123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- /*
- * include/asm-generic/mutex-xchg.h
- *
- * Generic implementation of the mutex fastpath, based on xchg().
- *
- * NOTE: An xchg based implementation might be less optimal than an atomic
- * decrement/increment based implementation. If your architecture
- * has a reasonable atomic dec/inc then you should probably use
- * asm-generic/mutex-dec.h instead, or you could open-code an
- * optimized version in asm/mutex.h.
- */
- #ifndef _ASM_GENERIC_MUTEX_XCHG_H
- #define _ASM_GENERIC_MUTEX_XCHG_H
- /**
- * __mutex_fastpath_lock - try to take the lock by moving the count
- * from 1 to a 0 value
- * @count: pointer of type atomic_t
- * @fail_fn: function to call if the original value was not 1
- *
- * Change the count from 1 to a value lower than 1, and call <fail_fn> if it
- * wasn't 1 originally. This function MUST leave the value lower than 1
- * even when the "1" assertion wasn't true.
- */
- static inline void
- __mutex_fastpath_lock(atomic_t *count, void (*fail_fn)(atomic_t *))
- {
- if (unlikely(atomic_xchg(count, 0) != 1))
- fail_fn(count);
- }
- /**
- * __mutex_fastpath_lock_retval - try to take the lock by moving the count
- * from 1 to a 0 value
- * @count: pointer of type atomic_t
- * @fail_fn: function to call if the original value was not 1
- *
- * Change the count from 1 to a value lower than 1, and call <fail_fn> if it
- * wasn't 1 originally. This function returns 0 if the fastpath succeeds,
- * or anything the slow path function returns
- */
- static inline int
- __mutex_fastpath_lock_retval(atomic_t *count, int (*fail_fn)(atomic_t *))
- {
- if (unlikely(atomic_xchg(count, 0) != 1))
- return fail_fn(count);
- return 0;
- }
- /**
- * __mutex_fastpath_unlock - try to promote the mutex from 0 to 1
- * @count: pointer of type atomic_t
- * @fail_fn: function to call if the original value was not 0
- *
- * try to promote the mutex from 0 to 1. if it wasn't 0, call <function>
- * In the failure case, this function is allowed to either set the value to
- * 1, or to set it to a value lower than one.
- * If the implementation sets it to a value of lower than one, the
- * __mutex_slowpath_needs_to_unlock() macro needs to return 1, it needs
- * to return 0 otherwise.
- */
- static inline void
- __mutex_fastpath_unlock(atomic_t *count, void (*fail_fn)(atomic_t *))
- {
- if (unlikely(atomic_xchg(count, 1) != 0))
- fail_fn(count);
- }
- #define __mutex_slowpath_needs_to_unlock() 0
- /**
- * __mutex_fastpath_trylock - try to acquire the mutex, without waiting
- *
- * @count: pointer of type atomic_t
- * @fail_fn: spinlock based trylock implementation
- *
- * Change the count from 1 to a value lower than 1, and return 0 (failure)
- * if it wasn't 1 originally, or return 1 (success) otherwise. This function
- * MUST leave the value lower than 1 even when the "1" assertion wasn't true.
- * Additionally, if the value was < 0 originally, this function must not leave
- * it to 0 on failure.
- *
- * If the architecture has no effective trylock variant, it should call the
- * <fail_fn> spinlock-based trylock variant unconditionally.
- */
- static inline int
- __mutex_fastpath_trylock(atomic_t *count, int (*fail_fn)(atomic_t *))
- {
- int prev = atomic_xchg(count, 0);
- if (unlikely(prev < 0)) {
- /*
- * The lock was marked contended so we must restore that
- * state. If while doing so we get back a prev value of 1
- * then we just own it.
- *
- * [ In the rare case of the mutex going to 1, to 0, to -1
- * and then back to 0 in this few-instructions window,
- * this has the potential to trigger the slowpath for the
- * owner's unlock path needlessly, but that's not a problem
- * in practice. ]
- */
- prev = atomic_xchg(count, prev);
- if (prev < 0)
- prev = 0;
- }
- return prev;
- }
- #endif
|