xfs_buf_item.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_buf_item.h"
  29. #include "xfs_trans_priv.h"
  30. #include "xfs_error.h"
  31. #include "xfs_trace.h"
  32. kmem_zone_t *xfs_buf_item_zone;
  33. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  34. {
  35. return container_of(lip, struct xfs_buf_log_item, bli_item);
  36. }
  37. #ifdef XFS_TRANS_DEBUG
  38. /*
  39. * This function uses an alternate strategy for tracking the bytes
  40. * that the user requests to be logged. This can then be used
  41. * in conjunction with the bli_orig array in the buf log item to
  42. * catch bugs in our callers' code.
  43. *
  44. * We also double check the bits set in xfs_buf_item_log using a
  45. * simple algorithm to check that every byte is accounted for.
  46. */
  47. STATIC void
  48. xfs_buf_item_log_debug(
  49. xfs_buf_log_item_t *bip,
  50. uint first,
  51. uint last)
  52. {
  53. uint x;
  54. uint byte;
  55. uint nbytes;
  56. uint chunk_num;
  57. uint word_num;
  58. uint bit_num;
  59. uint bit_set;
  60. uint *wordp;
  61. ASSERT(bip->bli_logged != NULL);
  62. byte = first;
  63. nbytes = last - first + 1;
  64. bfset(bip->bli_logged, first, nbytes);
  65. for (x = 0; x < nbytes; x++) {
  66. chunk_num = byte >> XFS_BLF_SHIFT;
  67. word_num = chunk_num >> BIT_TO_WORD_SHIFT;
  68. bit_num = chunk_num & (NBWORD - 1);
  69. wordp = &(bip->bli_format.blf_data_map[word_num]);
  70. bit_set = *wordp & (1 << bit_num);
  71. ASSERT(bit_set);
  72. byte++;
  73. }
  74. }
  75. /*
  76. * This function is called when we flush something into a buffer without
  77. * logging it. This happens for things like inodes which are logged
  78. * separately from the buffer.
  79. */
  80. void
  81. xfs_buf_item_flush_log_debug(
  82. xfs_buf_t *bp,
  83. uint first,
  84. uint last)
  85. {
  86. xfs_buf_log_item_t *bip;
  87. uint nbytes;
  88. bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
  89. if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
  90. return;
  91. }
  92. ASSERT(bip->bli_logged != NULL);
  93. nbytes = last - first + 1;
  94. bfset(bip->bli_logged, first, nbytes);
  95. }
  96. /*
  97. * This function is called to verify that our callers have logged
  98. * all the bytes that they changed.
  99. *
  100. * It does this by comparing the original copy of the buffer stored in
  101. * the buf log item's bli_orig array to the current copy of the buffer
  102. * and ensuring that all bytes which mismatch are set in the bli_logged
  103. * array of the buf log item.
  104. */
  105. STATIC void
  106. xfs_buf_item_log_check(
  107. xfs_buf_log_item_t *bip)
  108. {
  109. char *orig;
  110. char *buffer;
  111. int x;
  112. xfs_buf_t *bp;
  113. ASSERT(bip->bli_orig != NULL);
  114. ASSERT(bip->bli_logged != NULL);
  115. bp = bip->bli_buf;
  116. ASSERT(XFS_BUF_COUNT(bp) > 0);
  117. ASSERT(XFS_BUF_PTR(bp) != NULL);
  118. orig = bip->bli_orig;
  119. buffer = XFS_BUF_PTR(bp);
  120. for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
  121. if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
  122. xfs_emerg(bp->b_mount,
  123. "%s: bip %x buffer %x orig %x index %d",
  124. __func__, bip, bp, orig, x);
  125. ASSERT(0);
  126. }
  127. }
  128. }
  129. #else
  130. #define xfs_buf_item_log_debug(x,y,z)
  131. #define xfs_buf_item_log_check(x)
  132. #endif
  133. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  134. /*
  135. * This returns the number of log iovecs needed to log the
  136. * given buf log item.
  137. *
  138. * It calculates this as 1 iovec for the buf log format structure
  139. * and 1 for each stretch of non-contiguous chunks to be logged.
  140. * Contiguous chunks are logged in a single iovec.
  141. *
  142. * If the XFS_BLI_STALE flag has been set, then log nothing.
  143. */
  144. STATIC uint
  145. xfs_buf_item_size(
  146. struct xfs_log_item *lip)
  147. {
  148. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  149. struct xfs_buf *bp = bip->bli_buf;
  150. uint nvecs;
  151. int next_bit;
  152. int last_bit;
  153. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  154. if (bip->bli_flags & XFS_BLI_STALE) {
  155. /*
  156. * The buffer is stale, so all we need to log
  157. * is the buf log format structure with the
  158. * cancel flag in it.
  159. */
  160. trace_xfs_buf_item_size_stale(bip);
  161. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  162. return 1;
  163. }
  164. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  165. nvecs = 1;
  166. last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  167. bip->bli_format.blf_map_size, 0);
  168. ASSERT(last_bit != -1);
  169. nvecs++;
  170. while (last_bit != -1) {
  171. /*
  172. * This takes the bit number to start looking from and
  173. * returns the next set bit from there. It returns -1
  174. * if there are no more bits set or the start bit is
  175. * beyond the end of the bitmap.
  176. */
  177. next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  178. bip->bli_format.blf_map_size,
  179. last_bit + 1);
  180. /*
  181. * If we run out of bits, leave the loop,
  182. * else if we find a new set of bits bump the number of vecs,
  183. * else keep scanning the current set of bits.
  184. */
  185. if (next_bit == -1) {
  186. last_bit = -1;
  187. } else if (next_bit != last_bit + 1) {
  188. last_bit = next_bit;
  189. nvecs++;
  190. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  191. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  192. XFS_BLF_CHUNK)) {
  193. last_bit = next_bit;
  194. nvecs++;
  195. } else {
  196. last_bit++;
  197. }
  198. }
  199. trace_xfs_buf_item_size(bip);
  200. return nvecs;
  201. }
  202. /*
  203. * This is called to fill in the vector of log iovecs for the
  204. * given log buf item. It fills the first entry with a buf log
  205. * format structure, and the rest point to contiguous chunks
  206. * within the buffer.
  207. */
  208. STATIC void
  209. xfs_buf_item_format(
  210. struct xfs_log_item *lip,
  211. struct xfs_log_iovec *vecp)
  212. {
  213. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  214. struct xfs_buf *bp = bip->bli_buf;
  215. uint base_size;
  216. uint nvecs;
  217. int first_bit;
  218. int last_bit;
  219. int next_bit;
  220. uint nbits;
  221. uint buffer_offset;
  222. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  223. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  224. (bip->bli_flags & XFS_BLI_STALE));
  225. /*
  226. * The size of the base structure is the size of the
  227. * declared structure plus the space for the extra words
  228. * of the bitmap. We subtract one from the map size, because
  229. * the first element of the bitmap is accounted for in the
  230. * size of the base structure.
  231. */
  232. base_size =
  233. (uint)(sizeof(xfs_buf_log_format_t) +
  234. ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
  235. vecp->i_addr = &bip->bli_format;
  236. vecp->i_len = base_size;
  237. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  238. vecp++;
  239. nvecs = 1;
  240. /*
  241. * If it is an inode buffer, transfer the in-memory state to the
  242. * format flags and clear the in-memory state. We do not transfer
  243. * this state if the inode buffer allocation has not yet been committed
  244. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  245. * correct replay of the inode allocation.
  246. */
  247. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  248. if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  249. xfs_log_item_in_current_chkpt(lip)))
  250. bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  251. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  252. }
  253. if (bip->bli_flags & XFS_BLI_STALE) {
  254. /*
  255. * The buffer is stale, so all we need to log
  256. * is the buf log format structure with the
  257. * cancel flag in it.
  258. */
  259. trace_xfs_buf_item_format_stale(bip);
  260. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  261. bip->bli_format.blf_size = nvecs;
  262. return;
  263. }
  264. /*
  265. * Fill in an iovec for each set of contiguous chunks.
  266. */
  267. first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  268. bip->bli_format.blf_map_size, 0);
  269. ASSERT(first_bit != -1);
  270. last_bit = first_bit;
  271. nbits = 1;
  272. for (;;) {
  273. /*
  274. * This takes the bit number to start looking from and
  275. * returns the next set bit from there. It returns -1
  276. * if there are no more bits set or the start bit is
  277. * beyond the end of the bitmap.
  278. */
  279. next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  280. bip->bli_format.blf_map_size,
  281. (uint)last_bit + 1);
  282. /*
  283. * If we run out of bits fill in the last iovec and get
  284. * out of the loop.
  285. * Else if we start a new set of bits then fill in the
  286. * iovec for the series we were looking at and start
  287. * counting the bits in the new one.
  288. * Else we're still in the same set of bits so just
  289. * keep counting and scanning.
  290. */
  291. if (next_bit == -1) {
  292. buffer_offset = first_bit * XFS_BLF_CHUNK;
  293. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  294. vecp->i_len = nbits * XFS_BLF_CHUNK;
  295. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  296. nvecs++;
  297. break;
  298. } else if (next_bit != last_bit + 1) {
  299. buffer_offset = first_bit * XFS_BLF_CHUNK;
  300. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  301. vecp->i_len = nbits * XFS_BLF_CHUNK;
  302. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  303. nvecs++;
  304. vecp++;
  305. first_bit = next_bit;
  306. last_bit = next_bit;
  307. nbits = 1;
  308. } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
  309. (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
  310. XFS_BLF_CHUNK)) {
  311. buffer_offset = first_bit * XFS_BLF_CHUNK;
  312. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  313. vecp->i_len = nbits * XFS_BLF_CHUNK;
  314. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  315. /* You would think we need to bump the nvecs here too, but we do not
  316. * this number is used by recovery, and it gets confused by the boundary
  317. * split here
  318. * nvecs++;
  319. */
  320. vecp++;
  321. first_bit = next_bit;
  322. last_bit = next_bit;
  323. nbits = 1;
  324. } else {
  325. last_bit++;
  326. nbits++;
  327. }
  328. }
  329. bip->bli_format.blf_size = nvecs;
  330. /*
  331. * Check to make sure everything is consistent.
  332. */
  333. trace_xfs_buf_item_format(bip);
  334. xfs_buf_item_log_check(bip);
  335. }
  336. /*
  337. * This is called to pin the buffer associated with the buf log item in memory
  338. * so it cannot be written out.
  339. *
  340. * We also always take a reference to the buffer log item here so that the bli
  341. * is held while the item is pinned in memory. This means that we can
  342. * unconditionally drop the reference count a transaction holds when the
  343. * transaction is completed.
  344. */
  345. STATIC void
  346. xfs_buf_item_pin(
  347. struct xfs_log_item *lip)
  348. {
  349. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  350. ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
  351. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  352. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  353. (bip->bli_flags & XFS_BLI_STALE));
  354. trace_xfs_buf_item_pin(bip);
  355. atomic_inc(&bip->bli_refcount);
  356. atomic_inc(&bip->bli_buf->b_pin_count);
  357. }
  358. /*
  359. * This is called to unpin the buffer associated with the buf log
  360. * item which was previously pinned with a call to xfs_buf_item_pin().
  361. *
  362. * Also drop the reference to the buf item for the current transaction.
  363. * If the XFS_BLI_STALE flag is set and we are the last reference,
  364. * then free up the buf log item and unlock the buffer.
  365. *
  366. * If the remove flag is set we are called from uncommit in the
  367. * forced-shutdown path. If that is true and the reference count on
  368. * the log item is going to drop to zero we need to free the item's
  369. * descriptor in the transaction.
  370. */
  371. STATIC void
  372. xfs_buf_item_unpin(
  373. struct xfs_log_item *lip,
  374. int remove)
  375. {
  376. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  377. xfs_buf_t *bp = bip->bli_buf;
  378. struct xfs_ail *ailp = lip->li_ailp;
  379. int stale = bip->bli_flags & XFS_BLI_STALE;
  380. int freed;
  381. ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
  382. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  383. trace_xfs_buf_item_unpin(bip);
  384. freed = atomic_dec_and_test(&bip->bli_refcount);
  385. if (atomic_dec_and_test(&bp->b_pin_count))
  386. wake_up_all(&bp->b_waiters);
  387. if (freed && stale) {
  388. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  389. ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
  390. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  391. ASSERT(XFS_BUF_ISSTALE(bp));
  392. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  393. trace_xfs_buf_item_unpin_stale(bip);
  394. if (remove) {
  395. /*
  396. * If we are in a transaction context, we have to
  397. * remove the log item from the transaction as we are
  398. * about to release our reference to the buffer. If we
  399. * don't, the unlock that occurs later in
  400. * xfs_trans_uncommit() will try to reference the
  401. * buffer which we no longer have a hold on.
  402. */
  403. if (lip->li_desc)
  404. xfs_trans_del_item(lip);
  405. /*
  406. * Since the transaction no longer refers to the buffer,
  407. * the buffer should no longer refer to the transaction.
  408. */
  409. XFS_BUF_SET_FSPRIVATE2(bp, NULL);
  410. }
  411. /*
  412. * If we get called here because of an IO error, we may
  413. * or may not have the item on the AIL. xfs_trans_ail_delete()
  414. * will take care of that situation.
  415. * xfs_trans_ail_delete() drops the AIL lock.
  416. */
  417. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  418. xfs_buf_do_callbacks(bp);
  419. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  420. XFS_BUF_CLR_IODONE_FUNC(bp);
  421. } else {
  422. spin_lock(&ailp->xa_lock);
  423. xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
  424. xfs_buf_item_relse(bp);
  425. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
  426. }
  427. xfs_buf_relse(bp);
  428. }
  429. }
  430. /*
  431. * This is called to attempt to lock the buffer associated with this
  432. * buf log item. Don't sleep on the buffer lock. If we can't get
  433. * the lock right away, return 0. If we can get the lock, take a
  434. * reference to the buffer. If this is a delayed write buffer that
  435. * needs AIL help to be written back, invoke the pushbuf routine
  436. * rather than the normal success path.
  437. */
  438. STATIC uint
  439. xfs_buf_item_trylock(
  440. struct xfs_log_item *lip)
  441. {
  442. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  443. struct xfs_buf *bp = bip->bli_buf;
  444. if (XFS_BUF_ISPINNED(bp))
  445. return XFS_ITEM_PINNED;
  446. if (!XFS_BUF_CPSEMA(bp))
  447. return XFS_ITEM_LOCKED;
  448. /* take a reference to the buffer. */
  449. XFS_BUF_HOLD(bp);
  450. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  451. trace_xfs_buf_item_trylock(bip);
  452. if (XFS_BUF_ISDELAYWRITE(bp))
  453. return XFS_ITEM_PUSHBUF;
  454. return XFS_ITEM_SUCCESS;
  455. }
  456. /*
  457. * Release the buffer associated with the buf log item. If there is no dirty
  458. * logged data associated with the buffer recorded in the buf log item, then
  459. * free the buf log item and remove the reference to it in the buffer.
  460. *
  461. * This call ignores the recursion count. It is only called when the buffer
  462. * should REALLY be unlocked, regardless of the recursion count.
  463. *
  464. * We unconditionally drop the transaction's reference to the log item. If the
  465. * item was logged, then another reference was taken when it was pinned, so we
  466. * can safely drop the transaction reference now. This also allows us to avoid
  467. * potential races with the unpin code freeing the bli by not referencing the
  468. * bli after we've dropped the reference count.
  469. *
  470. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  471. * if necessary but do not unlock the buffer. This is for support of
  472. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  473. * free the item.
  474. */
  475. STATIC void
  476. xfs_buf_item_unlock(
  477. struct xfs_log_item *lip)
  478. {
  479. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  480. struct xfs_buf *bp = bip->bli_buf;
  481. int aborted;
  482. uint hold;
  483. /* Clear the buffer's association with this transaction. */
  484. XFS_BUF_SET_FSPRIVATE2(bp, NULL);
  485. /*
  486. * If this is a transaction abort, don't return early. Instead, allow
  487. * the brelse to happen. Normally it would be done for stale
  488. * (cancelled) buffers at unpin time, but we'll never go through the
  489. * pin/unpin cycle if we abort inside commit.
  490. */
  491. aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
  492. /*
  493. * Before possibly freeing the buf item, determine if we should
  494. * release the buffer at the end of this routine.
  495. */
  496. hold = bip->bli_flags & XFS_BLI_HOLD;
  497. /* Clear the per transaction state. */
  498. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
  499. /*
  500. * If the buf item is marked stale, then don't do anything. We'll
  501. * unlock the buffer and free the buf item when the buffer is unpinned
  502. * for the last time.
  503. */
  504. if (bip->bli_flags & XFS_BLI_STALE) {
  505. trace_xfs_buf_item_unlock_stale(bip);
  506. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  507. if (!aborted) {
  508. atomic_dec(&bip->bli_refcount);
  509. return;
  510. }
  511. }
  512. trace_xfs_buf_item_unlock(bip);
  513. /*
  514. * If the buf item isn't tracking any data, free it, otherwise drop the
  515. * reference we hold to it.
  516. */
  517. if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
  518. bip->bli_format.blf_map_size))
  519. xfs_buf_item_relse(bp);
  520. else
  521. atomic_dec(&bip->bli_refcount);
  522. if (!hold)
  523. xfs_buf_relse(bp);
  524. }
  525. /*
  526. * This is called to find out where the oldest active copy of the
  527. * buf log item in the on disk log resides now that the last log
  528. * write of it completed at the given lsn.
  529. * We always re-log all the dirty data in a buffer, so usually the
  530. * latest copy in the on disk log is the only one that matters. For
  531. * those cases we simply return the given lsn.
  532. *
  533. * The one exception to this is for buffers full of newly allocated
  534. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  535. * flag set, indicating that only the di_next_unlinked fields from the
  536. * inodes in the buffers will be replayed during recovery. If the
  537. * original newly allocated inode images have not yet been flushed
  538. * when the buffer is so relogged, then we need to make sure that we
  539. * keep the old images in the 'active' portion of the log. We do this
  540. * by returning the original lsn of that transaction here rather than
  541. * the current one.
  542. */
  543. STATIC xfs_lsn_t
  544. xfs_buf_item_committed(
  545. struct xfs_log_item *lip,
  546. xfs_lsn_t lsn)
  547. {
  548. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  549. trace_xfs_buf_item_committed(bip);
  550. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  551. return lip->li_lsn;
  552. return lsn;
  553. }
  554. /*
  555. * The buffer is locked, but is not a delayed write buffer. This happens
  556. * if we race with IO completion and hence we don't want to try to write it
  557. * again. Just release the buffer.
  558. */
  559. STATIC void
  560. xfs_buf_item_push(
  561. struct xfs_log_item *lip)
  562. {
  563. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  564. struct xfs_buf *bp = bip->bli_buf;
  565. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  566. ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
  567. trace_xfs_buf_item_push(bip);
  568. xfs_buf_relse(bp);
  569. }
  570. /*
  571. * The buffer is locked and is a delayed write buffer. Promote the buffer
  572. * in the delayed write queue as the caller knows that they must invoke
  573. * the xfsbufd to get this buffer written. We have to unlock the buffer
  574. * to allow the xfsbufd to write it, too.
  575. */
  576. STATIC bool
  577. xfs_buf_item_pushbuf(
  578. struct xfs_log_item *lip)
  579. {
  580. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  581. struct xfs_buf *bp = bip->bli_buf;
  582. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  583. ASSERT(XFS_BUF_ISDELAYWRITE(bp));
  584. trace_xfs_buf_item_pushbuf(bip);
  585. xfs_buf_delwri_promote(bp);
  586. xfs_buf_relse(bp);
  587. return true;
  588. }
  589. STATIC void
  590. xfs_buf_item_committing(
  591. struct xfs_log_item *lip,
  592. xfs_lsn_t commit_lsn)
  593. {
  594. }
  595. /*
  596. * This is the ops vector shared by all buf log items.
  597. */
  598. static struct xfs_item_ops xfs_buf_item_ops = {
  599. .iop_size = xfs_buf_item_size,
  600. .iop_format = xfs_buf_item_format,
  601. .iop_pin = xfs_buf_item_pin,
  602. .iop_unpin = xfs_buf_item_unpin,
  603. .iop_trylock = xfs_buf_item_trylock,
  604. .iop_unlock = xfs_buf_item_unlock,
  605. .iop_committed = xfs_buf_item_committed,
  606. .iop_push = xfs_buf_item_push,
  607. .iop_pushbuf = xfs_buf_item_pushbuf,
  608. .iop_committing = xfs_buf_item_committing
  609. };
  610. /*
  611. * Allocate a new buf log item to go with the given buffer.
  612. * Set the buffer's b_fsprivate field to point to the new
  613. * buf log item. If there are other item's attached to the
  614. * buffer (see xfs_buf_attach_iodone() below), then put the
  615. * buf log item at the front.
  616. */
  617. void
  618. xfs_buf_item_init(
  619. xfs_buf_t *bp,
  620. xfs_mount_t *mp)
  621. {
  622. xfs_log_item_t *lip;
  623. xfs_buf_log_item_t *bip;
  624. int chunks;
  625. int map_size;
  626. /*
  627. * Check to see if there is already a buf log item for
  628. * this buffer. If there is, it is guaranteed to be
  629. * the first. If we do already have one, there is
  630. * nothing to do here so return.
  631. */
  632. ASSERT(bp->b_target->bt_mount == mp);
  633. if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
  634. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  635. if (lip->li_type == XFS_LI_BUF) {
  636. return;
  637. }
  638. }
  639. /*
  640. * chunks is the number of XFS_BLF_CHUNK size pieces
  641. * the buffer can be divided into. Make sure not to
  642. * truncate any pieces. map_size is the size of the
  643. * bitmap needed to describe the chunks of the buffer.
  644. */
  645. chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
  646. map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
  647. bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
  648. KM_SLEEP);
  649. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  650. bip->bli_buf = bp;
  651. xfs_buf_hold(bp);
  652. bip->bli_format.blf_type = XFS_LI_BUF;
  653. bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
  654. bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
  655. bip->bli_format.blf_map_size = map_size;
  656. #ifdef XFS_TRANS_DEBUG
  657. /*
  658. * Allocate the arrays for tracking what needs to be logged
  659. * and what our callers request to be logged. bli_orig
  660. * holds a copy of the original, clean buffer for comparison
  661. * against, and bli_logged keeps a 1 bit flag per byte in
  662. * the buffer to indicate which bytes the callers have asked
  663. * to have logged.
  664. */
  665. bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
  666. memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
  667. bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
  668. #endif
  669. /*
  670. * Put the buf item into the list of items attached to the
  671. * buffer at the front.
  672. */
  673. if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
  674. bip->bli_item.li_bio_list =
  675. XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  676. }
  677. XFS_BUF_SET_FSPRIVATE(bp, bip);
  678. }
  679. /*
  680. * Mark bytes first through last inclusive as dirty in the buf
  681. * item's bitmap.
  682. */
  683. void
  684. xfs_buf_item_log(
  685. xfs_buf_log_item_t *bip,
  686. uint first,
  687. uint last)
  688. {
  689. uint first_bit;
  690. uint last_bit;
  691. uint bits_to_set;
  692. uint bits_set;
  693. uint word_num;
  694. uint *wordp;
  695. uint bit;
  696. uint end_bit;
  697. uint mask;
  698. /*
  699. * Mark the item as having some dirty data for
  700. * quick reference in xfs_buf_item_dirty.
  701. */
  702. bip->bli_flags |= XFS_BLI_DIRTY;
  703. /*
  704. * Convert byte offsets to bit numbers.
  705. */
  706. first_bit = first >> XFS_BLF_SHIFT;
  707. last_bit = last >> XFS_BLF_SHIFT;
  708. /*
  709. * Calculate the total number of bits to be set.
  710. */
  711. bits_to_set = last_bit - first_bit + 1;
  712. /*
  713. * Get a pointer to the first word in the bitmap
  714. * to set a bit in.
  715. */
  716. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  717. wordp = &(bip->bli_format.blf_data_map[word_num]);
  718. /*
  719. * Calculate the starting bit in the first word.
  720. */
  721. bit = first_bit & (uint)(NBWORD - 1);
  722. /*
  723. * First set any bits in the first word of our range.
  724. * If it starts at bit 0 of the word, it will be
  725. * set below rather than here. That is what the variable
  726. * bit tells us. The variable bits_set tracks the number
  727. * of bits that have been set so far. End_bit is the number
  728. * of the last bit to be set in this word plus one.
  729. */
  730. if (bit) {
  731. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  732. mask = ((1 << (end_bit - bit)) - 1) << bit;
  733. *wordp |= mask;
  734. wordp++;
  735. bits_set = end_bit - bit;
  736. } else {
  737. bits_set = 0;
  738. }
  739. /*
  740. * Now set bits a whole word at a time that are between
  741. * first_bit and last_bit.
  742. */
  743. while ((bits_to_set - bits_set) >= NBWORD) {
  744. *wordp |= 0xffffffff;
  745. bits_set += NBWORD;
  746. wordp++;
  747. }
  748. /*
  749. * Finally, set any bits left to be set in one last partial word.
  750. */
  751. end_bit = bits_to_set - bits_set;
  752. if (end_bit) {
  753. mask = (1 << end_bit) - 1;
  754. *wordp |= mask;
  755. }
  756. xfs_buf_item_log_debug(bip, first, last);
  757. }
  758. /*
  759. * Return 1 if the buffer has some data that has been logged (at any
  760. * point, not just the current transaction) and 0 if not.
  761. */
  762. uint
  763. xfs_buf_item_dirty(
  764. xfs_buf_log_item_t *bip)
  765. {
  766. return (bip->bli_flags & XFS_BLI_DIRTY);
  767. }
  768. STATIC void
  769. xfs_buf_item_free(
  770. xfs_buf_log_item_t *bip)
  771. {
  772. #ifdef XFS_TRANS_DEBUG
  773. kmem_free(bip->bli_orig);
  774. kmem_free(bip->bli_logged);
  775. #endif /* XFS_TRANS_DEBUG */
  776. kmem_zone_free(xfs_buf_item_zone, bip);
  777. }
  778. /*
  779. * This is called when the buf log item is no longer needed. It should
  780. * free the buf log item associated with the given buffer and clear
  781. * the buffer's pointer to the buf log item. If there are no more
  782. * items in the list, clear the b_iodone field of the buffer (see
  783. * xfs_buf_attach_iodone() below).
  784. */
  785. void
  786. xfs_buf_item_relse(
  787. xfs_buf_t *bp)
  788. {
  789. xfs_buf_log_item_t *bip;
  790. trace_xfs_buf_item_relse(bp, _RET_IP_);
  791. bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
  792. XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
  793. if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
  794. (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
  795. XFS_BUF_CLR_IODONE_FUNC(bp);
  796. }
  797. xfs_buf_rele(bp);
  798. xfs_buf_item_free(bip);
  799. }
  800. /*
  801. * Add the given log item with its callback to the list of callbacks
  802. * to be called when the buffer's I/O completes. If it is not set
  803. * already, set the buffer's b_iodone() routine to be
  804. * xfs_buf_iodone_callbacks() and link the log item into the list of
  805. * items rooted at b_fsprivate. Items are always added as the second
  806. * entry in the list if there is a first, because the buf item code
  807. * assumes that the buf log item is first.
  808. */
  809. void
  810. xfs_buf_attach_iodone(
  811. xfs_buf_t *bp,
  812. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  813. xfs_log_item_t *lip)
  814. {
  815. xfs_log_item_t *head_lip;
  816. ASSERT(XFS_BUF_ISBUSY(bp));
  817. ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
  818. lip->li_cb = cb;
  819. if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
  820. head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  821. lip->li_bio_list = head_lip->li_bio_list;
  822. head_lip->li_bio_list = lip;
  823. } else {
  824. XFS_BUF_SET_FSPRIVATE(bp, lip);
  825. }
  826. ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
  827. (XFS_BUF_IODONE_FUNC(bp) == NULL));
  828. XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
  829. }
  830. /*
  831. * We can have many callbacks on a buffer. Running the callbacks individually
  832. * can cause a lot of contention on the AIL lock, so we allow for a single
  833. * callback to be able to scan the remaining lip->li_bio_list for other items
  834. * of the same type and callback to be processed in the first call.
  835. *
  836. * As a result, the loop walking the callback list below will also modify the
  837. * list. it removes the first item from the list and then runs the callback.
  838. * The loop then restarts from the new head of the list. This allows the
  839. * callback to scan and modify the list attached to the buffer and we don't
  840. * have to care about maintaining a next item pointer.
  841. */
  842. STATIC void
  843. xfs_buf_do_callbacks(
  844. struct xfs_buf *bp)
  845. {
  846. struct xfs_log_item *lip;
  847. while ((lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *)) != NULL) {
  848. XFS_BUF_SET_FSPRIVATE(bp, lip->li_bio_list);
  849. ASSERT(lip->li_cb != NULL);
  850. /*
  851. * Clear the next pointer so we don't have any
  852. * confusion if the item is added to another buf.
  853. * Don't touch the log item after calling its
  854. * callback, because it could have freed itself.
  855. */
  856. lip->li_bio_list = NULL;
  857. lip->li_cb(bp, lip);
  858. }
  859. }
  860. /*
  861. * This is the iodone() function for buffers which have had callbacks
  862. * attached to them by xfs_buf_attach_iodone(). It should remove each
  863. * log item from the buffer's list and call the callback of each in turn.
  864. * When done, the buffer's fsprivate field is set to NULL and the buffer
  865. * is unlocked with a call to iodone().
  866. */
  867. void
  868. xfs_buf_iodone_callbacks(
  869. struct xfs_buf *bp)
  870. {
  871. struct xfs_log_item *lip = bp->b_fspriv;
  872. struct xfs_mount *mp = lip->li_mountp;
  873. static ulong lasttime;
  874. static xfs_buftarg_t *lasttarg;
  875. if (likely(!XFS_BUF_GETERROR(bp)))
  876. goto do_callbacks;
  877. /*
  878. * If we've already decided to shutdown the filesystem because of
  879. * I/O errors, there's no point in giving this a retry.
  880. */
  881. if (XFS_FORCED_SHUTDOWN(mp)) {
  882. XFS_BUF_SUPER_STALE(bp);
  883. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  884. goto do_callbacks;
  885. }
  886. if (XFS_BUF_TARGET(bp) != lasttarg ||
  887. time_after(jiffies, (lasttime + 5*HZ))) {
  888. lasttime = jiffies;
  889. xfs_alert(mp, "Device %s: metadata write error block 0x%llx",
  890. XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
  891. (__uint64_t)XFS_BUF_ADDR(bp));
  892. }
  893. lasttarg = XFS_BUF_TARGET(bp);
  894. /*
  895. * If the write was asynchronous then no one will be looking for the
  896. * error. Clear the error state and write the buffer out again.
  897. *
  898. * During sync or umount we'll write all pending buffers again
  899. * synchronous, which will catch these errors if they keep hanging
  900. * around.
  901. */
  902. if (XFS_BUF_ISASYNC(bp)) {
  903. XFS_BUF_ERROR(bp, 0); /* errno of 0 unsets the flag */
  904. if (!XFS_BUF_ISSTALE(bp)) {
  905. XFS_BUF_DELAYWRITE(bp);
  906. XFS_BUF_DONE(bp);
  907. XFS_BUF_SET_START(bp);
  908. }
  909. ASSERT(XFS_BUF_IODONE_FUNC(bp));
  910. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  911. xfs_buf_relse(bp);
  912. return;
  913. }
  914. /*
  915. * If the write of the buffer was synchronous, we want to make
  916. * sure to return the error to the caller of xfs_bwrite().
  917. */
  918. XFS_BUF_STALE(bp);
  919. XFS_BUF_DONE(bp);
  920. XFS_BUF_UNDELAYWRITE(bp);
  921. trace_xfs_buf_error_relse(bp, _RET_IP_);
  922. do_callbacks:
  923. xfs_buf_do_callbacks(bp);
  924. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  925. XFS_BUF_CLR_IODONE_FUNC(bp);
  926. xfs_buf_ioend(bp, 0);
  927. }
  928. /*
  929. * This is the iodone() function for buffers which have been
  930. * logged. It is called when they are eventually flushed out.
  931. * It should remove the buf item from the AIL, and free the buf item.
  932. * It is called by xfs_buf_iodone_callbacks() above which will take
  933. * care of cleaning up the buffer itself.
  934. */
  935. void
  936. xfs_buf_iodone(
  937. struct xfs_buf *bp,
  938. struct xfs_log_item *lip)
  939. {
  940. struct xfs_ail *ailp = lip->li_ailp;
  941. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  942. xfs_buf_rele(bp);
  943. /*
  944. * If we are forcibly shutting down, this may well be
  945. * off the AIL already. That's because we simulate the
  946. * log-committed callbacks to unpin these buffers. Or we may never
  947. * have put this item on AIL because of the transaction was
  948. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  949. *
  950. * Either way, AIL is useless if we're forcing a shutdown.
  951. */
  952. spin_lock(&ailp->xa_lock);
  953. xfs_trans_ail_delete(ailp, lip);
  954. xfs_buf_item_free(BUF_ITEM(lip));
  955. }