if (cfs_rq->nr_running > 1) {
  932. struct sched_entity *se = __pick_first_entity(cfs_rq);
  933. s64 delta = curr->vruntime - se->vruntime;
  934. if (delta < 0)
  935. return;
  936. if (delta > ideal_runtime)
  937. resched_task(rq_of(cfs_rq)->curr);
  938. }
  939. }
  940. static void
  941. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  942. {
  943. /* 'current' is not kept within the tree. */
  944. if (se->on_rq) {
  945. /*
  946. * Any task has to be enqueued before it get to execute on
  947. * a CPU. So account for the time it spent waiting on the
  948. * runqueue.
  949. */
  950. update_stats_wait_end(cfs_rq, se);
  951. __dequeue_entity(cfs_rq, se);
  952. }
  953. update_stats_curr_start(cfs_rq, se);
  954. cfs_rq->curr = se;
  955. #ifdef CONFIG_SCHEDSTATS
  956. /*
  957. * Track our maximum slice length, if the CPU's load is at
  958. * least twice that of our own weight (i.e. dont track it
  959. * when there are only lesser-weight tasks around):
  960. */
  961. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  962. se->statistics.slice_max = max(se->statistics.slice_max,
  963. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  964. }
  965. #endif
  966. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  967. }
  968. static int
  969. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  970. /*
  971. * Pick the next process, keeping these things in mind, in this order:
  972. * 1) keep things fair between processes/task groups
  973. * 2) pick the "next" process, since someone really wants that to run
  974. * 3) pick the "last" process, for cache locality
  975. * 4) do not run the "skip" process, if something else is available
  976. */
  977. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  978. {
  979. struct sched_entity *se = __pick_first_entity(cfs_rq);
  980. struct sched_entity *left = se;
  981. /*
  982. * Avoid running the skip buddy, if running something else can
  983. * be done without getting too unfair.
  984. */
  985. if (cfs_rq->skip == se) {
  986. struct sched_entity *second = __pick_next_entity(se);
  987. if (second && wakeup_preempt_entity(second, left) < 1)
  988. se = second;
  989. }
  990. /*
  991. * Prefer last buddy, try to return the CPU to a preempted task.
  992. */
  993. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  994. se = cfs_rq->last;
  995. /*
  996. * Someone really wants this to run. If it's not unfair, run it.
  997. */
  998. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  999. se = cfs_rq->next;
  1000. clear_buddies(cfs_rq, se);
  1001. return se;
  1002. }
  1003. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1004. {
  1005. /*
  1006. * If still on the runqueue then deactivate_task()
  1007. * was not called and update_curr() has to be done:
  1008. */
  1009. if (prev->on_rq)
  1010. update_curr(cfs_rq);
  1011. check_spread(cfs_rq, prev);
  1012. if (prev->on_rq) {
  1013. update_stats_wait_start(cfs_rq, prev);
  1014. /* Put 'current' back into the tree. */
  1015. __enqueue_entity(cfs_rq, prev);
  1016. }
  1017. cfs_rq->curr = NULL;
  1018. }
  1019. static void
  1020. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1021. {
  1022. /*
  1023. * Update run-time statistics of the 'current'.
  1024. */
  1025. update_curr(cfs_rq);
  1026. /*
  1027. * Update share accounting for long-running entities.
  1028. */
  1029. update_entity_shares_tick(cfs_rq);
  1030. #ifdef CONFIG_SCHED_HRTICK
  1031. /*
  1032. * queued ticks are scheduled to match the slice, so don't bother
  1033. * validating it and just reschedule.
  1034. */
  1035. if (queued) {
  1036. resched_task(rq_of(cfs_rq)->curr);
  1037. return;
  1038. }
  1039. /*
  1040. * don't let the period tick interfere with the hrtick preemption
  1041. */
  1042. if (!sched_feat(DOUBLE_TICK) &&
  1043. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1044. return;
  1045. #endif
  1046. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  1047. check_preempt_tick(cfs_rq, curr);
  1048. }
  1049. /**************************************************
  1050. * CFS operations on tasks:
  1051. */
  1052. #ifdef CONFIG_SCHED_HRTICK
  1053. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1054. {
  1055. struct sched_entity *se = &p->se;
  1056. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1057. WARN_ON(task_rq(p) != rq);
  1058. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1059. u64 slice = sched_slice(cfs_rq, se);
  1060. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1061. s64 delta = slice - ran;
  1062. if (delta < 0) {
  1063. if (rq->curr == p)
  1064. resched_task(p);
  1065. return;
  1066. }
  1067. /*
  1068. * Don't schedule slices shorter than 10000ns, that just
  1069. * doesn't make sense. Rely on vruntime for fairness.
  1070. */
  1071. if (rq->curr != p)
  1072. delta = max_t(s64, 10000LL, delta);
  1073. hrtick_start(rq, delta);
  1074. }
  1075. }
  1076. /*
  1077. * called from enqueue/dequeue and updates the hrtick when the
  1078. * current task is from our class and nr_running is low enough
  1079. * to matter.
  1080. */
  1081. static void hrtick_update(struct rq *rq)
  1082. {
  1083. struct task_struct *curr = rq->curr;
  1084. if (curr->sched_class != &fair_sched_class)
  1085. return;
  1086. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1087. hrtick_start_fair(rq, curr);
  1088. }
  1089. #else /* !CONFIG_SCHED_HRTICK */
  1090. static inline void
  1091. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1092. {
  1093. }
  1094. static inline void hrtick_update(struct rq *rq)
  1095. {
  1096. }
  1097. #endif
  1098. /*
  1099. * The enqueue_task method is called before nr_running is
  1100. * increased. Here we update the fair scheduling stats and
  1101. * then put the task into the rbtree:
  1102. */
  1103. static void
  1104. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1105. {
  1106. struct cfs_rq *cfs_rq;
  1107. struct sched_entity *se = &p->se;
  1108. for_each_sched_entity(se) {
  1109. if (se->on_rq)
  1110. break;
  1111. cfs_rq = cfs_rq_of(se);
  1112. enqueue_entity(cfs_rq, se, flags);
  1113. flags = ENQUEUE_WAKEUP;
  1114. }
  1115. for_each_sched_entity(se) {
  1116. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1117. update_cfs_load(cfs_rq, 0);
  1118. update_cfs_shares(cfs_rq);
  1119. }
  1120. hrtick_update(rq);
  1121. }
  1122. static void set_next_buddy(struct sched_entity *se);
  1123. /*
  1124. * The dequeue_task method is called before nr_running is
  1125. * decreased. We remove the task from the rbtree and
  1126. * update the fair scheduling stats:
  1127. */
  1128. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1129. {
  1130. struct cfs_rq *cfs_rq;
  1131. struct sched_entity *se = &p->se;
  1132. int task_sleep = flags & DEQUEUE_SLEEP;
  1133. for_each_sched_entity(se) {
  1134. cfs_rq = cfs_rq_of(se);
  1135. dequeue_entity(cfs_rq, se, flags);
  1136. /* Don't dequeue parent if it has other entities besides us */
  1137. if (cfs_rq->load.weight) {
  1138. /*
  1139. * Bias pick_next to pick a task from this cfs_rq, as
  1140. * p is sleeping when it is within its sched_slice.
  1141. */
  1142. if (task_sleep && parent_entity(se))
  1143. set_next_buddy(parent_entity(se));
  1144. break;
  1145. }
  1146. flags |= DEQUEUE_SLEEP;
  1147. }
  1148. for_each_sched_entity(se) {
  1149. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1150. update_cfs_load(cfs_rq, 0);
  1151. update_cfs_shares(cfs_rq);
  1152. }
  1153. hrtick_update(rq);
  1154. }
  1155. #ifdef CONFIG_SMP
  1156. static void task_waking_fair(struct task_struct *p)
  1157. {
  1158. struct sched_entity *se = &p->se;
  1159. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1160. u64 min_vruntime;
  1161. #ifndef CONFIG_64BIT
  1162. u64 min_vruntime_copy;
  1163. do {
  1164. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1165. smp_rmb();
  1166. min_vruntime = cfs_rq->min_vruntime;
  1167. } while (min_vruntime != min_vruntime_copy);
  1168. #else
  1169. min_vruntime = cfs_rq->min_vruntime;
  1170. #endif
  1171. se->vruntime -= min_vruntime;
  1172. }
  1173. #ifdef CONFIG_FAIR_GROUP_SCHED
  1174. /*
  1175. * effective_load() calculates the load change as seen from the root_task_group
  1176. *
  1177. * Adding load to a group doesn't make a group heavier, but can cause movement
  1178. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1179. * can calculate the shift in shares.
  1180. */
  1181. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1182. {
  1183. struct sched_entity *se = tg->se[cpu];
  1184. if (!tg->parent)
  1185. return wl;
  1186. for_each_sched_entity(se) {
  1187. long lw, w;
  1188. tg = se->my_q->tg;
  1189. w = se->my_q->load.weight;
  1190. /* use this cpu's instantaneous contribution */
  1191. lw = atomic_read(&tg->load_weight);
  1192. lw -= se->my_q->load_contribution;
  1193. lw += w + wg;
  1194. wl += w;
  1195. if (lw > 0 && wl < lw)
  1196. wl = (wl * tg->shares) / lw;
  1197. else
  1198. wl = tg->shares;
  1199. /* zero point is MIN_SHARES */
  1200. if (wl < MIN_SHARES)
  1201. wl = MIN_SHARES;
  1202. wl -= se->load.weight;
  1203. wg = 0;
  1204. }
  1205. return wl;
  1206. }
  1207. #else
  1208. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1209. unsigned long wl, unsigned long wg)
  1210. {
  1211. return wl;
  1212. }
  1213. #endif
  1214. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1215. {
  1216. s64 this_load, load;
  1217. int idx, this_cpu, prev_cpu;
  1218. unsigned long tl_per_task;
  1219. struct task_group *tg;
  1220. unsigned long weight;
  1221. int balanced;
  1222. idx = sd->wake_idx;
  1223. this_cpu = smp_processor_id();
  1224. prev_cpu = task_cpu(p);
  1225. load = source_load(prev_cpu, idx);
  1226. this_load = target_load(this_cpu, idx);
  1227. /*
  1228. * If sync wakeup then subtract the (maximum possible)
  1229. * effect of the currently running task from the load
  1230. * of the current CPU:
  1231. */
  1232. rcu_read_lock();
  1233. if (sync) {
  1234. tg = task_group(current);
  1235. weight = current->se.load.weight;
  1236. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1237. load += effective_load(tg, prev_cpu, 0, -weight);
  1238. }
  1239. tg = task_group(p);
  1240. weight = p->se.load.weight;
  1241. /*
  1242. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1243. * due to the sync cause above having dropped this_load to 0, we'll
  1244. * always have an imbalance, but there's really nothing you can do
  1245. * about that, so that's good too.
  1246. *
  1247. * Otherwise check if either cpus are near enough in load to allow this
  1248. * task to be woken on this_cpu.
  1249. */
  1250. if (this_load > 0) {
  1251. s64 this_eff_load, prev_eff_load;
  1252. this_eff_load = 100;
  1253. this_eff_load *= power_of(prev_cpu);
  1254. this_eff_load *= this_load +
  1255. effective_load(tg, this_cpu, weight, weight);
  1256. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1257. prev_eff_load *= power_of(this_cpu);
  1258. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1259. balanced = this_eff_load <= prev_eff_load;
  1260. } else
  1261. balanced = true;
  1262. rcu_read_unlock();
  1263. /*
  1264. * If the currently running task will sleep within
  1265. * a reasonable amount of time then attract this newly
  1266. * woken task:
  1267. */
  1268. if (sync && balanced)
  1269. return 1;
  1270. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1271. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1272. if (balanced ||
  1273. (this_load <= load &&
  1274. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1275. /*
  1276. * This domain has SD_WAKE_AFFINE and
  1277. * p is cache cold in this domain, and
  1278. * there is no bad imbalance.
  1279. */
  1280. schedstat_inc(sd, ttwu_move_affine);
  1281. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1282. return 1;
  1283. }
  1284. return 0;
  1285. }
  1286. /*
  1287. * find_idlest_group finds and returns the least busy CPU group within the
  1288. * domain.
  1289. */
  1290. static struct sched_group *
  1291. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1292. int this_cpu, int load_idx)
  1293. {
  1294. struct sched_group *idlest = NULL, *group = sd->groups;
  1295. unsigned long min_load = ULONG_MAX, this_load = 0;
  1296. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1297. do {
  1298. unsigned long load, avg_load;
  1299. int local_group;
  1300. int i;
  1301. /* Skip over this group if it has no CPUs allowed */
  1302. if (!cpumask_intersects(sched_group_cpus(group),
  1303. &p->cpus_allowed))
  1304. continue;
  1305. local_group = cpumask_test_cpu(this_cpu,
  1306. sched_group_cpus(group));
  1307. /* Tally up the load of all CPUs in the group */
  1308. avg_load = 0;
  1309. for_each_cpu(i, sched_group_cpus(group)) {
  1310. /* Bias balancing toward cpus of our domain */
  1311. if (local_group)
  1312. load = source_load(i, load_idx);
  1313. else
  1314. load = target_load(i, load_idx);
  1315. avg_load += load;
  1316. }
  1317. /* Adjust by relative CPU power of the group */
  1318. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  1319. if (local_group) {
  1320. this_load = avg_load;
  1321. } else if (avg_load < min_load) {
  1322. min_load = avg_load;
  1323. idlest = group;
  1324. }
  1325. } while (group = group->next, group != sd->groups);
  1326. if (!idlest || 100*this_load < imbalance*min_load)
  1327. return NULL;
  1328. return idlest;
  1329. }
  1330. /*
  1331. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1332. */
  1333. static int
  1334. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1335. {
  1336. unsigned long load, min_load = ULONG_MAX;
  1337. int idlest = -1;
  1338. int i;
  1339. /* Traverse only the allowed CPUs */
  1340. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1341. load = weighted_cpuload(i);
  1342. if (load < min_load || (load == min_load && i == this_cpu)) {
  1343. min_load = load;
  1344. idlest = i;
  1345. }
  1346. }
  1347. return idlest;
  1348. }
  1349. /*
  1350. * Try and locate an idle CPU in the sched_domain.
  1351. */
  1352. static int select_idle_sibling(struct task_struct *p, int target)
  1353. {
  1354. int cpu = smp_processor_id();
  1355. int prev_cpu = task_cpu(p);
  1356. struct sched_domain *sd;
  1357. int i;
  1358. /*
  1359. * If the task is going to be woken-up on this cpu and if it is
  1360. * already idle, then it is the right target.
  1361. */
  1362. if (target == cpu && idle_cpu(cpu))
  1363. return cpu;
  1364. /*
  1365. * If the task is going to be woken-up on the cpu where it previously
  1366. * ran and if it is currently idle, then it the right target.
  1367. */
  1368. if (target == prev_cpu && idle_cpu(prev_cpu))
  1369. return prev_cpu;
  1370. /*
  1371. * Otherwise, iterate the domains and find an elegible idle cpu.
  1372. */
  1373. rcu_read_lock();
  1374. for_each_domain(target, sd) {
  1375. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1376. break;
  1377. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1378. if (idle_cpu(i)) {
  1379. target = i;
  1380. break;
  1381. }
  1382. }
  1383. /*
  1384. * Lets stop looking for an idle sibling when we reached
  1385. * the domain that spans the current cpu and prev_cpu.
  1386. */
  1387. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1388. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1389. break;
  1390. }
  1391. rcu_read_unlock();
  1392. return target;
  1393. }
  1394. /*
  1395. * sched_balance_self: balance the current task (running on cpu) in domains
  1396. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1397. * SD_BALANCE_EXEC.
  1398. *
  1399. * Balance, ie. select the least loaded group.
  1400. *
  1401. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1402. *
  1403. * preempt must be disabled.
  1404. */
  1405. static int
  1406. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1407. {
  1408. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1409. int cpu = smp_processor_id();
  1410. int prev_cpu = task_cpu(p);
  1411. int new_cpu = cpu;
  1412. int want_affine = 0;
  1413. int want_sd = 1;
  1414. int sync = wake_flags & WF_SYNC;
  1415. if (sd_flag & SD_BALANCE_WAKE) {
  1416. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1417. want_affine = 1;
  1418. new_cpu = prev_cpu;
  1419. }
  1420. rcu_read_lock();
  1421. for_each_domain(cpu, tmp) {
  1422. if (!(tmp->flags & SD_LOAD_BALANCE))
  1423. continue;
  1424. /*
  1425. * If power savings logic is enabled for a domain, see if we
  1426. * are not overloaded, if so, don't balance wider.
  1427. */
  1428. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1429. unsigned long power = 0;
  1430. unsigned long nr_running = 0;
  1431. unsigned long capacity;
  1432. int i;
  1433. for_each_cpu(i, sched_domain_span(tmp)) {
  1434. power += power_of(i);
  1435. nr_running += cpu_rq(i)->cfs.nr_running;
  1436. }
  1437. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  1438. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1439. nr_running /= 2;
  1440. if (nr_running < capacity)
  1441. want_sd = 0;
  1442. }
  1443. /*
  1444. * If both cpu and prev_cpu are part of this domain,
  1445. * cpu is a valid SD_WAKE_AFFINE target.
  1446. */
  1447. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1448. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1449. affine_sd = tmp;
  1450. want_affine = 0;
  1451. }
  1452. if (!want_sd && !want_affine)
  1453. break;
  1454. if (!(tmp->flags & sd_flag))
  1455. continue;
  1456. if (want_sd)
  1457. sd = tmp;
  1458. }
  1459. if (affine_sd) {
  1460. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1461. prev_cpu = cpu;
  1462. new_cpu = select_idle_sibling(p, prev_cpu);
  1463. goto unlock;
  1464. }
  1465. while (sd) {
  1466. int load_idx = sd->forkexec_idx;
  1467. struct sched_group *group;
  1468. int weight;
  1469. if (!(sd->flags & sd_flag)) {
  1470. sd = sd->child;
  1471. continue;
  1472. }
  1473. if (sd_flag & SD_BALANCE_WAKE)
  1474. load_idx = sd->wake_idx;
  1475. group = find_idlest_group(sd, p, cpu, load_idx);
  1476. if (!group) {
  1477. sd = sd->child;
  1478. continue;
  1479. }
  1480. new_cpu = find_idlest_cpu(group, p, cpu);
  1481. if (new_cpu == -1 || new_cpu == cpu) {
  1482. /* Now try balancing at a lower domain level of cpu */
  1483. sd = sd->child;
  1484. continue;
  1485. }
  1486. /* Now try balancing at a lower domain level of new_cpu */
  1487. cpu = new_cpu;
  1488. weight = sd->span_weight;
  1489. sd = NULL;
  1490. for_each_domain(cpu, tmp) {
  1491. if (weight <= tmp->span_weight)
  1492. break;
  1493. if (tmp->flags & sd_flag)
  1494. sd = tmp;
  1495. }
  1496. /* while loop will break here if sd == NULL */
  1497. }
  1498. unlock:
  1499. rcu_read_unlock();
  1500. return new_cpu;
  1501. }
  1502. #endif /* CONFIG_SMP */
  1503. static unsigned long
  1504. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1505. {
  1506. unsigned long gran = sysctl_sched_wakeup_granularity;
  1507. /*
  1508. * Since its curr running now, convert the gran from real-time
  1509. * to virtual-time in his units.
  1510. *
  1511. * By using 'se' instead of 'curr' we penalize light tasks, so
  1512. * they get preempted easier. That is, if 'se' < 'curr' then
  1513. * the resulting gran will be larger, therefore penalizing the
  1514. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1515. * be smaller, again penalizing the lighter task.
  1516. *
  1517. * This is especially important for buddies when the leftmost
  1518. * task is higher priority than the buddy.
  1519. */
  1520. return calc_delta_fair(gran, se);
  1521. }
  1522. /*
  1523. * Should 'se' preempt 'curr'.
  1524. *
  1525. * |s1
  1526. * |s2
  1527. * |s3
  1528. * g
  1529. * |<--->|c
  1530. *
  1531. * w(c, s1) = -1
  1532. * w(c, s2) = 0
  1533. * w(c, s3) = 1
  1534. *
  1535. */
  1536. static int
  1537. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1538. {
  1539. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1540. if (vdiff <= 0)
  1541. return -1;
  1542. gran = wakeup_gran(curr, se);
  1543. if (vdiff > gran)
  1544. return 1;
  1545. return 0;
  1546. }
  1547. static void set_last_buddy(struct sched_entity *se)
  1548. {
  1549. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1550. return;
  1551. for_each_sched_entity(se)
  1552. cfs_rq_of(se)->last = se;
  1553. }
  1554. static void set_next_buddy(struct sched_entity *se)
  1555. {
  1556. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1557. return;
  1558. for_each_sched_entity(se)
  1559. cfs_rq_of(se)->next = se;
  1560. }
  1561. static void set_skip_buddy(struct sched_entity *se)
  1562. {
  1563. for_each_sched_entity(se)
  1564. cfs_rq_of(se)->skip = se;
  1565. }
  1566. /*
  1567. * Preempt the current task with a newly woken task if needed:
  1568. */
  1569. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1570. {
  1571. struct task_struct *curr = rq->curr;
  1572. struct sched_entity *se = &curr->se, *pse = &p->se;
  1573. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1574. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1575. int next_buddy_marked = 0;
  1576. if (unlikely(se == pse))
  1577. return;
  1578. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  1579. set_next_buddy(pse);
  1580. next_buddy_marked = 1;
  1581. }
  1582. /*
  1583. * We can come here with TIF_NEED_RESCHED already set from new task
  1584. * wake up path.
  1585. */
  1586. if (test_tsk_need_resched(curr))
  1587. return;
  1588. /* Idle tasks are by definition preempted by non-idle tasks. */
  1589. if (unlikely(curr->policy == SCHED_IDLE) &&
  1590. likely(p->policy != SCHED_IDLE))
  1591. goto preempt;
  1592. /*
  1593. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1594. * is driven by the tick):
  1595. */
  1596. if (unlikely(p->policy != SCHED_NORMAL))
  1597. return;
  1598. if (!sched_feat(WAKEUP_PREEMPT))
  1599. return;
  1600. update_curr(cfs_rq);
  1601. find_matching_se(&se, &pse);
  1602. BUG_ON(!pse);
  1603. if (wakeup_preempt_entity(se, pse) == 1) {
  1604. /*
  1605. * Bias pick_next to pick the sched entity that is
  1606. * triggering this preemption.
  1607. */
  1608. if (!next_buddy_marked)
  1609. set_next_buddy(pse);
  1610. goto preempt;
  1611. }
  1612. return;
  1613. preempt:
  1614. resched_task(curr);
  1615. /*
  1616. * Only set the backward buddy when the current task is still
  1617. * on the rq. This can happen when a wakeup gets interleaved
  1618. * with schedule on the ->pre_schedule() or idle_balance()
  1619. * point, either of which can * drop the rq lock.
  1620. *
  1621. * Also, during early boot the idle thread is in the fair class,
  1622. * for obvious reasons its a bad idea to schedule back to it.
  1623. */
  1624. if (unlikely(!se->on_rq || curr == rq->idle))
  1625. return;
  1626. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  1627. set_last_buddy(se);
  1628. }
  1629. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1630. {
  1631. struct task_struct *p;
  1632. struct cfs_rq *cfs_rq = &rq->cfs;
  1633. struct sched_entity *se;
  1634. if (!cfs_rq->nr_running)
  1635. return NULL;
  1636. do {
  1637. se = pick_next_entity(cfs_rq);
  1638. set_next_entity(cfs_rq, se);
  1639. cfs_rq = group_cfs_rq(se);
  1640. } while (cfs_rq);
  1641. p = task_of(se);
  1642. hrtick_start_fair(rq, p);
  1643. return p;
  1644. }
  1645. /*
  1646. * Account for a descheduled task:
  1647. */
  1648. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1649. {
  1650. struct sched_entity *se = &prev->se;
  1651. struct cfs_rq *cfs_rq;
  1652. for_each_sched_entity(se) {
  1653. cfs_rq = cfs_rq_of(se);
  1654. put_prev_entity(cfs_rq, se);
  1655. }
  1656. }
  1657. /*
  1658. * sched_yield() is very simple
  1659. *
  1660. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  1661. */
  1662. static void yield_task_fair(struct rq *rq)
  1663. {
  1664. struct task_struct *curr = rq->curr;
  1665. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1666. struct sched_entity *se = &curr->se;
  1667. /*
  1668. * Are we the only task in the tree?
  1669. */
  1670. if (unlikely(rq->nr_running == 1))
  1671. return;
  1672. clear_buddies(cfs_rq, se);
  1673. if (curr->policy != SCHED_BATCH) {
  1674. update_rq_clock(rq);
  1675. /*
  1676. * Update run-time statistics of the 'current'.
  1677. */
  1678. update_curr(cfs_rq);
  1679. }
  1680. set_skip_buddy(se);
  1681. }
  1682. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  1683. {
  1684. struct sched_entity *se = &p->se;
  1685. if (!se->on_rq)
  1686. return false;
  1687. /* Tell the scheduler that we'd really like pse to run next. */
  1688. set_next_buddy(se);
  1689. yield_task_fair(rq);
  1690. return true;
  1691. }
  1692. #ifdef CONFIG_SMP
  1693. /**************************************************
  1694. * Fair scheduling class load-balancing methods:
  1695. */
  1696. /*
  1697. * pull_task - move a task from a remote runqueue to the local runqueue.
  1698. * Both runqueues must be locked.
  1699. */
  1700. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1701. struct rq *this_rq, int this_cpu)
  1702. {
  1703. deactivate_task(src_rq, p, 0);
  1704. set_task_cpu(p, this_cpu);
  1705. activate_task(this_rq, p, 0);
  1706. check_preempt_curr(this_rq, p, 0);
  1707. }
  1708. /*
  1709. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1710. */
  1711. static
  1712. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1713. struct sched_domain *sd, enum cpu_idle_type idle,
  1714. int *all_pinned)
  1715. {
  1716. int tsk_cache_hot = 0;
  1717. /*
  1718. * We do not migrate tasks that are:
  1719. * 1) running (obviously), or
  1720. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1721. * 3) are cache-hot on their current CPU.
  1722. */
  1723. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  1724. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  1725. return 0;
  1726. }
  1727. *all_pinned = 0;
  1728. if (task_running(rq, p)) {
  1729. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  1730. return 0;
  1731. }
  1732. /*
  1733. * Aggressive migration if:
  1734. * 1) task is cache cold, or
  1735. * 2) too many balance attempts have failed.
  1736. */
  1737. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  1738. if (!tsk_cache_hot ||
  1739. sd->nr_balance_failed > sd->cache_nice_tries) {
  1740. #ifdef CONFIG_SCHEDSTATS
  1741. if (tsk_cache_hot) {
  1742. schedstat_inc(sd, lb_hot_gained[idle]);
  1743. schedstat_inc(p, se.statistics.nr_forced_migrations);
  1744. }
  1745. #endif
  1746. return 1;
  1747. }
  1748. if (tsk_cache_hot) {
  1749. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  1750. return 0;
  1751. }
  1752. return 1;
  1753. }
  1754. /*
  1755. * move_one_task tries to move exactly one task from busiest to this_rq, as
  1756. * part of active balancing operations within "domain".
  1757. * Returns 1 if successful and 0 otherwise.
  1758. *
  1759. * Called with both runqueues locked.
  1760. */
  1761. static int
  1762. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1763. struct sched_domain *sd, enum cpu_idle_type idle)
  1764. {
  1765. struct task_struct *p, *n;
  1766. struct cfs_rq *cfs_rq;
  1767. int pinned = 0;
  1768. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  1769. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  1770. if (!can_migrate_task(p, busiest, this_cpu,
  1771. sd, idle, &pinned))
  1772. continue;
  1773. pull_task(busiest, p, this_rq, this_cpu);
  1774. /*
  1775. * Right now, this is only the second place pull_task()
  1776. * is called, so we can safely collect pull_task()
  1777. * stats here rather than inside pull_task().
  1778. */
  1779. schedstat_inc(sd, lb_gained[idle]);
  1780. return 1;
  1781. }
  1782. }
  1783. return 0;
  1784. }
  1785. static unsigned long
  1786. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1787. unsigned long max_load_move, struct sched_domain *sd,
  1788. enum cpu_idle_type idle, int *all_pinned,
  1789. struct cfs_rq *busiest_cfs_rq)
  1790. {
  1791. int loops = 0, pulled = 0;
  1792. long rem_load_move = max_load_move;
  1793. struct task_struct *p, *n;
  1794. if (max_load_move == 0)
  1795. goto out;
  1796. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  1797. if (loops++ > sysctl_sched_nr_migrate)
  1798. break;
  1799. if ((p->se.load.weight >> 1) > rem_load_move ||
  1800. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  1801. all_pinned))
  1802. continue;
  1803. pull_task(busiest, p, this_rq, this_cpu);
  1804. pulled++;
  1805. rem_load_move -= p->se.load.weight;
  1806. #ifdef CONFIG_PREEMPT
  1807. /*
  1808. * NEWIDLE balancing is a source of latency, so preemptible
  1809. * kernels will stop after the first task is pulled to minimize
  1810. * the critical section.
  1811. */
  1812. if (idle == CPU_NEWLY_IDLE)
  1813. break;
  1814. #endif
  1815. /*
  1816. * We only want to steal up to the prescribed amount of
  1817. * weighted load.
  1818. */
  1819. if (rem_load_move <= 0)
  1820. break;
  1821. }
  1822. out:
  1823. /*
  1824. * Right now, this is one of only two places pull_task() is called,
  1825. * so we can safely collect pull_task() stats here rather than
  1826. * inside pull_task().
  1827. */
  1828. schedstat_add(sd, lb_gained[idle], pulled);
  1829. return max_load_move - rem_load_move;
  1830. }
  1831. #ifdef CONFIG_FAIR_GROUP_SCHED
  1832. /*
  1833. * update tg->load_weight by folding this cpu's load_avg
  1834. */
  1835. static int update_shares_cpu(struct task_group *tg, int cpu)
  1836. {
  1837. struct cfs_rq *cfs_rq;
  1838. unsigned long flags;
  1839. struct rq *rq;
  1840. if (!tg->se[cpu])
  1841. return 0;
  1842. rq = cpu_rq(cpu);
  1843. cfs_rq = tg->cfs_rq[cpu];
  1844. raw_spin_lock_irqsave(&rq->lock, flags);
  1845. update_rq_clock(rq);
  1846. update_cfs_load(cfs_rq, 1);
  1847. /*
  1848. * We need to update shares after updating tg->load_weight in
  1849. * order to adjust the weight of groups with long running tasks.
  1850. */
  1851. update_cfs_shares(cfs_rq);
  1852. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1853. return 0;
  1854. }
  1855. static void update_shares(int cpu)
  1856. {
  1857. struct cfs_rq *cfs_rq;
  1858. struct rq *rq = cpu_rq(cpu);
  1859. rcu_read_lock();
  1860. for_each_leaf_cfs_rq(rq, cfs_rq)
  1861. update_shares_cpu(cfs_rq->tg, cpu);
  1862. rcu_read_unlock();
  1863. }
  1864. static unsigned long
  1865. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1866. unsigned long max_load_move,
  1867. struct sched_domain *sd, enum cpu_idle_type idle,
  1868. int *all_pinned)
  1869. {
  1870. long rem_load_move = max_load_move;
  1871. int busiest_cpu = cpu_of(busiest);
  1872. struct task_group *tg;
  1873. rcu_read_lock();
  1874. update_h_load(busiest_cpu);
  1875. list_for_each_entry_rcu(tg, &task_groups, list) {
  1876. struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
  1877. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  1878. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  1879. u64 rem_load, moved_load;
  1880. /*
  1881. * empty group
  1882. */
  1883. if (!busiest_cfs_rq->task_weight)
  1884. continue;
  1885. rem_load = (u64)rem_load_move * busiest_weight;
  1886. rem_load = div_u64(rem_load, busiest_h_load + 1);
  1887. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  1888. rem_load, sd, idle, all_pinned,
  1889. busiest_cfs_rq);
  1890. if (!moved_load)
  1891. continue;
  1892. moved_load *= busiest_h_load;
  1893. moved_load = div_u64(moved_load, busiest_weight + 1);
  1894. rem_load_move -= moved_load;
  1895. if (rem_load_move < 0)
  1896. break;
  1897. }
  1898. rcu_read_unlock();
  1899. return max_load_move - rem_load_move;
  1900. }
  1901. #else
  1902. static inline void update_shares(int cpu)
  1903. {
  1904. }
  1905. static unsigned long
  1906. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1907. unsigned long max_load_move,
  1908. struct sched_domain *sd, enum cpu_idle_type idle,
  1909. int *all_pinned)
  1910. {
  1911. return balance_tasks(this_rq, this_cpu, busiest,
  1912. max_load_move, sd, idle, all_pinned,
  1913. &busiest->cfs);
  1914. }
  1915. #endif
  1916. /*
  1917. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1918. * this_rq, as part of a balancing operation within domain "sd".
  1919. * Returns 1 if successful and 0 otherwise.
  1920. *
  1921. * Called with both runqueues locked.
  1922. */
  1923. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1924. unsigned long max_load_move,
  1925. struct sched_domain *sd, enum cpu_idle_type idle,
  1926. int *all_pinned)
  1927. {
  1928. unsigned long total_load_moved = 0, load_moved;
  1929. do {
  1930. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  1931. max_load_move - total_load_moved,
  1932. sd, idle, all_pinned);
  1933. total_load_moved += load_moved;
  1934. #ifdef CONFIG_PREEMPT
  1935. /*
  1936. * NEWIDLE balancing is a source of latency, so preemptible
  1937. * kernels will stop after the first task is pulled to minimize
  1938. * the critical section.
  1939. */
  1940. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  1941. break;
  1942. if (raw_spin_is_contended(&this_rq->lock) ||
  1943. raw_spin_is_contended(&busiest->lock))
  1944. break;
  1945. #endif
  1946. } while (load_moved && max_load_move > total_load_moved);
  1947. return total_load_moved > 0;
  1948. }
  1949. /********** Helpers for find_busiest_group ************************/
  1950. /*
  1951. * sd_lb_stats - Structure to store the statistics of a sched_domain
  1952. * during load balancing.
  1953. */
  1954. struct sd_lb_stats {
  1955. struct sched_group *busiest; /* Busiest group in this sd */
  1956. struct sched_group *this; /* Local group in this sd */
  1957. unsigned long total_load; /* Total load of all groups in sd */
  1958. unsigned long total_pwr; /* Total power of all groups in sd */
  1959. unsigned long avg_load; /* Average load across all groups in sd */
  1960. /** Statistics of this group */
  1961. unsigned long this_load;
  1962. unsigned long this_load_per_task;
  1963. unsigned long this_nr_running;
  1964. unsigned long this_has_capacity;
  1965. unsigned int this_idle_cpus;
  1966. /* Statistics of the busiest group */
  1967. unsigned int busiest_idle_cpus;
  1968. unsigned long max_load;
  1969. unsigned long busiest_load_per_task;
  1970. unsigned long busiest_nr_running;
  1971. unsigned long busiest_group_capacity;
  1972. unsigned long busiest_has_capacity;
  1973. unsigned int busiest_group_weight;
  1974. int group_imb; /* Is there imbalance in this sd */
  1975. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1976. int power_savings_balance; /* Is powersave balance needed for this sd */
  1977. struct sched_group *group_min; /* Least loaded group in sd */
  1978. struct sched_group *group_leader; /* Group which relieves group_min */
  1979. unsigned long min_load_per_task; /* load_per_task in group_min */
  1980. unsigned long leader_nr_running; /* Nr running of group_leader */
  1981. unsigned long min_nr_running; /* Nr running of group_min */
  1982. #endif
  1983. };
  1984. /*
  1985. * sg_lb_stats - stats of a sched_group required for load_balancing
  1986. */
  1987. struct sg_lb_stats {
  1988. unsigned long avg_load; /*Avg load across the CPUs of the group */
  1989. unsigned long group_load; /* Total load over the CPUs of the group */
  1990. unsigned long sum_nr_running; /* Nr tasks running in the group */
  1991. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  1992. unsigned long group_capacity;
  1993. unsigned long idle_cpus;
  1994. unsigned long group_weight;
  1995. int group_imb; /* Is there an imbalance in the group ? */
  1996. int group_has_capacity; /* Is there extra capacity in the group? */
  1997. };
  1998. /**
  1999. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2000. * @group: The group whose first cpu is to be returned.
  2001. */
  2002. static inline unsigned int group_first_cpu(struct sched_group *group)
  2003. {
  2004. return cpumask_first(sched_group_cpus(group));
  2005. }
  2006. /**
  2007. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2008. * @sd: The sched_domain whose load_idx is to be obtained.
  2009. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2010. */
  2011. static inline int get_sd_load_idx(struct sched_domain *sd,
  2012. enum cpu_idle_type idle)
  2013. {
  2014. int load_idx;
  2015. switch (idle) {
  2016. case CPU_NOT_IDLE:
  2017. load_idx = sd->busy_idx;
  2018. break;
  2019. case CPU_NEWLY_IDLE:
  2020. load_idx = sd->newidle_idx;
  2021. break;
  2022. default:
  2023. load_idx = sd->idle_idx;
  2024. break;
  2025. }
  2026. return load_idx;
  2027. }
  2028. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2029. /**
  2030. * init_sd_power_savings_stats - Initialize power savings statistics for
  2031. * the given sched_domain, during load balancing.
  2032. *
  2033. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2034. * @sds: Variable containing the statistics for sd.
  2035. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2036. */
  2037. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2038. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2039. {
  2040. /*
  2041. * Busy processors will not participate in power savings
  2042. * balance.
  2043. */
  2044. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2045. sds->power_savings_balance = 0;
  2046. else {
  2047. sds->power_savings_balance = 1;
  2048. sds->min_nr_running = ULONG_MAX;
  2049. sds->leader_nr_running = 0;
  2050. }
  2051. }
  2052. /**
  2053. * update_sd_power_savings_stats - Update the power saving stats for a
  2054. * sched_domain while performing load balancing.
  2055. *
  2056. * @group: sched_group belonging to the sched_domain under consideration.
  2057. * @sds: Variable containing the statistics of the sched_domain
  2058. * @local_group: Does group contain the CPU for which we're performing
  2059. * load balancing ?
  2060. * @sgs: Variable containing the statistics of the group.
  2061. */
  2062. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2063. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2064. {
  2065. if (!sds->power_savings_balance)
  2066. return;
  2067. /*
  2068. * If the local group is idle or completely loaded
  2069. * no need to do power savings balance at this domain
  2070. */
  2071. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2072. !sds->this_nr_running))
  2073. sds->power_savings_balance = 0;
  2074. /*
  2075. * If a group is already running at full capacity or idle,
  2076. * don't include that group in power savings calculations
  2077. */
  2078. if (!sds->power_savings_balance ||
  2079. sgs->sum_nr_running >= sgs->group_capacity ||
  2080. !sgs->sum_nr_running)
  2081. return;
  2082. /*
  2083. * Calculate the group which has the least non-idle load.
  2084. * This is the group from where we need to pick up the load
  2085. * for saving power
  2086. */
  2087. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2088. (sgs->sum_nr_running == sds->min_nr_running &&
  2089. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2090. sds->group_min = group;
  2091. sds->min_nr_running = sgs->sum_nr_running;
  2092. sds->min_load_per_task = sgs->sum_weighted_load /
  2093. sgs->sum_nr_running;
  2094. }
  2095. /*
  2096. * Calculate the group which is almost near its
  2097. * capacity but still has some space to pick up some load
  2098. * from other group and save more power
  2099. */
  2100. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2101. return;
  2102. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2103. (sgs->sum_nr_running == sds->leader_nr_running &&
  2104. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2105. sds->group_leader = group;
  2106. sds->leader_nr_running = sgs->sum_nr_running;
  2107. }
  2108. }
  2109. /**
  2110. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2111. * @sds: Variable containing the statistics of the sched_domain
  2112. * under consideration.
  2113. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2114. * @imbalance: Variable to store the imbalance.
  2115. *
  2116. * Description:
  2117. * Check if we have potential to perform some power-savings balance.
  2118. * If yes, set the busiest group to be the least loaded group in the
  2119. * sched_domain, so that it's CPUs can be put to idle.
  2120. *
  2121. * Returns 1 if there is potential to perform power-savings balance.
  2122. * Else returns 0.
  2123. */
  2124. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2125. int this_cpu, unsigned long *imbalance)
  2126. {
  2127. if (!sds->power_savings_balance)
  2128. return 0;
  2129. if (sds->this != sds->group_leader ||
  2130. sds->group_leader == sds->group_min)
  2131. return 0;
  2132. *imbalance = sds->min_load_per_task;
  2133. sds->busiest = sds->group_min;
  2134. return 1;
  2135. }
  2136. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2137. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2138. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2139. {
  2140. return;
  2141. }
  2142. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2143. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2144. {
  2145. return;
  2146. }
  2147. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2148. int this_cpu, unsigned long *imbalance)
  2149. {
  2150. return 0;
  2151. }
  2152. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2153. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2154. {
  2155. return SCHED_POWER_SCALE;
  2156. }
  2157. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2158. {
  2159. return default_scale_freq_power(sd, cpu);
  2160. }
  2161. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2162. {
  2163. unsigned long weight = sd->span_weight;
  2164. unsigned long smt_gain = sd->smt_gain;
  2165. smt_gain /= weight;
  2166. return smt_gain;
  2167. }
  2168. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2169. {
  2170. return default_scale_smt_power(sd, cpu);
  2171. }
  2172. unsigned long scale_rt_power(int cpu)
  2173. {
  2174. struct rq *rq = cpu_rq(cpu);
  2175. u64 total, available;
  2176. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2177. if (unlikely(total < rq->rt_avg)) {
  2178. /* Ensures that power won't end up being negative */
  2179. available = 0;
  2180. } else {
  2181. available = total - rq->rt_avg;
  2182. }
  2183. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2184. total = SCHED_POWER_SCALE;
  2185. total >>= SCHED_POWER_SHIFT;
  2186. return div_u64(available, total);
  2187. }
  2188. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2189. {
  2190. unsigned long weight = sd->span_weight;
  2191. unsigned long power = SCHED_POWER_SCALE;
  2192. struct sched_group *sdg = sd->groups;
  2193. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2194. if (sched_feat(ARCH_POWER))
  2195. power *= arch_scale_smt_power(sd, cpu);
  2196. else
  2197. power *= default_scale_smt_power(sd, cpu);
  2198. power >>= SCHED_POWER_SHIFT;
  2199. }
  2200. sdg->sgp->power_orig = power;
  2201. if (sched_feat(ARCH_POWER))
  2202. power *= arch_scale_freq_power(sd, cpu);
  2203. else
  2204. power *= default_scale_freq_power(sd, cpu);
  2205. power >>= SCHED_POWER_SHIFT;
  2206. power *= scale_rt_power(cpu);
  2207. power >>= SCHED_POWER_SHIFT;
  2208. if (!power)
  2209. power = 1;
  2210. cpu_rq(cpu)->cpu_power = power;
  2211. sdg->sgp->power = power;
  2212. }
  2213. static void update_group_power(struct sched_domain *sd, int cpu)
  2214. {
  2215. struct sched_domain *child = sd->child;
  2216. struct sched_group *group, *sdg = sd->groups;
  2217. unsigned long power;
  2218. if (!child) {
  2219. update_cpu_power(sd, cpu);
  2220. return;
  2221. }
  2222. power = 0;
  2223. group = child->groups;
  2224. do {
  2225. power += group->sgp->power;
  2226. group = group->next;
  2227. } while (group != child->groups);
  2228. sdg->sgp->power = power;
  2229. }
  2230. /*
  2231. * Try and fix up capacity for tiny siblings, this is needed when
  2232. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2233. * which on its own isn't powerful enough.
  2234. *
  2235. * See update_sd_pick_busiest() and check_asym_packing().
  2236. */
  2237. static inline int
  2238. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2239. {
  2240. /*
  2241. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2242. */
  2243. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2244. return 0;
  2245. /*
  2246. * If ~90% of the cpu_power is still there, we're good.
  2247. */
  2248. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  2249. return 1;
  2250. return 0;
  2251. }
  2252. /**
  2253. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2254. * @sd: The sched_domain whose statistics are to be updated.
  2255. * @group: sched_group whose statistics are to be updated.
  2256. * @this_cpu: Cpu for which load balance is currently performed.
  2257. * @idle: Idle status of this_cpu
  2258. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2259. * @local_group: Does group contain this_cpu.
  2260. * @cpus: Set of cpus considered for load balancing.
  2261. * @balance: Should we balance.
  2262. * @sgs: variable to hold the statistics for this group.
  2263. */
  2264. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2265. struct sched_group *group, int this_cpu,
  2266. enum cpu_idle_type idle, int load_idx,
  2267. int local_group, const struct cpumask *cpus,
  2268. int *balance, struct sg_lb_stats *sgs)
  2269. {
  2270. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2271. int i;
  2272. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2273. unsigned long avg_load_per_task = 0;
  2274. if (local_group)
  2275. balance_cpu = group_first_cpu(group);
  2276. /* Tally up the load of all CPUs in the group */
  2277. max_cpu_load = 0;
  2278. min_cpu_load = ~0UL;
  2279. max_nr_running = 0;
  2280. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2281. struct rq *rq = cpu_rq(i);
  2282. /* Bias balancing toward cpus of our domain */
  2283. if (local_group) {
  2284. if (idle_cpu(i) && !first_idle_cpu) {
  2285. first_idle_cpu = 1;
  2286. balance_cpu = i;
  2287. }
  2288. load = target_load(i, load_idx);
  2289. } else {
  2290. load = source_load(i, load_idx);
  2291. if (load > max_cpu_load) {
  2292. max_cpu_load = load;
  2293. max_nr_running = rq->nr_running;
  2294. }
  2295. if (min_cpu_load > load)
  2296. min_cpu_load = load;
  2297. }
  2298. sgs->group_load += load;
  2299. sgs->sum_nr_running += rq->nr_running;
  2300. sgs->sum_weighted_load += weighted_cpuload(i);
  2301. if (idle_cpu(i))
  2302. sgs->idle_cpus++;
  2303. }
  2304. /*
  2305. * First idle cpu or the first cpu(busiest) in this sched group
  2306. * is eligible for doing load balancing at this and above
  2307. * domains. In the newly idle case, we will allow all the cpu's
  2308. * to do the newly idle load balance.
  2309. */
  2310. if (idle != CPU_NEWLY_IDLE && local_group) {
  2311. if (balance_cpu != this_cpu) {
  2312. *balance = 0;
  2313. return;
  2314. }
  2315. update_group_power(sd, this_cpu);
  2316. }
  2317. /* Adjust by relative CPU power of the group */
  2318. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  2319. /*
  2320. * Consider the group unbalanced when the imbalance is larger
  2321. * than the average weight of a task.
  2322. *
  2323. * APZ: with cgroup the avg task weight can vary wildly and
  2324. * might not be a suitable number - should we keep a
  2325. * normalized nr_running number somewhere that negates
  2326. * the hierarchy?
  2327. */
  2328. if (sgs->sum_nr_running)
  2329. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2330. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2331. sgs->group_imb = 1;
  2332. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  2333. SCHED_POWER_SCALE);
  2334. if (!sgs->group_capacity)
  2335. sgs->group_capacity = fix_small_capacity(sd, group);
  2336. sgs->group_weight = group->group_weight;
  2337. if (sgs->group_capacity > sgs->sum_nr_running)
  2338. sgs->group_has_capacity = 1;
  2339. }
  2340. /**
  2341. * update_sd_pick_busiest - return 1 on busiest group
  2342. * @sd: sched_domain whose statistics are to be checked
  2343. * @sds: sched_domain statistics
  2344. * @sg: sched_group candidate to be checked for being the busiest
  2345. * @sgs: sched_group statistics
  2346. * @this_cpu: the current cpu
  2347. *
  2348. * Determine if @sg is a busier group than the previously selected
  2349. * busiest group.
  2350. */
  2351. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2352. struct sd_lb_stats *sds,
  2353. struct sched_group *sg,
  2354. struct sg_lb_stats *sgs,
  2355. int this_cpu)
  2356. {
  2357. if (sgs->avg_load <= sds->max_load)
  2358. return false;
  2359. if (sgs->sum_nr_running > sgs->group_capacity)
  2360. return true;
  2361. if (sgs->group_imb)
  2362. return true;
  2363. /*
  2364. * ASYM_PACKING needs to move all the work to the lowest
  2365. * numbered CPUs in the group, therefore mark all groups
  2366. * higher than ourself as busy.
  2367. */
  2368. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2369. this_cpu < group_first_cpu(sg)) {
  2370. if (!sds->busiest)
  2371. return true;
  2372. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2373. return true;
  2374. }
  2375. return false;
  2376. }
  2377. /**
  2378. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2379. * @sd: sched_domain whose statistics are to be updated.
  2380. * @this_cpu: Cpu for which load balance is currently performed.
  2381. * @idle: Idle status of this_cpu
  2382. * @cpus: Set of cpus considered for load balancing.
  2383. * @balance: Should we balance.
  2384. * @sds: variable to hold the statistics for this sched_domain.
  2385. */
  2386. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2387. enum cpu_idle_type idle, const struct cpumask *cpus,
  2388. int *balance, struct sd_lb_stats *sds)
  2389. {
  2390. struct sched_domain *child = sd->child;
  2391. struct sched_group *sg = sd->groups;
  2392. struct sg_lb_stats sgs;
  2393. int load_idx, prefer_sibling = 0;
  2394. if (child && child->flags & SD_PREFER_SIBLING)
  2395. prefer_sibling = 1;
  2396. init_sd_power_savings_stats(sd, sds, idle);
  2397. load_idx = get_sd_load_idx(sd, idle);
  2398. do {
  2399. int local_group;
  2400. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2401. memset(&sgs, 0, sizeof(sgs));
  2402. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2403. local_group, cpus, balance, &sgs);
  2404. if (local_group && !(*balance))
  2405. return;
  2406. sds->total_load += sgs.group_load;
  2407. sds->total_pwr += sg->sgp->power;
  2408. /*
  2409. * In case the child domain prefers tasks go to siblings
  2410. * first, lower the sg capacity to one so that we'll try
  2411. * and move all the excess tasks away. We lower the capacity
  2412. * of a group only if the local group has the capacity to fit
  2413. * these excess tasks, i.e. nr_running < group_capacity. The
  2414. * extra check prevents the case where you always pull from the
  2415. * heaviest group when it is already under-utilized (possible
  2416. * with a large weight task outweighs the tasks on the system).
  2417. */
  2418. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2419. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2420. if (local_group) {
  2421. sds->this_load = sgs.avg_load;
  2422. sds->this = sg;
  2423. sds->this_nr_running = sgs.sum_nr_running;
  2424. sds->this_load_per_task = sgs.sum_weighted_load;
  2425. sds->this_has_capacity = sgs.group_has_capacity;
  2426. sds->this_idle_cpus = sgs.idle_cpus;
  2427. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2428. sds->max_load = sgs.avg_load;
  2429. sds->busiest = sg;
  2430. sds->busiest_nr_running = sgs.sum_nr_running;
  2431. sds->busiest_idle_cpus = sgs.idle_cpus;
  2432. sds->busiest_group_capacity = sgs.group_capacity;
  2433. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2434. sds->busiest_has_capacity = sgs.group_has_capacity;
  2435. sds->busiest_group_weight = sgs.group_weight;
  2436. sds->group_imb = sgs.group_imb;
  2437. }
  2438. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2439. sg = sg->next;
  2440. } while (sg != sd->groups);
  2441. }
  2442. int __weak arch_sd_sibling_asym_packing(void)
  2443. {
  2444. return 0*SD_ASYM_PACKING;
  2445. }
  2446. /**
  2447. * check_asym_packing - Check to see if the group is packed into the
  2448. * sched doman.
  2449. *
  2450. * This is primarily intended to used at the sibling level. Some
  2451. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2452. * case of POWER7, it can move to lower SMT modes only when higher
  2453. * threads are idle. When in lower SMT modes, the threads will
  2454. * perform better since they share less core resources. Hence when we
  2455. * have idle threads, we want them to be the higher ones.
  2456. *
  2457. * This packing function is run on idle threads. It checks to see if
  2458. * the busiest CPU in this domain (core in the P7 case) has a higher
  2459. * CPU number than the packing function is being run on. Here we are
  2460. * assuming lower CPU number will be equivalent to lower a SMT thread
  2461. * number.
  2462. *
  2463. * Returns 1 when packing is required and a task should be moved to
  2464. * this CPU. The amount of the imbalance is returned in *imbalance.
  2465. *
  2466. * @sd: The sched_domain whose packing is to be checked.
  2467. * @sds: Statistics of the sched_domain which is to be packed
  2468. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2469. * @imbalance: returns amount of imbalanced due to packing.
  2470. */
  2471. static int check_asym_packing(struct sched_domain *sd,
  2472. struct sd_lb_stats *sds,
  2473. int this_cpu, unsigned long *imbalance)
  2474. {
  2475. int busiest_cpu;
  2476. if (!(sd->flags & SD_ASYM_PACKING))
  2477. return 0;
  2478. if (!sds->busiest)
  2479. return 0;
  2480. busiest_cpu = group_first_cpu(sds->busiest);
  2481. if (this_cpu > busiest_cpu)
  2482. return 0;
  2483. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  2484. SCHED_POWER_SCALE);
  2485. return 1;
  2486. }
  2487. /**
  2488. * fix_small_imbalance - Calculate the minor imbalance that exists
  2489. * amongst the groups of a sched_domain, during
  2490. * load balancing.
  2491. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2492. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2493. * @imbalance: Variable to store the imbalance.
  2494. */
  2495. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2496. int this_cpu, unsigned long *imbalance)
  2497. {
  2498. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2499. unsigned int imbn = 2;
  2500. unsigned long scaled_busy_load_per_task;
  2501. if (sds->this_nr_running) {
  2502. sds->this_load_per_task /= sds->this_nr_running;
  2503. if (sds->busiest_load_per_task >
  2504. sds->this_load_per_task)
  2505. imbn = 1;
  2506. } else
  2507. sds->this_load_per_task =
  2508. cpu_avg_load_per_task(this_cpu);
  2509. scaled_busy_load_per_task = sds->busiest_load_per_task
  2510. * SCHED_POWER_SCALE;
  2511. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  2512. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2513. (scaled_busy_load_per_task * imbn)) {
  2514. *imbalance = sds->busiest_load_per_task;
  2515. return;
  2516. }
  2517. /*
  2518. * OK, we don't have enough imbalance to justify moving tasks,
  2519. * however we may be able to increase total CPU power used by
  2520. * moving them.
  2521. */
  2522. pwr_now += sds->busiest->sgp->power *
  2523. min(sds->busiest_load_per_task, sds->max_load);
  2524. pwr_now += sds->this->sgp->power *
  2525. min(sds->this_load_per_task, sds->this_load);
  2526. pwr_now /= SCHED_POWER_SCALE;
  2527. /* Amount of load we'd subtract */
  2528. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2529. sds->busiest->sgp->power;
  2530. if (sds->max_load > tmp)
  2531. pwr_move += sds->busiest->sgp->power *
  2532. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2533. /* Amount of load we'd add */
  2534. if (sds->max_load * sds->busiest->sgp->power <
  2535. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  2536. tmp = (sds->max_load * sds->busiest->sgp->power) /
  2537. sds->this->sgp->power;
  2538. else
  2539. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2540. sds->this->sgp->power;
  2541. pwr_move += sds->this->sgp->power *
  2542. min(sds->this_load_per_task, sds->this_load + tmp);
  2543. pwr_move /= SCHED_POWER_SCALE;
  2544. /* Move if we gain throughput */
  2545. if (pwr_move > pwr_now)
  2546. *imbalance = sds->busiest_load_per_task;
  2547. }
  2548. /**
  2549. * calculate_imbalance - Calculate the amount of imbalance present within the
  2550. * groups of a given sched_domain during load balance.
  2551. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2552. * @this_cpu: Cpu for which currently load balance is being performed.
  2553. * @imbalance: The variable to store the imbalance.
  2554. */
  2555. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2556. unsigned long *imbalance)
  2557. {
  2558. unsigned long max_pull, load_above_capacity = ~0UL;
  2559. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2560. if (sds->group_imb) {
  2561. sds->busiest_load_per_task =
  2562. min(sds->busiest_load_per_task, sds->avg_load);
  2563. }
  2564. /*
  2565. * In the presence of smp nice balancing, certain scenarios can have
  2566. * max load less than avg load(as we skip the groups at or below
  2567. * its cpu_power, while calculating max_load..)
  2568. */
  2569. if (sds->max_load < sds->avg_load) {
  2570. *imbalance = 0;
  2571. return fix_small_imbalance(sds, this_cpu, imbalance);
  2572. }
  2573. if (!sds->group_imb) {
  2574. /*
  2575. * Don't want to pull so many tasks that a group would go idle.
  2576. */
  2577. load_above_capacity = (sds->busiest_nr_running -
  2578. sds->busiest_group_capacity);
  2579. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  2580. load_above_capacity /= sds->busiest->sgp->power;
  2581. }
  2582. /*
  2583. * We're trying to get all the cpus to the average_load, so we don't
  2584. * want to push ourselves above the average load, nor do we wish to
  2585. * reduce the max loaded cpu below the average load. At the same time,
  2586. * we also don't want to reduce the group load below the group capacity
  2587. * (so that we can implement power-savings policies etc). Thus we look
  2588. * for the minimum possible imbalance.
  2589. * Be careful of negative numbers as they'll appear as very large values
  2590. * with unsigned longs.
  2591. */
  2592. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2593. /* How much load to actually move to equalise the imbalance */
  2594. *imbalance = min(max_pull * sds->busiest->sgp->power,
  2595. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  2596. / SCHED_POWER_SCALE;
  2597. /*
  2598. * if *imbalance is less than the average load per runnable task
  2599. * there is no guarantee that any tasks will be moved so we'll have
  2600. * a think about bumping its value to force at least one task to be
  2601. * moved
  2602. */
  2603. if (*imbalance < sds->busiest_load_per_task)
  2604. return fix_small_imbalance(sds, this_cpu, imbalance);
  2605. }
  2606. /******* find_busiest_group() helpers end here *********************/
  2607. /**
  2608. * find_busiest_group - Returns the busiest group within the sched_domain
  2609. * if there is an imbalance. If there isn't an imbalance, and
  2610. * the user has opted for power-savings, it returns a group whose
  2611. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  2612. * such a group exists.
  2613. *
  2614. * Also calculates the amount of weighted load which should be moved
  2615. * to restore balance.
  2616. *
  2617. * @sd: The sched_domain whose busiest group is to be returned.
  2618. * @this_cpu: The cpu for which load balancing is currently being performed.
  2619. * @imbalance: Variable which stores amount of weighted load which should
  2620. * be moved to restore balance/put a group to idle.
  2621. * @idle: The idle status of this_cpu.
  2622. * @cpus: The set of CPUs under consideration for load-balancing.
  2623. * @balance: Pointer to a variable indicating if this_cpu
  2624. * is the appropriate cpu to perform load balancing at this_level.
  2625. *
  2626. * Returns: - the busiest group if imbalance exists.
  2627. * - If no imbalance and user has opted for power-savings balance,
  2628. * return the least loaded group whose CPUs can be
  2629. * put to idle by rebalancing its tasks onto our group.
  2630. */
  2631. static struct sched_group *
  2632. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2633. unsigned long *imbalance, enum cpu_idle_type idle,
  2634. const struct cpumask *cpus, int *balance)
  2635. {
  2636. struct sd_lb_stats sds;
  2637. memset(&sds, 0, sizeof(sds));
  2638. /*
  2639. * Compute the various statistics relavent for load balancing at
  2640. * this level.
  2641. */
  2642. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  2643. /*
  2644. * this_cpu is not the appropriate cpu to perform load balancing at
  2645. * this level.
  2646. */
  2647. if (!(*balance))
  2648. goto ret;
  2649. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  2650. check_asym_packing(sd, &sds, this_cpu, imbalance))
  2651. return sds.busiest;
  2652. /* There is no busy sibling group to pull tasks from */
  2653. if (!sds.busiest || sds.busiest_nr_running == 0)
  2654. goto out_balanced;
  2655. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  2656. /*
  2657. * If the busiest group is imbalanced the below checks don't
  2658. * work because they assumes all things are equal, which typically
  2659. * isn't true due to cpus_allowed constraints and the like.
  2660. */
  2661. if (sds.group_imb)
  2662. goto force_balance;
  2663. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  2664. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  2665. !sds.busiest_has_capacity)
  2666. goto force_balance;
  2667. /*
  2668. * If the local group is more busy than the selected busiest group
  2669. * don't try and pull any tasks.
  2670. */
  2671. if (sds.this_load >= sds.max_load)
  2672. goto out_balanced;
  2673. /*
  2674. * Don't pull any tasks if this group is already above the domain
  2675. * average load.
  2676. */
  2677. if (sds.this_load >= sds.avg_load)
  2678. goto out_balanced;
  2679. if (idle == CPU_IDLE) {
  2680. /*
  2681. * This cpu is idle. If the busiest group load doesn't
  2682. * have more tasks than the number of available cpu's and
  2683. * there is no imbalance between this and busiest group
  2684. * wrt to idle cpu's, it is balanced.
  2685. */
  2686. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  2687. sds.busiest_nr_running <= sds.busiest_group_weight)
  2688. goto out_balanced;
  2689. } else {
  2690. /*
  2691. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  2692. * imbalance_pct to be conservative.
  2693. */
  2694. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  2695. goto out_balanced;
  2696. }
  2697. force_balance:
  2698. /* Looks like there is an imbalance. Compute it */
  2699. calculate_imbalance(&sds, this_cpu, imbalance);
  2700. return sds.busiest;
  2701. out_balanced:
  2702. /*
  2703. * There is no obvious imbalance. But check if we can do some balancing
  2704. * to save power.
  2705. */
  2706. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  2707. return sds.busiest;
  2708. ret:
  2709. *imbalance = 0;
  2710. return NULL;
  2711. }
  2712. /*
  2713. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2714. */
  2715. static struct rq *
  2716. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  2717. enum cpu_idle_type idle, unsigned long imbalance,
  2718. const struct cpumask *cpus)
  2719. {
  2720. struct rq *busiest = NULL, *rq;
  2721. unsigned long max_load = 0;
  2722. int i;
  2723. for_each_cpu(i, sched_group_cpus(group)) {
  2724. unsigned long power = power_of(i);
  2725. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  2726. SCHED_POWER_SCALE);
  2727. unsigned long wl;
  2728. if (!capacity)
  2729. capacity = fix_small_capacity(sd, group);
  2730. if (!cpumask_test_cpu(i, cpus))
  2731. continue;
  2732. rq = cpu_rq(i);
  2733. wl = weighted_cpuload(i);
  2734. /*
  2735. * When comparing with imbalance, use weighted_cpuload()
  2736. * which is not scaled with the cpu power.
  2737. */
  2738. if (capacity && rq->nr_running == 1 && wl > imbalance)
  2739. continue;
  2740. /*
  2741. * For the load comparisons with the other cpu's, consider
  2742. * the weighted_cpuload() scaled with the cpu power, so that
  2743. * the load can be moved away from the cpu that is potentially
  2744. * running at a lower capacity.
  2745. */
  2746. wl = (wl * SCHED_POWER_SCALE) / power;
  2747. if (wl > max_load) {
  2748. max_load = wl;
  2749. busiest = rq;
  2750. }
  2751. }
  2752. return busiest;
  2753. }
  2754. /*
  2755. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2756. * so long as it is large enough.
  2757. */
  2758. #define MAX_PINNED_INTERVAL 512
  2759. /* Working cpumask for load_balance and load_balance_newidle. */
  2760. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  2761. static int need_active_balance(struct sched_domain *sd, int idle,
  2762. int busiest_cpu, int this_cpu)
  2763. {
  2764. if (idle == CPU_NEWLY_IDLE) {
  2765. /*
  2766. * ASYM_PACKING needs to force migrate tasks from busy but
  2767. * higher numbered CPUs in order to pack all tasks in the
  2768. * lowest numbered CPUs.
  2769. */
  2770. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  2771. return 1;
  2772. /*
  2773. * The only task running in a non-idle cpu can be moved to this
  2774. * cpu in an attempt to completely freeup the other CPU
  2775. * package.
  2776. *
  2777. * The package power saving logic comes from
  2778. * find_busiest_group(). If there are no imbalance, then
  2779. * f_b_g() will return NULL. However when sched_mc={1,2} then
  2780. * f_b_g() will select a group from which a running task may be
  2781. * pulled to this cpu in order to make the other package idle.
  2782. * If there is no opportunity to make a package idle and if
  2783. * there are no imbalance, then f_b_g() will return NULL and no
  2784. * action will be taken in load_balance_newidle().
  2785. *
  2786. * Under normal task pull operation due to imbalance, there
  2787. * will be more than one task in the source run queue and
  2788. * move_tasks() will succeed. ld_moved will be true and this
  2789. * active balance code will not be triggered.
  2790. */
  2791. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  2792. return 0;
  2793. }
  2794. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  2795. }
  2796. static int active_load_balance_cpu_stop(void *data);
  2797. /*
  2798. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2799. * tasks if there is an imbalance.
  2800. */
  2801. static int load_balance(int this_cpu, struct rq *this_rq,
  2802. struct sched_domain *sd, enum cpu_idle_type idle,
  2803. int *balance)
  2804. {
  2805. int ld_moved, all_pinned = 0, active_balance = 0;
  2806. struct sched_group *group;
  2807. unsigned long imbalance;
  2808. struct rq *busiest;
  2809. unsigned long flags;
  2810. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  2811. cpumask_copy(cpus, cpu_active_mask);
  2812. schedstat_inc(sd, lb_count[idle]);
  2813. redo:
  2814. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  2815. cpus, balance);
  2816. if (*balance == 0)
  2817. goto out_balanced;
  2818. if (!group) {
  2819. schedstat_inc(sd, lb_nobusyg[idle]);
  2820. goto out_balanced;
  2821. }
  2822. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  2823. if (!busiest) {
  2824. schedstat_inc(sd, lb_nobusyq[idle]);
  2825. goto out_balanced;
  2826. }
  2827. BUG_ON(busiest == this_rq);
  2828. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2829. ld_moved = 0;
  2830. if (busiest->nr_running > 1) {
  2831. /*
  2832. * Attempt to move tasks. If find_busiest_group has found
  2833. * an imbalance but busiest->nr_running <= 1, the group is
  2834. * still unbalanced. ld_moved simply stays zero, so it is
  2835. * correctly treated as an imbalance.
  2836. */
  2837. all_pinned = 1;
  2838. local_irq_save(flags);
  2839. double_rq_lock(this_rq, busiest);
  2840. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2841. imbalance, sd, idle, &all_pinned);
  2842. double_rq_unlock(this_rq, busiest);
  2843. local_irq_restore(flags);
  2844. /*
  2845. * some other cpu did the load balance for us.
  2846. */
  2847. if (ld_moved && this_cpu != smp_processor_id())
  2848. resched_cpu(this_cpu);
  2849. /* All tasks on this runqueue were pinned by CPU affinity */
  2850. if (unlikely(all_pinned)) {
  2851. cpumask_clear_cpu(cpu_of(busiest), cpus);
  2852. if (!cpumask_empty(cpus))
  2853. goto redo;
  2854. goto out_balanced;
  2855. }
  2856. }
  2857. if (!ld_moved) {
  2858. schedstat_inc(sd, lb_failed[idle]);
  2859. /*
  2860. * Increment the failure counter only on periodic balance.
  2861. * We do not want newidle balance, which can be very
  2862. * frequent, pollute the failure counter causing
  2863. * excessive cache_hot migrations and active balances.
  2864. */
  2865. if (idle != CPU_NEWLY_IDLE)
  2866. sd->nr_balance_failed++;
  2867. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  2868. raw_spin_lock_irqsave(&busiest->lock, flags);
  2869. /* don't kick the active_load_balance_cpu_stop,
  2870. * if the curr task on busiest cpu can't be
  2871. * moved to this_cpu
  2872. */
  2873. if (!cpumask_test_cpu(this_cpu,
  2874. &busiest->curr->cpus_allowed)) {
  2875. raw_spin_unlock_irqrestore(&busiest->lock,
  2876. flags);
  2877. all_pinned = 1;
  2878. goto out_one_pinned;
  2879. }
  2880. /*
  2881. * ->active_balance synchronizes accesses to
  2882. * ->active_balance_work. Once set, it's cleared
  2883. * only after active load balance is finished.
  2884. */
  2885. if (!busiest->active_balance) {
  2886. busiest->active_balance = 1;
  2887. busiest->push_cpu = this_cpu;
  2888. active_balance = 1;
  2889. }
  2890. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  2891. if (active_balance)
  2892. stop_one_cpu_nowait(cpu_of(busiest),
  2893. active_load_balance_cpu_stop, busiest,
  2894. &busiest->active_balance_work);
  2895. /*
  2896. * We've kicked active balancing, reset the failure
  2897. * counter.
  2898. */
  2899. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2900. }
  2901. } else
  2902. sd->nr_balance_failed = 0;
  2903. if (likely(!active_balance)) {
  2904. /* We were unbalanced, so reset the balancing interval */
  2905. sd->balance_interval = sd->min_interval;
  2906. } else {
  2907. /*
  2908. * If we've begun active balancing, start to back off. This
  2909. * case may not be covered by the all_pinned logic if there
  2910. * is only 1 task on the busy runqueue (because we don't call
  2911. * move_tasks).
  2912. */
  2913. if (sd->balance_interval < sd->max_interval)
  2914. sd->balance_interval *= 2;
  2915. }
  2916. goto out;
  2917. out_balanced:
  2918. schedstat_inc(sd, lb_balanced[idle]);
  2919. sd->nr_balance_failed = 0;
  2920. out_one_pinned:
  2921. /* tune up the balancing interval */
  2922. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2923. (sd->balance_interval < sd->max_interval))
  2924. sd->balance_interval *= 2;
  2925. ld_moved = 0;
  2926. out:
  2927. return ld_moved;
  2928. }
  2929. /*
  2930. * idle_balance is called by schedule() if this_cpu is about to become
  2931. * idle. Attempts to pull tasks from other CPUs.
  2932. */
  2933. static void idle_balance(int this_cpu, struct rq *this_rq)
  2934. {
  2935. struct sched_domain *sd;
  2936. int pulled_task = 0;
  2937. unsigned long next_balance = jiffies + HZ;
  2938. this_rq->idle_stamp = this_rq->clock;
  2939. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  2940. return;
  2941. /*
  2942. * Drop the rq->lock, but keep IRQ/preempt disabled.
  2943. */
  2944. raw_spin_unlock(&this_rq->lock);
  2945. update_shares(this_cpu);
  2946. rcu_read_lock();
  2947. for_each_domain(this_cpu, sd) {
  2948. unsigned long interval;
  2949. int balance = 1;
  2950. if (!(sd->flags & SD_LOAD_BALANCE))
  2951. continue;
  2952. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2953. /* If we've pulled tasks over stop searching: */
  2954. pulled_task = load_balance(this_cpu, this_rq,
  2955. sd, CPU_NEWLY_IDLE, &balance);
  2956. }
  2957. interval = msecs_to_jiffies(sd->balance_interval);
  2958. if (time_after(next_balance, sd->last_balance + interval))
  2959. next_balance = sd->last_balance + interval;
  2960. if (pulled_task) {
  2961. this_rq->idle_stamp = 0;
  2962. break;
  2963. }
  2964. }
  2965. rcu_read_unlock();
  2966. raw_spin_lock(&this_rq->lock);
  2967. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2968. /*
  2969. * We are going idle. next_balance may be set based on
  2970. * a busy processor. So reset next_balance.
  2971. */
  2972. this_rq->next_balance = next_balance;
  2973. }
  2974. }
  2975. /*
  2976. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  2977. * running tasks off the busiest CPU onto idle CPUs. It requires at
  2978. * least 1 task to be running on each physical CPU where possible, and
  2979. * avoids physical / logical imbalances.
  2980. */
  2981. static int active_load_balance_cpu_stop(void *data)
  2982. {
  2983. struct rq *busiest_rq = data;
  2984. int busiest_cpu = cpu_of(busiest_rq);
  2985. int target_cpu = busiest_rq->push_cpu;
  2986. struct rq *target_rq = cpu_rq(target_cpu);
  2987. struct sched_domain *sd;
  2988. raw_spin_lock_irq(&busiest_rq->lock);
  2989. /* make sure the requested cpu hasn't gone down in the meantime */
  2990. if (unlikely(busiest_cpu != smp_processor_id() ||
  2991. !busiest_rq->active_balance))
  2992. goto out_unlock;
  2993. /* Is there any task to move? */
  2994. if (busiest_rq->nr_running <= 1)
  2995. goto out_unlock;
  2996. /*
  2997. * This condition is "impossible", if it occurs
  2998. * we need to fix it. Originally reported by
  2999. * Bjorn Helgaas on a 128-cpu setup.
  3000. */
  3001. BUG_ON(busiest_rq == target_rq);
  3002. /* move a task from busiest_rq to target_rq */
  3003. double_lock_balance(busiest_rq, target_rq);
  3004. /* Search for an sd spanning us and the target CPU. */
  3005. rcu_read_lock();
  3006. for_each_domain(target_cpu, sd) {
  3007. if ((sd->flags & SD_LOAD_BALANCE) &&
  3008. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3009. break;
  3010. }
  3011. if (likely(sd)) {
  3012. schedstat_inc(sd, alb_count);
  3013. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3014. sd, CPU_IDLE))
  3015. schedstat_inc(sd, alb_pushed);
  3016. else
  3017. schedstat_inc(sd, alb_failed);
  3018. }
  3019. rcu_read_unlock();
  3020. double_unlock_balance(busiest_rq, target_rq);
  3021. out_unlock:
  3022. busiest_rq->active_balance = 0;
  3023. raw_spin_unlock_irq(&busiest_rq->lock);
  3024. return 0;
  3025. }
  3026. #ifdef CONFIG_NO_HZ
  3027. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  3028. static void trigger_sched_softirq(void *data)
  3029. {
  3030. raise_softirq_irqoff(SCHED_SOFTIRQ);
  3031. }
  3032. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  3033. {
  3034. csd->func = trigger_sched_softirq;
  3035. csd->info = NULL;
  3036. csd->flags = 0;
  3037. csd->priv = 0;
  3038. }
  3039. /*
  3040. * idle load balancing details
  3041. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3042. * entering idle.
  3043. * - This idle load balancer CPU will also go into tickless mode when
  3044. * it is idle, just like all other idle CPUs
  3045. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3046. * needed, they will kick the idle load balancer, which then does idle
  3047. * load balancing for all the idle CPUs.
  3048. */
  3049. static struct {
  3050. atomic_t load_balancer;
  3051. atomic_t first_pick_cpu;
  3052. atomic_t second_pick_cpu;
  3053. cpumask_var_t idle_cpus_mask;
  3054. cpumask_var_t grp_idle_mask;
  3055. unsigned long next_balance; /* in jiffy units */
  3056. } nohz ____cacheline_aligned;
  3057. int get_nohz_load_balancer(void)
  3058. {
  3059. return atomic_read(&nohz.load_balancer);
  3060. }
  3061. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3062. /**
  3063. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3064. * @cpu: The cpu whose lowest level of sched domain is to
  3065. * be returned.
  3066. * @flag: The flag to check for the lowest sched_domain
  3067. * for the given cpu.
  3068. *
  3069. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3070. */
  3071. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3072. {
  3073. struct sched_domain *sd;
  3074. for_each_domain(cpu, sd)
  3075. if (sd && (sd->flags & flag))
  3076. break;
  3077. return sd;
  3078. }
  3079. /**
  3080. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3081. * @cpu: The cpu whose domains we're iterating over.
  3082. * @sd: variable holding the value of the power_savings_sd
  3083. * for cpu.
  3084. * @flag: The flag to filter the sched_domains to be iterated.
  3085. *
  3086. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3087. * set, starting from the lowest sched_domain to the highest.
  3088. */
  3089. #define for_each_flag_domain(cpu, sd, flag) \
  3090. for (sd = lowest_flag_domain(cpu, flag); \
  3091. (sd && (sd->flags & flag)); sd = sd->parent)
  3092. /**
  3093. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3094. * @ilb_group: group to be checked for semi-idleness
  3095. *
  3096. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3097. *
  3098. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3099. * and atleast one non-idle CPU. This helper function checks if the given
  3100. * sched_group is semi-idle or not.
  3101. */
  3102. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3103. {
  3104. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3105. sched_group_cpus(ilb_group));
  3106. /*
  3107. * A sched_group is semi-idle when it has atleast one busy cpu
  3108. * and atleast one idle cpu.
  3109. */
  3110. if (cpumask_empty(nohz.grp_idle_mask))
  3111. return 0;
  3112. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3113. return 0;
  3114. return 1;
  3115. }
  3116. /**
  3117. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3118. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3119. *
  3120. * Returns: Returns the id of the idle load balancer if it exists,
  3121. * Else, returns >= nr_cpu_ids.
  3122. *
  3123. * This algorithm picks the idle load balancer such that it belongs to a
  3124. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3125. * completely idle packages/cores just for the purpose of idle load balancing
  3126. * when there are other idle cpu's which are better suited for that job.
  3127. */
  3128. static int find_new_ilb(int cpu)
  3129. {
  3130. struct sched_domain *sd;
  3131. struct sched_group *ilb_group;
  3132. int ilb = nr_cpu_ids;
  3133. /*
  3134. * Have idle load balancer selection from semi-idle packages only
  3135. * when power-aware load balancing is enabled
  3136. */
  3137. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3138. goto out_done;
  3139. /*
  3140. * Optimize for the case when we have no idle CPUs or only one
  3141. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3142. */
  3143. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3144. goto out_done;
  3145. rcu_read_lock();
  3146. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3147. ilb_group = sd->groups;
  3148. do {
  3149. if (is_semi_idle_group(ilb_group)) {
  3150. ilb = cpumask_first(nohz.grp_idle_mask);
  3151. goto unlock;
  3152. }
  3153. ilb_group = ilb_group->next;
  3154. } while (ilb_group != sd->groups);
  3155. }
  3156. unlock:
  3157. rcu_read_unlock();
  3158. out_done:
  3159. return ilb;
  3160. }
  3161. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3162. static inline int find_new_ilb(int call_cpu)
  3163. {
  3164. return nr_cpu_ids;
  3165. }
  3166. #endif
  3167. /*
  3168. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3169. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3170. * CPU (if there is one).
  3171. */
  3172. static void nohz_balancer_kick(int cpu)
  3173. {
  3174. int ilb_cpu;
  3175. nohz.next_balance++;
  3176. ilb_cpu = get_nohz_load_balancer();
  3177. if (ilb_cpu >= nr_cpu_ids) {
  3178. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3179. if (ilb_cpu >= nr_cpu_ids)
  3180. return;
  3181. }
  3182. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3183. struct call_single_data *cp;
  3184. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3185. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3186. __smp_call_function_single(ilb_cpu, cp, 0);
  3187. }
  3188. return;
  3189. }
  3190. /*
  3191. * This routine will try to nominate the ilb (idle load balancing)
  3192. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3193. * load balancing on behalf of all those cpus.
  3194. *
  3195. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3196. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3197. * idle load balancing by kicking one of the idle CPUs.
  3198. *
  3199. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3200. * ilb owner CPU in future (when there is a need for idle load balancing on
  3201. * behalf of all idle CPUs).
  3202. */
  3203. void select_nohz_load_balancer(int stop_tick)
  3204. {
  3205. int cpu = smp_processor_id();
  3206. if (stop_tick) {
  3207. if (!cpu_active(cpu)) {
  3208. if (atomic_read(&nohz.load_balancer) != cpu)
  3209. return;
  3210. /*
  3211. * If we are going offline and still the leader,
  3212. * give up!
  3213. */
  3214. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3215. nr_cpu_ids) != cpu)
  3216. BUG();
  3217. return;
  3218. }
  3219. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3220. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3221. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3222. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3223. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3224. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3225. int new_ilb;
  3226. /* make me the ilb owner */
  3227. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3228. cpu) != nr_cpu_ids)
  3229. return;
  3230. /*
  3231. * Check to see if there is a more power-efficient
  3232. * ilb.
  3233. */
  3234. new_ilb = find_new_ilb(cpu);
  3235. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3236. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3237. resched_cpu(new_ilb);
  3238. return;
  3239. }
  3240. return;
  3241. }
  3242. } else {
  3243. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3244. return;
  3245. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3246. if (atomic_read(&nohz.load_balancer) == cpu)
  3247. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3248. nr_cpu_ids) != cpu)
  3249. BUG();
  3250. }
  3251. return;
  3252. }
  3253. #endif
  3254. static DEFINE_SPINLOCK(balancing);
  3255. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3256. /*
  3257. * Scale the max load_balance interval with the number of CPUs in the system.
  3258. * This trades load-balance latency on larger machines for less cross talk.
  3259. */
  3260. static void update_max_interval(void)
  3261. {
  3262. max_load_balance_interval = HZ*num_online_cpus()/10;
  3263. }
  3264. /*
  3265. * It checks each scheduling domain to see if it is due to be balanced,
  3266. * and initiates a balancing operation if so.
  3267. *
  3268. * Balancing parameters are set up in arch_init_sched_domains.
  3269. */
  3270. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3271. {
  3272. int balance = 1;
  3273. struct rq *rq = cpu_rq(cpu);
  3274. unsigned long interval;
  3275. struct sched_domain *sd;
  3276. /* Earliest time when we have to do rebalance again */
  3277. unsigned long next_balance = jiffies + 60*HZ;
  3278. int update_next_balance = 0;
  3279. int need_serialize;
  3280. update_shares(cpu);
  3281. rcu_read_lock();
  3282. for_each_domain(cpu, sd) {
  3283. if (!(sd->flags & SD_LOAD_BALANCE))
  3284. continue;
  3285. interval = sd->balance_interval;
  3286. if (idle != CPU_IDLE)
  3287. interval *= sd->busy_factor;
  3288. /* scale ms to jiffies */
  3289. interval = msecs_to_jiffies(interval);
  3290. interval = clamp(interval, 1UL, max_load_balance_interval);
  3291. need_serialize = sd->flags & SD_SERIALIZE;
  3292. if (need_serialize) {
  3293. if (!spin_trylock(&balancing))
  3294. goto out;
  3295. }
  3296. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3297. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3298. /*
  3299. * We've pulled tasks over so either we're no
  3300. * longer idle.
  3301. */
  3302. idle = CPU_NOT_IDLE;
  3303. }
  3304. sd->last_balance = jiffies;
  3305. }
  3306. if (need_serialize)
  3307. spin_unlock(&balancing);
  3308. out:
  3309. if (time_after(next_balance, sd->last_balance + interval)) {
  3310. next_balance = sd->last_balance + interval;
  3311. update_next_balance = 1;
  3312. }
  3313. /*
  3314. * Stop the load balance at this level. There is another
  3315. * CPU in our sched group which is doing load balancing more
  3316. * actively.
  3317. */
  3318. if (!balance)
  3319. break;
  3320. }
  3321. rcu_read_unlock();
  3322. /*
  3323. * next_balance will be updated only when there is a need.
  3324. * When the cpu is attached to null domain for ex, it will not be
  3325. * updated.
  3326. */
  3327. if (likely(update_next_balance))
  3328. rq->next_balance = next_balance;
  3329. }
  3330. #ifdef CONFIG_NO_HZ
  3331. /*
  3332. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3333. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3334. */
  3335. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3336. {
  3337. struct rq *this_rq = cpu_rq(this_cpu);
  3338. struct rq *rq;
  3339. int balance_cpu;
  3340. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3341. return;
  3342. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3343. if (balance_cpu == this_cpu)
  3344. continue;
  3345. /*
  3346. * If this cpu gets work to do, stop the load balancing
  3347. * work being done for other cpus. Next load
  3348. * balancing owner will pick it up.
  3349. */
  3350. if (need_resched()) {
  3351. this_rq->nohz_balance_kick = 0;
  3352. break;
  3353. }
  3354. raw_spin_lock_irq(&this_rq->lock);
  3355. update_rq_clock(this_rq);
  3356. update_cpu_load(this_rq);
  3357. raw_spin_unlock_irq(&this_rq->lock);
  3358. rebalance_domains(balance_cpu, CPU_IDLE);
  3359. rq = cpu_rq(balance_cpu);
  3360. if (time_after(this_rq->next_balance, rq->next_balance))
  3361. this_rq->next_balance = rq->next_balance;
  3362. }
  3363. nohz.next_balance = this_rq->next_balance;
  3364. this_rq->nohz_balance_kick = 0;
  3365. }
  3366. /*
  3367. * Current heuristic for kicking the idle load balancer
  3368. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3369. * idle load balancer when it has more than one process active. This
  3370. * eliminates the need for idle load balancing altogether when we have
  3371. * only one running process in the system (common case).
  3372. * - If there are more than one busy CPU, idle load balancer may have
  3373. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3374. * SMT or core siblings and can run better if they move to different
  3375. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3376. * which will kick idle load balancer as soon as it has any load.
  3377. */
  3378. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3379. {
  3380. unsigned long now = jiffies;
  3381. int ret;
  3382. int first_pick_cpu, second_pick_cpu;
  3383. if (time_before(now, nohz.next_balance))
  3384. return 0;
  3385. if (rq->idle_at_tick)
  3386. return 0;
  3387. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3388. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3389. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3390. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3391. return 0;
  3392. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3393. if (ret == nr_cpu_ids || ret == cpu) {
  3394. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3395. if (rq->nr_running > 1)
  3396. return 1;
  3397. } else {
  3398. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3399. if (ret == nr_cpu_ids || ret == cpu) {
  3400. if (rq->nr_running)
  3401. return 1;
  3402. }
  3403. }
  3404. return 0;
  3405. }
  3406. #else
  3407. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3408. #endif
  3409. /*
  3410. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3411. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3412. */
  3413. static void run_rebalance_domains(struct softirq_action *h)
  3414. {
  3415. int this_cpu = smp_processor_id();
  3416. struct rq *this_rq = cpu_rq(this_cpu);
  3417. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3418. CPU_IDLE : CPU_NOT_IDLE;
  3419. rebalance_domains(this_cpu, idle);
  3420. /*
  3421. * If this cpu has a pending nohz_balance_kick, then do the
  3422. * balancing on behalf of the other idle cpus whose ticks are
  3423. * stopped.
  3424. */
  3425. nohz_idle_balance(this_cpu, idle);
  3426. }
  3427. static inline int on_null_domain(int cpu)
  3428. {
  3429. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3430. }
  3431. /*
  3432. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3433. */
  3434. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3435. {
  3436. /* Don't need to rebalance while attached to NULL domain */
  3437. if (time_after_eq(jiffies, rq->next_balance) &&
  3438. likely(!on_null_domain(cpu)))
  3439. raise_softirq(SCHED_SOFTIRQ);
  3440. #ifdef CONFIG_NO_HZ
  3441. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3442. nohz_balancer_kick(cpu);
  3443. #endif
  3444. }
  3445. static void rq_online_fair(struct rq *rq)
  3446. {
  3447. update_sysctl();
  3448. }
  3449. static void rq_offline_fair(struct rq *rq)
  3450. {
  3451. update_sysctl();
  3452. }
  3453. #else /* CONFIG_SMP */
  3454. /*
  3455. * on UP we do not need to balance between CPUs:
  3456. */
  3457. static inline void idle_balance(int cpu, struct rq *rq)
  3458. {
  3459. }
  3460. #endif /* CONFIG_SMP */
  3461. /*
  3462. * scheduler tick hitting a task of our scheduling class:
  3463. */
  3464. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3465. {
  3466. struct cfs_rq *cfs_rq;
  3467. struct sched_entity *se = &curr->se;
  3468. for_each_sched_entity(se) {
  3469. cfs_rq = cfs_rq_of(se);
  3470. entity_tick(cfs_rq, se, queued);
  3471. }
  3472. }
  3473. /*
  3474. * called on fork with the child task as argument from the parent's context
  3475. * - child not yet on the tasklist
  3476. * - preemption disabled
  3477. */
  3478. static void task_fork_fair(struct task_struct *p)
  3479. {
  3480. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3481. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3482. int this_cpu = smp_processor_id();
  3483. struct rq *rq = this_rq();
  3484. unsigned long flags;
  3485. raw_spin_lock_irqsave(&rq->lock, flags);
  3486. update_rq_clock(rq);
  3487. if (unlikely(task_cpu(p) != this_cpu)) {
  3488. rcu_read_lock();
  3489. __set_task_cpu(p, this_cpu);
  3490. rcu_read_unlock();
  3491. }
  3492. update_curr(cfs_rq);
  3493. if (curr)
  3494. se->vruntime = curr->vruntime;
  3495. place_entity(cfs_rq, se, 1);
  3496. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3497. /*
  3498. * Upon rescheduling, sched_class::put_prev_task() will place
  3499. * 'current' within the tree based on its new key value.
  3500. */
  3501. swap(curr->vruntime, se->vruntime);
  3502. resched_task(rq->curr);
  3503. }
  3504. se->vruntime -= cfs_rq->min_vruntime;
  3505. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3506. }
  3507. /*
  3508. * Priority of the task has changed. Check to see if we preempt
  3509. * the current task.
  3510. */
  3511. static void
  3512. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3513. {
  3514. if (!p->se.on_rq)
  3515. return;
  3516. /*
  3517. * Reschedule if we are currently running on this runqueue and
  3518. * our priority decreased, or if we are not currently running on
  3519. * this runqueue and our priority is higher than the current's
  3520. */
  3521. if (rq->curr == p) {
  3522. if (p->prio > oldprio)
  3523. resched_task(rq->curr);
  3524. } else
  3525. check_preempt_curr(rq, p, 0);
  3526. }
  3527. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3528. {
  3529. struct sched_entity *se = &p->se;
  3530. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3531. /*
  3532. * Ensure the task's vruntime is normalized, so that when its
  3533. * switched back to the fair class the enqueue_entity(.flags=0) will
  3534. * do the right thing.
  3535. *
  3536. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3537. * have normalized the vruntime, if it was !on_rq, then only when
  3538. * the task is sleeping will it still have non-normalized vruntime.
  3539. */
  3540. if (!se->on_rq && p->state != TASK_RUNNING) {
  3541. /*
  3542. * Fix up our vruntime so that the current sleep doesn't
  3543. * cause 'unlimited' sleep bonus.
  3544. */
  3545. place_entity(cfs_rq, se, 0);
  3546. se->vruntime -= cfs_rq->min_vruntime;
  3547. }
  3548. }
  3549. /*
  3550. * We switched to the sched_fair class.
  3551. */
  3552. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3553. {
  3554. if (!p->se.on_rq)
  3555. return;
  3556. /*
  3557. * We were most likely switched from sched_rt, so
  3558. * kick off the schedule if running, otherwise just see
  3559. * if we can still preempt the current task.
  3560. */
  3561. if (rq->curr == p)
  3562. resched_task(rq->curr);
  3563. else
  3564. check_preempt_curr(rq, p, 0);
  3565. }
  3566. /* Account for a task changing its policy or group.
  3567. *
  3568. * This routine is mostly called to set cfs_rq->curr field when a task
  3569. * migrates between groups/classes.
  3570. */
  3571. static void set_curr_task_fair(struct rq *rq)
  3572. {
  3573. struct sched_entity *se = &rq->curr->se;
  3574. for_each_sched_entity(se)
  3575. set_next_entity(cfs_rq_of(se), se);
  3576. }
  3577. #ifdef CONFIG_FAIR_GROUP_SCHED
  3578. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3579. {
  3580. /*
  3581. * If the task was not on the rq at the time of this cgroup movement
  3582. * it must have been asleep, sleeping tasks keep their ->vruntime
  3583. * absolute on their old rq until wakeup (needed for the fair sleeper
  3584. * bonus in place_entity()).
  3585. *
  3586. * If it was on the rq, we've just 'preempted' it, which does convert
  3587. * ->vruntime to a relative base.
  3588. *
  3589. * Make sure both cases convert their relative position when migrating
  3590. * to another cgroup's rq. This does somewhat interfere with the
  3591. * fair sleeper stuff for the first placement, but who cares.
  3592. */
  3593. if (!on_rq)
  3594. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  3595. set_task_rq(p, task_cpu(p));
  3596. if (!on_rq)
  3597. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  3598. }
  3599. #endif
  3600. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  3601. {
  3602. struct sched_entity *se = &task->se;
  3603. unsigned int rr_interval = 0;
  3604. /*
  3605. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  3606. * idle runqueue:
  3607. */
  3608. if (rq->cfs.load.weight)
  3609. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  3610. return rr_interval;
  3611. }
  3612. /*
  3613. * All the scheduling class methods:
  3614. */
  3615. static const struct sched_class fair_sched_class = {
  3616. .next = &idle_sched_class,
  3617. .enqueue_task = enqueue_task_fair,
  3618. .dequeue_task = dequeue_task_fair,
  3619. .yield_task = yield_task_fair,
  3620. .yield_to_task = yield_to_task_fair,
  3621. .check_preempt_curr = check_preempt_wakeup,
  3622. .pick_next_task = pick_next_task_fair,
  3623. .put_prev_task = put_prev_task_fair,
  3624. #ifdef CONFIG_SMP
  3625. .select_task_rq = select_task_rq_fair,
  3626. .rq_online = rq_online_fair,
  3627. .rq_offline = rq_offline_fair,
  3628. .task_waking = task_waking_fair,
  3629. #endif
  3630. .set_curr_task = set_curr_task_fair,
  3631. .task_tick = task_tick_fair,
  3632. .task_fork = task_fork_fair,
  3633. .prio_changed = prio_changed_fair,
  3634. .switched_from = switched_from_fair,
  3635. .switched_to = switched_to_fair,
  3636. .get_rr_interval = get_rr_interval_fair,
  3637. #ifdef CONFIG_FAIR_GROUP_SCHED
  3638. .task_move_group = task_move_group_fair,
  3639. #endif
  3640. };
  3641. #ifdef CONFIG_SCHED_DEBUG
  3642. static void print_cfs_stats(struct seq_file *m, int cpu)
  3643. {
  3644. struct cfs_rq *cfs_rq;
  3645. rcu_read_lock();
  3646. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  3647. print_cfs_rq(m, cpu, cfs_rq);
  3648. rcu_read_unlock();
  3649. }
  3650. #endif