calibrate.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. /* calibrate.c: default delay calibration
  2. *
  3. * Excised from init/main.c
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. #include <linux/jiffies.h>
  7. #include <linux/delay.h>
  8. #include <linux/init.h>
  9. #include <linux/timex.h>
  10. #include <linux/smp.h>
  11. unsigned long lpj_fine;
  12. unsigned long preset_lpj;
  13. static int __init lpj_setup(char *str)
  14. {
  15. preset_lpj = simple_strtoul(str,NULL,0);
  16. return 1;
  17. }
  18. __setup("lpj=", lpj_setup);
  19. #ifdef ARCH_HAS_READ_CURRENT_TIMER
  20. /* This routine uses the read_current_timer() routine and gets the
  21. * loops per jiffy directly, instead of guessing it using delay().
  22. * Also, this code tries to handle non-maskable asynchronous events
  23. * (like SMIs)
  24. */
  25. #define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
  26. #define MAX_DIRECT_CALIBRATION_RETRIES 5
  27. static unsigned long __cpuinit calibrate_delay_direct(void)
  28. {
  29. unsigned long pre_start, start, post_start;
  30. unsigned long pre_end, end, post_end;
  31. unsigned long start_jiffies;
  32. unsigned long timer_rate_min, timer_rate_max;
  33. unsigned long good_timer_sum = 0;
  34. unsigned long good_timer_count = 0;
  35. unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
  36. int max = -1; /* index of measured_times with max/min values or not set */
  37. int min = -1;
  38. int i;
  39. if (read_current_timer(&pre_start) < 0 )
  40. return 0;
  41. /*
  42. * A simple loop like
  43. * while ( jiffies < start_jiffies+1)
  44. * start = read_current_timer();
  45. * will not do. As we don't really know whether jiffy switch
  46. * happened first or timer_value was read first. And some asynchronous
  47. * event can happen between these two events introducing errors in lpj.
  48. *
  49. * So, we do
  50. * 1. pre_start <- When we are sure that jiffy switch hasn't happened
  51. * 2. check jiffy switch
  52. * 3. start <- timer value before or after jiffy switch
  53. * 4. post_start <- When we are sure that jiffy switch has happened
  54. *
  55. * Note, we don't know anything about order of 2 and 3.
  56. * Now, by looking at post_start and pre_start difference, we can
  57. * check whether any asynchronous event happened or not
  58. */
  59. for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  60. pre_start = 0;
  61. read_current_timer(&start);
  62. start_jiffies = jiffies;
  63. while (time_before_eq(jiffies, start_jiffies + 1)) {
  64. pre_start = start;
  65. read_current_timer(&start);
  66. }
  67. read_current_timer(&post_start);
  68. pre_end = 0;
  69. end = post_start;
  70. while (time_before_eq(jiffies, start_jiffies + 1 +
  71. DELAY_CALIBRATION_TICKS)) {
  72. pre_end = end;
  73. read_current_timer(&end);
  74. }
  75. read_current_timer(&post_end);
  76. timer_rate_max = (post_end - pre_start) /
  77. DELAY_CALIBRATION_TICKS;
  78. timer_rate_min = (pre_end - post_start) /
  79. DELAY_CALIBRATION_TICKS;
  80. /*
  81. * If the upper limit and lower limit of the timer_rate is
  82. * >= 12.5% apart, redo calibration.
  83. */
  84. if (start >= post_end)
  85. printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
  86. "timer_rate as we had a TSC wrap around"
  87. " start=%lu >=post_end=%lu\n",
  88. start, post_end);
  89. if (start < post_end && pre_start != 0 && pre_end != 0 &&
  90. (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
  91. good_timer_count++;
  92. good_timer_sum += timer_rate_max;
  93. measured_times[i] = timer_rate_max;
  94. if (max < 0 || timer_rate_max > measured_times[max])
  95. max = i;
  96. if (min < 0 || timer_rate_max < measured_times[min])
  97. min = i;
  98. } else
  99. measured_times[i] = 0;
  100. }
  101. /*
  102. * Find the maximum & minimum - if they differ too much throw out the
  103. * one with the largest difference from the mean and try again...
  104. */
  105. while (good_timer_count > 1) {
  106. unsigned long estimate;
  107. unsigned long maxdiff;
  108. /* compute the estimate */
  109. estimate = (good_timer_sum/good_timer_count);
  110. maxdiff = estimate >> 3;
  111. /* if range is within 12% let's take it */
  112. if ((measured_times[max] - measured_times[min]) < maxdiff)
  113. return estimate;
  114. /* ok - drop the worse value and try again... */
  115. good_timer_sum = 0;
  116. good_timer_count = 0;
  117. if ((measured_times[max] - estimate) <
  118. (estimate - measured_times[min])) {
  119. printk(KERN_NOTICE "calibrate_delay_direct() dropping "
  120. "min bogoMips estimate %d = %lu\n",
  121. min, measured_times[min]);
  122. measured_times[min] = 0;
  123. min = max;
  124. } else {
  125. printk(KERN_NOTICE "calibrate_delay_direct() dropping "
  126. "max bogoMips estimate %d = %lu\n",
  127. max, measured_times[max]);
  128. measured_times[max] = 0;
  129. max = min;
  130. }
  131. for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
  132. if (measured_times[i] == 0)
  133. continue;
  134. good_timer_count++;
  135. good_timer_sum += measured_times[i];
  136. if (measured_times[i] < measured_times[min])
  137. min = i;
  138. if (measured_times[i] > measured_times[max])
  139. max = i;
  140. }
  141. }
  142. printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
  143. "estimate for loops_per_jiffy.\nProbably due to long platform "
  144. "interrupts. Consider using \"lpj=\" boot option.\n");
  145. return 0;
  146. }
  147. #else
  148. static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
  149. #endif
  150. /*
  151. * This is the number of bits of precision for the loops_per_jiffy. Each
  152. * time we refine our estimate after the first takes 1.5/HZ seconds, so try
  153. * to start with a good estimate.
  154. * For the boot cpu we can skip the delay calibration and assign it a value
  155. * calculated based on the timer frequency.
  156. * For the rest of the CPUs we cannot assume that the timer frequency is same as
  157. * the cpu frequency, hence do the calibration for those.
  158. */
  159. #define LPS_PREC 8
  160. static unsigned long __cpuinit calibrate_delay_converge(void)
  161. {
  162. /* First stage - slowly accelerate to find initial bounds */
  163. unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
  164. int trials = 0, band = 0, trial_in_band = 0;
  165. lpj = (1<<12);
  166. /* wait for "start of" clock tick */
  167. ticks = jiffies;
  168. while (ticks == jiffies)
  169. ; /* nothing */
  170. /* Go .. */
  171. ticks = jiffies;
  172. do {
  173. if (++trial_in_band == (1<<band)) {
  174. ++band;
  175. trial_in_band = 0;
  176. }
  177. __delay(lpj * band);
  178. trials += band;
  179. } while (ticks == jiffies);
  180. /*
  181. * We overshot, so retreat to a clear underestimate. Then estimate
  182. * the largest likely undershoot. This defines our chop bounds.
  183. */
  184. trials -= band;
  185. loopadd_base = lpj * band;
  186. lpj_base = lpj * trials;
  187. recalibrate:
  188. lpj = lpj_base;
  189. loopadd = loopadd_base;
  190. /*
  191. * Do a binary approximation to get lpj set to
  192. * equal one clock (up to LPS_PREC bits)
  193. */
  194. chop_limit = lpj >> LPS_PREC;
  195. while (loopadd > chop_limit) {
  196. lpj += loopadd;
  197. ticks = jiffies;
  198. while (ticks == jiffies)
  199. ; /* nothing */
  200. ticks = jiffies;
  201. __delay(lpj);
  202. if (jiffies != ticks) /* longer than 1 tick */
  203. lpj -= loopadd;
  204. loopadd >>= 1;
  205. }
  206. /*
  207. * If we incremented every single time possible, presume we've
  208. * massively underestimated initially, and retry with a higher
  209. * start, and larger range. (Only seen on x86_64, due to SMIs)
  210. */
  211. if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
  212. lpj_base = lpj;
  213. loopadd_base <<= 2;
  214. goto recalibrate;
  215. }
  216. return lpj;
  217. }
  218. void __cpuinit calibrate_delay(void)
  219. {
  220. unsigned long lpj;
  221. static bool printed;
  222. if (preset_lpj) {
  223. lpj = preset_lpj;
  224. if (!printed)
  225. pr_info("Calibrating delay loop (skipped) "
  226. "preset value.. ");
  227. } else if ((!printed) && lpj_fine) {
  228. lpj = lpj_fine;
  229. pr_info("Calibrating delay loop (skipped), "
  230. "value calculated using timer frequency.. ");
  231. } else if ((lpj = calibrate_delay_direct()) != 0) {
  232. if (!printed)
  233. pr_info("Calibrating delay using timer "
  234. "specific routine.. ");
  235. } else {
  236. if (!printed)
  237. pr_info("Calibrating delay loop... ");
  238. lpj = calibrate_delay_converge();
  239. }
  240. if (!printed)
  241. pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
  242. lpj/(500000/HZ),
  243. (lpj/(5000/HZ)) % 100, lpj);
  244. loops_per_jiffy = lpj;
  245. printed = true;
  246. }