inode.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
  155. {
  156. int ret;
  157. jbd_debug(2, "restarting handle %p\n", handle);
  158. /*
  159. * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
  160. * At this moment, get_block can be called only for blocks inside
  161. * i_size since page cache has been already dropped and writes are
  162. * blocked by i_mutex. So we can safely drop the truncate_mutex.
  163. */
  164. mutex_unlock(&EXT3_I(inode)->truncate_mutex);
  165. ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
  166. mutex_lock(&EXT3_I(inode)->truncate_mutex);
  167. return ret;
  168. }
  169. /*
  170. * Called at inode eviction from icache
  171. */
  172. void ext3_evict_inode (struct inode *inode)
  173. {
  174. struct ext3_block_alloc_info *rsv;
  175. handle_t *handle;
  176. int want_delete = 0;
  177. if (!inode->i_nlink && !is_bad_inode(inode)) {
  178. dquot_initialize(inode);
  179. want_delete = 1;
  180. }
  181. truncate_inode_pages(&inode->i_data, 0);
  182. ext3_discard_reservation(inode);
  183. rsv = EXT3_I(inode)->i_block_alloc_info;
  184. EXT3_I(inode)->i_block_alloc_info = NULL;
  185. if (unlikely(rsv))
  186. kfree(rsv);
  187. if (!want_delete)
  188. goto no_delete;
  189. handle = start_transaction(inode);
  190. if (IS_ERR(handle)) {
  191. /*
  192. * If we're going to skip the normal cleanup, we still need to
  193. * make sure that the in-core orphan linked list is properly
  194. * cleaned up.
  195. */
  196. ext3_orphan_del(NULL, inode);
  197. goto no_delete;
  198. }
  199. if (IS_SYNC(inode))
  200. handle->h_sync = 1;
  201. inode->i_size = 0;
  202. if (inode->i_blocks)
  203. ext3_truncate(inode);
  204. /*
  205. * Kill off the orphan record which ext3_truncate created.
  206. * AKPM: I think this can be inside the above `if'.
  207. * Note that ext3_orphan_del() has to be able to cope with the
  208. * deletion of a non-existent orphan - this is because we don't
  209. * know if ext3_truncate() actually created an orphan record.
  210. * (Well, we could do this if we need to, but heck - it works)
  211. */
  212. ext3_orphan_del(handle, inode);
  213. EXT3_I(inode)->i_dtime = get_seconds();
  214. /*
  215. * One subtle ordering requirement: if anything has gone wrong
  216. * (transaction abort, IO errors, whatever), then we can still
  217. * do these next steps (the fs will already have been marked as
  218. * having errors), but we can't free the inode if the mark_dirty
  219. * fails.
  220. */
  221. if (ext3_mark_inode_dirty(handle, inode)) {
  222. /* If that failed, just dquot_drop() and be done with that */
  223. dquot_drop(inode);
  224. end_writeback(inode);
  225. } else {
  226. ext3_xattr_delete_inode(handle, inode);
  227. dquot_free_inode(inode);
  228. dquot_drop(inode);
  229. end_writeback(inode);
  230. ext3_free_inode(handle, inode);
  231. }
  232. ext3_journal_stop(handle);
  233. return;
  234. no_delete:
  235. end_writeback(inode);
  236. dquot_drop(inode);
  237. }
  238. typedef struct {
  239. __le32 *p;
  240. __le32 key;
  241. struct buffer_head *bh;
  242. } Indirect;
  243. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  244. {
  245. p->key = *(p->p = v);
  246. p->bh = bh;
  247. }
  248. static int verify_chain(Indirect *from, Indirect *to)
  249. {
  250. while (from <= to && from->key == *from->p)
  251. from++;
  252. return (from > to);
  253. }
  254. /**
  255. * ext3_block_to_path - parse the block number into array of offsets
  256. * @inode: inode in question (we are only interested in its superblock)
  257. * @i_block: block number to be parsed
  258. * @offsets: array to store the offsets in
  259. * @boundary: set this non-zero if the referred-to block is likely to be
  260. * followed (on disk) by an indirect block.
  261. *
  262. * To store the locations of file's data ext3 uses a data structure common
  263. * for UNIX filesystems - tree of pointers anchored in the inode, with
  264. * data blocks at leaves and indirect blocks in intermediate nodes.
  265. * This function translates the block number into path in that tree -
  266. * return value is the path length and @offsets[n] is the offset of
  267. * pointer to (n+1)th node in the nth one. If @block is out of range
  268. * (negative or too large) warning is printed and zero returned.
  269. *
  270. * Note: function doesn't find node addresses, so no IO is needed. All
  271. * we need to know is the capacity of indirect blocks (taken from the
  272. * inode->i_sb).
  273. */
  274. /*
  275. * Portability note: the last comparison (check that we fit into triple
  276. * indirect block) is spelled differently, because otherwise on an
  277. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  278. * if our filesystem had 8Kb blocks. We might use long long, but that would
  279. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  280. * i_block would have to be negative in the very beginning, so we would not
  281. * get there at all.
  282. */
  283. static int ext3_block_to_path(struct inode *inode,
  284. long i_block, int offsets[4], int *boundary)
  285. {
  286. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  287. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  288. const long direct_blocks = EXT3_NDIR_BLOCKS,
  289. indirect_blocks = ptrs,
  290. double_blocks = (1 << (ptrs_bits * 2));
  291. int n = 0;
  292. int final = 0;
  293. if (i_block < 0) {
  294. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  295. } else if (i_block < direct_blocks) {
  296. offsets[n++] = i_block;
  297. final = direct_blocks;
  298. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  299. offsets[n++] = EXT3_IND_BLOCK;
  300. offsets[n++] = i_block;
  301. final = ptrs;
  302. } else if ((i_block -= indirect_blocks) < double_blocks) {
  303. offsets[n++] = EXT3_DIND_BLOCK;
  304. offsets[n++] = i_block >> ptrs_bits;
  305. offsets[n++] = i_block & (ptrs - 1);
  306. final = ptrs;
  307. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  308. offsets[n++] = EXT3_TIND_BLOCK;
  309. offsets[n++] = i_block >> (ptrs_bits * 2);
  310. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  311. offsets[n++] = i_block & (ptrs - 1);
  312. final = ptrs;
  313. } else {
  314. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  315. }
  316. if (boundary)
  317. *boundary = final - 1 - (i_block & (ptrs - 1));
  318. return n;
  319. }
  320. /**
  321. * ext3_get_branch - read the chain of indirect blocks leading to data
  322. * @inode: inode in question
  323. * @depth: depth of the chain (1 - direct pointer, etc.)
  324. * @offsets: offsets of pointers in inode/indirect blocks
  325. * @chain: place to store the result
  326. * @err: here we store the error value
  327. *
  328. * Function fills the array of triples <key, p, bh> and returns %NULL
  329. * if everything went OK or the pointer to the last filled triple
  330. * (incomplete one) otherwise. Upon the return chain[i].key contains
  331. * the number of (i+1)-th block in the chain (as it is stored in memory,
  332. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  333. * number (it points into struct inode for i==0 and into the bh->b_data
  334. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  335. * block for i>0 and NULL for i==0. In other words, it holds the block
  336. * numbers of the chain, addresses they were taken from (and where we can
  337. * verify that chain did not change) and buffer_heads hosting these
  338. * numbers.
  339. *
  340. * Function stops when it stumbles upon zero pointer (absent block)
  341. * (pointer to last triple returned, *@err == 0)
  342. * or when it gets an IO error reading an indirect block
  343. * (ditto, *@err == -EIO)
  344. * or when it notices that chain had been changed while it was reading
  345. * (ditto, *@err == -EAGAIN)
  346. * or when it reads all @depth-1 indirect blocks successfully and finds
  347. * the whole chain, all way to the data (returns %NULL, *err == 0).
  348. */
  349. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  350. Indirect chain[4], int *err)
  351. {
  352. struct super_block *sb = inode->i_sb;
  353. Indirect *p = chain;
  354. struct buffer_head *bh;
  355. *err = 0;
  356. /* i_data is not going away, no lock needed */
  357. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  358. if (!p->key)
  359. goto no_block;
  360. while (--depth) {
  361. bh = sb_bread(sb, le32_to_cpu(p->key));
  362. if (!bh)
  363. goto failure;
  364. /* Reader: pointers */
  365. if (!verify_chain(chain, p))
  366. goto changed;
  367. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  368. /* Reader: end */
  369. if (!p->key)
  370. goto no_block;
  371. }
  372. return NULL;
  373. changed:
  374. brelse(bh);
  375. *err = -EAGAIN;
  376. goto no_block;
  377. failure:
  378. *err = -EIO;
  379. no_block:
  380. return p;
  381. }
  382. /**
  383. * ext3_find_near - find a place for allocation with sufficient locality
  384. * @inode: owner
  385. * @ind: descriptor of indirect block.
  386. *
  387. * This function returns the preferred place for block allocation.
  388. * It is used when heuristic for sequential allocation fails.
  389. * Rules are:
  390. * + if there is a block to the left of our position - allocate near it.
  391. * + if pointer will live in indirect block - allocate near that block.
  392. * + if pointer will live in inode - allocate in the same
  393. * cylinder group.
  394. *
  395. * In the latter case we colour the starting block by the callers PID to
  396. * prevent it from clashing with concurrent allocations for a different inode
  397. * in the same block group. The PID is used here so that functionally related
  398. * files will be close-by on-disk.
  399. *
  400. * Caller must make sure that @ind is valid and will stay that way.
  401. */
  402. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  403. {
  404. struct ext3_inode_info *ei = EXT3_I(inode);
  405. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  406. __le32 *p;
  407. ext3_fsblk_t bg_start;
  408. ext3_grpblk_t colour;
  409. /* Try to find previous block */
  410. for (p = ind->p - 1; p >= start; p--) {
  411. if (*p)
  412. return le32_to_cpu(*p);
  413. }
  414. /* No such thing, so let's try location of indirect block */
  415. if (ind->bh)
  416. return ind->bh->b_blocknr;
  417. /*
  418. * It is going to be referred to from the inode itself? OK, just put it
  419. * into the same cylinder group then.
  420. */
  421. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  422. colour = (current->pid % 16) *
  423. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  424. return bg_start + colour;
  425. }
  426. /**
  427. * ext3_find_goal - find a preferred place for allocation.
  428. * @inode: owner
  429. * @block: block we want
  430. * @partial: pointer to the last triple within a chain
  431. *
  432. * Normally this function find the preferred place for block allocation,
  433. * returns it.
  434. */
  435. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  436. Indirect *partial)
  437. {
  438. struct ext3_block_alloc_info *block_i;
  439. block_i = EXT3_I(inode)->i_block_alloc_info;
  440. /*
  441. * try the heuristic for sequential allocation,
  442. * failing that at least try to get decent locality.
  443. */
  444. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  445. && (block_i->last_alloc_physical_block != 0)) {
  446. return block_i->last_alloc_physical_block + 1;
  447. }
  448. return ext3_find_near(inode, partial);
  449. }
  450. /**
  451. * ext3_blks_to_allocate - Look up the block map and count the number
  452. * of direct blocks need to be allocated for the given branch.
  453. *
  454. * @branch: chain of indirect blocks
  455. * @k: number of blocks need for indirect blocks
  456. * @blks: number of data blocks to be mapped.
  457. * @blocks_to_boundary: the offset in the indirect block
  458. *
  459. * return the total number of blocks to be allocate, including the
  460. * direct and indirect blocks.
  461. */
  462. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  463. int blocks_to_boundary)
  464. {
  465. unsigned long count = 0;
  466. /*
  467. * Simple case, [t,d]Indirect block(s) has not allocated yet
  468. * then it's clear blocks on that path have not allocated
  469. */
  470. if (k > 0) {
  471. /* right now we don't handle cross boundary allocation */
  472. if (blks < blocks_to_boundary + 1)
  473. count += blks;
  474. else
  475. count += blocks_to_boundary + 1;
  476. return count;
  477. }
  478. count++;
  479. while (count < blks && count <= blocks_to_boundary &&
  480. le32_to_cpu(*(branch[0].p + count)) == 0) {
  481. count++;
  482. }
  483. return count;
  484. }
  485. /**
  486. * ext3_alloc_blocks - multiple allocate blocks needed for a branch
  487. * @handle: handle for this transaction
  488. * @inode: owner
  489. * @goal: preferred place for allocation
  490. * @indirect_blks: the number of blocks need to allocate for indirect
  491. * blocks
  492. * @blks: number of blocks need to allocated for direct blocks
  493. * @new_blocks: on return it will store the new block numbers for
  494. * the indirect blocks(if needed) and the first direct block,
  495. * @err: here we store the error value
  496. *
  497. * return the number of direct blocks allocated
  498. */
  499. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  500. ext3_fsblk_t goal, int indirect_blks, int blks,
  501. ext3_fsblk_t new_blocks[4], int *err)
  502. {
  503. int target, i;
  504. unsigned long count = 0;
  505. int index = 0;
  506. ext3_fsblk_t current_block = 0;
  507. int ret = 0;
  508. /*
  509. * Here we try to allocate the requested multiple blocks at once,
  510. * on a best-effort basis.
  511. * To build a branch, we should allocate blocks for
  512. * the indirect blocks(if not allocated yet), and at least
  513. * the first direct block of this branch. That's the
  514. * minimum number of blocks need to allocate(required)
  515. */
  516. target = blks + indirect_blks;
  517. while (1) {
  518. count = target;
  519. /* allocating blocks for indirect blocks and direct blocks */
  520. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  521. if (*err)
  522. goto failed_out;
  523. target -= count;
  524. /* allocate blocks for indirect blocks */
  525. while (index < indirect_blks && count) {
  526. new_blocks[index++] = current_block++;
  527. count--;
  528. }
  529. if (count > 0)
  530. break;
  531. }
  532. /* save the new block number for the first direct block */
  533. new_blocks[index] = current_block;
  534. /* total number of blocks allocated for direct blocks */
  535. ret = count;
  536. *err = 0;
  537. return ret;
  538. failed_out:
  539. for (i = 0; i <index; i++)
  540. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  541. return ret;
  542. }
  543. /**
  544. * ext3_alloc_branch - allocate and set up a chain of blocks.
  545. * @handle: handle for this transaction
  546. * @inode: owner
  547. * @indirect_blks: number of allocated indirect blocks
  548. * @blks: number of allocated direct blocks
  549. * @goal: preferred place for allocation
  550. * @offsets: offsets (in the blocks) to store the pointers to next.
  551. * @branch: place to store the chain in.
  552. *
  553. * This function allocates blocks, zeroes out all but the last one,
  554. * links them into chain and (if we are synchronous) writes them to disk.
  555. * In other words, it prepares a branch that can be spliced onto the
  556. * inode. It stores the information about that chain in the branch[], in
  557. * the same format as ext3_get_branch() would do. We are calling it after
  558. * we had read the existing part of chain and partial points to the last
  559. * triple of that (one with zero ->key). Upon the exit we have the same
  560. * picture as after the successful ext3_get_block(), except that in one
  561. * place chain is disconnected - *branch->p is still zero (we did not
  562. * set the last link), but branch->key contains the number that should
  563. * be placed into *branch->p to fill that gap.
  564. *
  565. * If allocation fails we free all blocks we've allocated (and forget
  566. * their buffer_heads) and return the error value the from failed
  567. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  568. * as described above and return 0.
  569. */
  570. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  571. int indirect_blks, int *blks, ext3_fsblk_t goal,
  572. int *offsets, Indirect *branch)
  573. {
  574. int blocksize = inode->i_sb->s_blocksize;
  575. int i, n = 0;
  576. int err = 0;
  577. struct buffer_head *bh;
  578. int num;
  579. ext3_fsblk_t new_blocks[4];
  580. ext3_fsblk_t current_block;
  581. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  582. *blks, new_blocks, &err);
  583. if (err)
  584. return err;
  585. branch[0].key = cpu_to_le32(new_blocks[0]);
  586. /*
  587. * metadata blocks and data blocks are allocated.
  588. */
  589. for (n = 1; n <= indirect_blks; n++) {
  590. /*
  591. * Get buffer_head for parent block, zero it out
  592. * and set the pointer to new one, then send
  593. * parent to disk.
  594. */
  595. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  596. branch[n].bh = bh;
  597. lock_buffer(bh);
  598. BUFFER_TRACE(bh, "call get_create_access");
  599. err = ext3_journal_get_create_access(handle, bh);
  600. if (err) {
  601. unlock_buffer(bh);
  602. brelse(bh);
  603. goto failed;
  604. }
  605. memset(bh->b_data, 0, blocksize);
  606. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  607. branch[n].key = cpu_to_le32(new_blocks[n]);
  608. *branch[n].p = branch[n].key;
  609. if ( n == indirect_blks) {
  610. current_block = new_blocks[n];
  611. /*
  612. * End of chain, update the last new metablock of
  613. * the chain to point to the new allocated
  614. * data blocks numbers
  615. */
  616. for (i=1; i < num; i++)
  617. *(branch[n].p + i) = cpu_to_le32(++current_block);
  618. }
  619. BUFFER_TRACE(bh, "marking uptodate");
  620. set_buffer_uptodate(bh);
  621. unlock_buffer(bh);
  622. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  623. err = ext3_journal_dirty_metadata(handle, bh);
  624. if (err)
  625. goto failed;
  626. }
  627. *blks = num;
  628. return err;
  629. failed:
  630. /* Allocation failed, free what we already allocated */
  631. for (i = 1; i <= n ; i++) {
  632. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  633. ext3_journal_forget(handle, branch[i].bh);
  634. }
  635. for (i = 0; i <indirect_blks; i++)
  636. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  637. ext3_free_blocks(handle, inode, new_blocks[i], num);
  638. return err;
  639. }
  640. /**
  641. * ext3_splice_branch - splice the allocated branch onto inode.
  642. * @handle: handle for this transaction
  643. * @inode: owner
  644. * @block: (logical) number of block we are adding
  645. * @where: location of missing link
  646. * @num: number of indirect blocks we are adding
  647. * @blks: number of direct blocks we are adding
  648. *
  649. * This function fills the missing link and does all housekeeping needed in
  650. * inode (->i_blocks, etc.). In case of success we end up with the full
  651. * chain to new block and return 0.
  652. */
  653. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  654. long block, Indirect *where, int num, int blks)
  655. {
  656. int i;
  657. int err = 0;
  658. struct ext3_block_alloc_info *block_i;
  659. ext3_fsblk_t current_block;
  660. struct ext3_inode_info *ei = EXT3_I(inode);
  661. block_i = ei->i_block_alloc_info;
  662. /*
  663. * If we're splicing into a [td]indirect block (as opposed to the
  664. * inode) then we need to get write access to the [td]indirect block
  665. * before the splice.
  666. */
  667. if (where->bh) {
  668. BUFFER_TRACE(where->bh, "get_write_access");
  669. err = ext3_journal_get_write_access(handle, where->bh);
  670. if (err)
  671. goto err_out;
  672. }
  673. /* That's it */
  674. *where->p = where->key;
  675. /*
  676. * Update the host buffer_head or inode to point to more just allocated
  677. * direct blocks blocks
  678. */
  679. if (num == 0 && blks > 1) {
  680. current_block = le32_to_cpu(where->key) + 1;
  681. for (i = 1; i < blks; i++)
  682. *(where->p + i ) = cpu_to_le32(current_block++);
  683. }
  684. /*
  685. * update the most recently allocated logical & physical block
  686. * in i_block_alloc_info, to assist find the proper goal block for next
  687. * allocation
  688. */
  689. if (block_i) {
  690. block_i->last_alloc_logical_block = block + blks - 1;
  691. block_i->last_alloc_physical_block =
  692. le32_to_cpu(where[num].key) + blks - 1;
  693. }
  694. /* We are done with atomic stuff, now do the rest of housekeeping */
  695. inode->i_ctime = CURRENT_TIME_SEC;
  696. ext3_mark_inode_dirty(handle, inode);
  697. /* ext3_mark_inode_dirty already updated i_sync_tid */
  698. atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
  699. /* had we spliced it onto indirect block? */
  700. if (where->bh) {
  701. /*
  702. * If we spliced it onto an indirect block, we haven't
  703. * altered the inode. Note however that if it is being spliced
  704. * onto an indirect block at the very end of the file (the
  705. * file is growing) then we *will* alter the inode to reflect
  706. * the new i_size. But that is not done here - it is done in
  707. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  708. */
  709. jbd_debug(5, "splicing indirect only\n");
  710. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  711. err = ext3_journal_dirty_metadata(handle, where->bh);
  712. if (err)
  713. goto err_out;
  714. } else {
  715. /*
  716. * OK, we spliced it into the inode itself on a direct block.
  717. * Inode was dirtied above.
  718. */
  719. jbd_debug(5, "splicing direct\n");
  720. }
  721. return err;
  722. err_out:
  723. for (i = 1; i <= num; i++) {
  724. BUFFER_TRACE(where[i].bh, "call journal_forget");
  725. ext3_journal_forget(handle, where[i].bh);
  726. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  727. }
  728. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  729. return err;
  730. }
  731. /*
  732. * Allocation strategy is simple: if we have to allocate something, we will
  733. * have to go the whole way to leaf. So let's do it before attaching anything
  734. * to tree, set linkage between the newborn blocks, write them if sync is
  735. * required, recheck the path, free and repeat if check fails, otherwise
  736. * set the last missing link (that will protect us from any truncate-generated
  737. * removals - all blocks on the path are immune now) and possibly force the
  738. * write on the parent block.
  739. * That has a nice additional property: no special recovery from the failed
  740. * allocations is needed - we simply release blocks and do not touch anything
  741. * reachable from inode.
  742. *
  743. * `handle' can be NULL if create == 0.
  744. *
  745. * The BKL may not be held on entry here. Be sure to take it early.
  746. * return > 0, # of blocks mapped or allocated.
  747. * return = 0, if plain lookup failed.
  748. * return < 0, error case.
  749. */
  750. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  751. sector_t iblock, unsigned long maxblocks,
  752. struct buffer_head *bh_result,
  753. int create)
  754. {
  755. int err = -EIO;
  756. int offsets[4];
  757. Indirect chain[4];
  758. Indirect *partial;
  759. ext3_fsblk_t goal;
  760. int indirect_blks;
  761. int blocks_to_boundary = 0;
  762. int depth;
  763. struct ext3_inode_info *ei = EXT3_I(inode);
  764. int count = 0;
  765. ext3_fsblk_t first_block = 0;
  766. J_ASSERT(handle != NULL || create == 0);
  767. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  768. if (depth == 0)
  769. goto out;
  770. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  771. /* Simplest case - block found, no allocation needed */
  772. if (!partial) {
  773. first_block = le32_to_cpu(chain[depth - 1].key);
  774. clear_buffer_new(bh_result);
  775. count++;
  776. /*map more blocks*/
  777. while (count < maxblocks && count <= blocks_to_boundary) {
  778. ext3_fsblk_t blk;
  779. if (!verify_chain(chain, chain + depth - 1)) {
  780. /*
  781. * Indirect block might be removed by
  782. * truncate while we were reading it.
  783. * Handling of that case: forget what we've
  784. * got now. Flag the err as EAGAIN, so it
  785. * will reread.
  786. */
  787. err = -EAGAIN;
  788. count = 0;
  789. break;
  790. }
  791. blk = le32_to_cpu(*(chain[depth-1].p + count));
  792. if (blk == first_block + count)
  793. count++;
  794. else
  795. break;
  796. }
  797. if (err != -EAGAIN)
  798. goto got_it;
  799. }
  800. /* Next simple case - plain lookup or failed read of indirect block */
  801. if (!create || err == -EIO)
  802. goto cleanup;
  803. mutex_lock(&ei->truncate_mutex);
  804. /*
  805. * If the indirect block is missing while we are reading
  806. * the chain(ext3_get_branch() returns -EAGAIN err), or
  807. * if the chain has been changed after we grab the semaphore,
  808. * (either because another process truncated this branch, or
  809. * another get_block allocated this branch) re-grab the chain to see if
  810. * the request block has been allocated or not.
  811. *
  812. * Since we already block the truncate/other get_block
  813. * at this point, we will have the current copy of the chain when we
  814. * splice the branch into the tree.
  815. */
  816. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  817. while (partial > chain) {
  818. brelse(partial->bh);
  819. partial--;
  820. }
  821. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  822. if (!partial) {
  823. count++;
  824. mutex_unlock(&ei->truncate_mutex);
  825. if (err)
  826. goto cleanup;
  827. clear_buffer_new(bh_result);
  828. goto got_it;
  829. }
  830. }
  831. /*
  832. * Okay, we need to do block allocation. Lazily initialize the block
  833. * allocation info here if necessary
  834. */
  835. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  836. ext3_init_block_alloc_info(inode);
  837. goal = ext3_find_goal(inode, iblock, partial);
  838. /* the number of blocks need to allocate for [d,t]indirect blocks */
  839. indirect_blks = (chain + depth) - partial - 1;
  840. /*
  841. * Next look up the indirect map to count the totoal number of
  842. * direct blocks to allocate for this branch.
  843. */
  844. count = ext3_blks_to_allocate(partial, indirect_blks,
  845. maxblocks, blocks_to_boundary);
  846. /*
  847. * Block out ext3_truncate while we alter the tree
  848. */
  849. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  850. offsets + (partial - chain), partial);
  851. /*
  852. * The ext3_splice_branch call will free and forget any buffers
  853. * on the new chain if there is a failure, but that risks using
  854. * up transaction credits, especially for bitmaps where the
  855. * credits cannot be returned. Can we handle this somehow? We
  856. * may need to return -EAGAIN upwards in the worst case. --sct
  857. */
  858. if (!err)
  859. err = ext3_splice_branch(handle, inode, iblock,
  860. partial, indirect_blks, count);
  861. mutex_unlock(&ei->truncate_mutex);
  862. if (err)
  863. goto cleanup;
  864. set_buffer_new(bh_result);
  865. got_it:
  866. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  867. if (count > blocks_to_boundary)
  868. set_buffer_boundary(bh_result);
  869. err = count;
  870. /* Clean up and exit */
  871. partial = chain + depth - 1; /* the whole chain */
  872. cleanup:
  873. while (partial > chain) {
  874. BUFFER_TRACE(partial->bh, "call brelse");
  875. brelse(partial->bh);
  876. partial--;
  877. }
  878. BUFFER_TRACE(bh_result, "returned");
  879. out:
  880. return err;
  881. }
  882. /* Maximum number of blocks we map for direct IO at once. */
  883. #define DIO_MAX_BLOCKS 4096
  884. /*
  885. * Number of credits we need for writing DIO_MAX_BLOCKS:
  886. * We need sb + group descriptor + bitmap + inode -> 4
  887. * For B blocks with A block pointers per block we need:
  888. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  889. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  890. */
  891. #define DIO_CREDITS 25
  892. static int ext3_get_block(struct inode *inode, sector_t iblock,
  893. struct buffer_head *bh_result, int create)
  894. {
  895. handle_t *handle = ext3_journal_current_handle();
  896. int ret = 0, started = 0;
  897. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  898. if (create && !handle) { /* Direct IO write... */
  899. if (max_blocks > DIO_MAX_BLOCKS)
  900. max_blocks = DIO_MAX_BLOCKS;
  901. handle = ext3_journal_start(inode, DIO_CREDITS +
  902. EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
  903. if (IS_ERR(handle)) {
  904. ret = PTR_ERR(handle);
  905. goto out;
  906. }
  907. started = 1;
  908. }
  909. ret = ext3_get_blocks_handle(handle, inode, iblock,
  910. max_blocks, bh_result, create);
  911. if (ret > 0) {
  912. bh_result->b_size = (ret << inode->i_blkbits);
  913. ret = 0;
  914. }
  915. if (started)
  916. ext3_journal_stop(handle);
  917. out:
  918. return ret;
  919. }
  920. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  921. u64 start, u64 len)
  922. {
  923. return generic_block_fiemap(inode, fieinfo, start, len,
  924. ext3_get_block);
  925. }
  926. /*
  927. * `handle' can be NULL if create is zero
  928. */
  929. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  930. long block, int create, int *errp)
  931. {
  932. struct buffer_head dummy;
  933. int fatal = 0, err;
  934. J_ASSERT(handle != NULL || create == 0);
  935. dummy.b_state = 0;
  936. dummy.b_blocknr = -1000;
  937. buffer_trace_init(&dummy.b_history);
  938. err = ext3_get_blocks_handle(handle, inode, block, 1,
  939. &dummy, create);
  940. /*
  941. * ext3_get_blocks_handle() returns number of blocks
  942. * mapped. 0 in case of a HOLE.
  943. */
  944. if (err > 0) {
  945. if (err > 1)
  946. WARN_ON(1);
  947. err = 0;
  948. }
  949. *errp = err;
  950. if (!err && buffer_mapped(&dummy)) {
  951. struct buffer_head *bh;
  952. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  953. if (!bh) {
  954. *errp = -EIO;
  955. goto err;
  956. }
  957. if (buffer_new(&dummy)) {
  958. J_ASSERT(create != 0);
  959. J_ASSERT(handle != NULL);
  960. /*
  961. * Now that we do not always journal data, we should
  962. * keep in mind whether this should always journal the
  963. * new buffer as metadata. For now, regular file
  964. * writes use ext3_get_block instead, so it's not a
  965. * problem.
  966. */
  967. lock_buffer(bh);
  968. BUFFER_TRACE(bh, "call get_create_access");
  969. fatal = ext3_journal_get_create_access(handle, bh);
  970. if (!fatal && !buffer_uptodate(bh)) {
  971. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  972. set_buffer_uptodate(bh);
  973. }
  974. unlock_buffer(bh);
  975. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  976. err = ext3_journal_dirty_metadata(handle, bh);
  977. if (!fatal)
  978. fatal = err;
  979. } else {
  980. BUFFER_TRACE(bh, "not a new buffer");
  981. }
  982. if (fatal) {
  983. *errp = fatal;
  984. brelse(bh);
  985. bh = NULL;
  986. }
  987. return bh;
  988. }
  989. err:
  990. return NULL;
  991. }
  992. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  993. int block, int create, int *err)
  994. {
  995. struct buffer_head * bh;
  996. bh = ext3_getblk(handle, inode, block, create, err);
  997. if (!bh)
  998. return bh;
  999. if (buffer_uptodate(bh))
  1000. return bh;
  1001. ll_rw_block(READ_META, 1, &bh);
  1002. wait_on_buffer(bh);
  1003. if (buffer_uptodate(bh))
  1004. return bh;
  1005. put_bh(bh);
  1006. *err = -EIO;
  1007. return NULL;
  1008. }
  1009. static int walk_page_buffers( handle_t *handle,
  1010. struct buffer_head *head,
  1011. unsigned from,
  1012. unsigned to,
  1013. int *partial,
  1014. int (*fn)( handle_t *handle,
  1015. struct buffer_head *bh))
  1016. {
  1017. struct buffer_head *bh;
  1018. unsigned block_start, block_end;
  1019. unsigned blocksize = head->b_size;
  1020. int err, ret = 0;
  1021. struct buffer_head *next;
  1022. for ( bh = head, block_start = 0;
  1023. ret == 0 && (bh != head || !block_start);
  1024. block_start = block_end, bh = next)
  1025. {
  1026. next = bh->b_this_page;
  1027. block_end = block_start + blocksize;
  1028. if (block_end <= from || block_start >= to) {
  1029. if (partial && !buffer_uptodate(bh))
  1030. *partial = 1;
  1031. continue;
  1032. }
  1033. err = (*fn)(handle, bh);
  1034. if (!ret)
  1035. ret = err;
  1036. }
  1037. return ret;
  1038. }
  1039. /*
  1040. * To preserve ordering, it is essential that the hole instantiation and
  1041. * the data write be encapsulated in a single transaction. We cannot
  1042. * close off a transaction and start a new one between the ext3_get_block()
  1043. * and the commit_write(). So doing the journal_start at the start of
  1044. * prepare_write() is the right place.
  1045. *
  1046. * Also, this function can nest inside ext3_writepage() ->
  1047. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1048. * has generated enough buffer credits to do the whole page. So we won't
  1049. * block on the journal in that case, which is good, because the caller may
  1050. * be PF_MEMALLOC.
  1051. *
  1052. * By accident, ext3 can be reentered when a transaction is open via
  1053. * quota file writes. If we were to commit the transaction while thus
  1054. * reentered, there can be a deadlock - we would be holding a quota
  1055. * lock, and the commit would never complete if another thread had a
  1056. * transaction open and was blocking on the quota lock - a ranking
  1057. * violation.
  1058. *
  1059. * So what we do is to rely on the fact that journal_stop/journal_start
  1060. * will _not_ run commit under these circumstances because handle->h_ref
  1061. * is elevated. We'll still have enough credits for the tiny quotafile
  1062. * write.
  1063. */
  1064. static int do_journal_get_write_access(handle_t *handle,
  1065. struct buffer_head *bh)
  1066. {
  1067. int dirty = buffer_dirty(bh);
  1068. int ret;
  1069. if (!buffer_mapped(bh) || buffer_freed(bh))
  1070. return 0;
  1071. /*
  1072. * __block_prepare_write() could have dirtied some buffers. Clean
  1073. * the dirty bit as jbd2_journal_get_write_access() could complain
  1074. * otherwise about fs integrity issues. Setting of the dirty bit
  1075. * by __block_prepare_write() isn't a real problem here as we clear
  1076. * the bit before releasing a page lock and thus writeback cannot
  1077. * ever write the buffer.
  1078. */
  1079. if (dirty)
  1080. clear_buffer_dirty(bh);
  1081. ret = ext3_journal_get_write_access(handle, bh);
  1082. if (!ret && dirty)
  1083. ret = ext3_journal_dirty_metadata(handle, bh);
  1084. return ret;
  1085. }
  1086. /*
  1087. * Truncate blocks that were not used by write. We have to truncate the
  1088. * pagecache as well so that corresponding buffers get properly unmapped.
  1089. */
  1090. static void ext3_truncate_failed_write(struct inode *inode)
  1091. {
  1092. truncate_inode_pages(inode->i_mapping, inode->i_size);
  1093. ext3_truncate(inode);
  1094. }
  1095. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1096. loff_t pos, unsigned len, unsigned flags,
  1097. struct page **pagep, void **fsdata)
  1098. {
  1099. struct inode *inode = mapping->host;
  1100. int ret;
  1101. handle_t *handle;
  1102. int retries = 0;
  1103. struct page *page;
  1104. pgoff_t index;
  1105. unsigned from, to;
  1106. /* Reserve one block more for addition to orphan list in case
  1107. * we allocate blocks but write fails for some reason */
  1108. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1109. index = pos >> PAGE_CACHE_SHIFT;
  1110. from = pos & (PAGE_CACHE_SIZE - 1);
  1111. to = from + len;
  1112. retry:
  1113. page = grab_cache_page_write_begin(mapping, index, flags);
  1114. if (!page)
  1115. return -ENOMEM;
  1116. *pagep = page;
  1117. handle = ext3_journal_start(inode, needed_blocks);
  1118. if (IS_ERR(handle)) {
  1119. unlock_page(page);
  1120. page_cache_release(page);
  1121. ret = PTR_ERR(handle);
  1122. goto out;
  1123. }
  1124. ret = __block_write_begin(page, pos, len, ext3_get_block);
  1125. if (ret)
  1126. goto write_begin_failed;
  1127. if (ext3_should_journal_data(inode)) {
  1128. ret = walk_page_buffers(handle, page_buffers(page),
  1129. from, to, NULL, do_journal_get_write_access);
  1130. }
  1131. write_begin_failed:
  1132. if (ret) {
  1133. /*
  1134. * block_write_begin may have instantiated a few blocks
  1135. * outside i_size. Trim these off again. Don't need
  1136. * i_size_read because we hold i_mutex.
  1137. *
  1138. * Add inode to orphan list in case we crash before truncate
  1139. * finishes. Do this only if ext3_can_truncate() agrees so
  1140. * that orphan processing code is happy.
  1141. */
  1142. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1143. ext3_orphan_add(handle, inode);
  1144. ext3_journal_stop(handle);
  1145. unlock_page(page);
  1146. page_cache_release(page);
  1147. if (pos + len > inode->i_size)
  1148. ext3_truncate_failed_write(inode);
  1149. }
  1150. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1151. goto retry;
  1152. out:
  1153. return ret;
  1154. }
  1155. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1156. {
  1157. int err = journal_dirty_data(handle, bh);
  1158. if (err)
  1159. ext3_journal_abort_handle(__func__, __func__,
  1160. bh, handle, err);
  1161. return err;
  1162. }
  1163. /* For ordered writepage and write_end functions */
  1164. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1165. {
  1166. /*
  1167. * Write could have mapped the buffer but it didn't copy the data in
  1168. * yet. So avoid filing such buffer into a transaction.
  1169. */
  1170. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1171. return ext3_journal_dirty_data(handle, bh);
  1172. return 0;
  1173. }
  1174. /* For write_end() in data=journal mode */
  1175. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1176. {
  1177. if (!buffer_mapped(bh) || buffer_freed(bh))
  1178. return 0;
  1179. set_buffer_uptodate(bh);
  1180. return ext3_journal_dirty_metadata(handle, bh);
  1181. }
  1182. /*
  1183. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1184. * for the whole page but later we failed to copy the data in. Update inode
  1185. * size according to what we managed to copy. The rest is going to be
  1186. * truncated in write_end function.
  1187. */
  1188. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1189. {
  1190. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1191. if (pos + copied > inode->i_size)
  1192. i_size_write(inode, pos + copied);
  1193. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1194. EXT3_I(inode)->i_disksize = pos + copied;
  1195. mark_inode_dirty(inode);
  1196. }
  1197. }
  1198. /*
  1199. * We need to pick up the new inode size which generic_commit_write gave us
  1200. * `file' can be NULL - eg, when called from page_symlink().
  1201. *
  1202. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1203. * buffers are managed internally.
  1204. */
  1205. static int ext3_ordered_write_end(struct file *file,
  1206. struct address_space *mapping,
  1207. loff_t pos, unsigned len, unsigned copied,
  1208. struct page *page, void *fsdata)
  1209. {
  1210. handle_t *handle = ext3_journal_current_handle();
  1211. struct inode *inode = file->f_mapping->host;
  1212. unsigned from, to;
  1213. int ret = 0, ret2;
  1214. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1215. from = pos & (PAGE_CACHE_SIZE - 1);
  1216. to = from + copied;
  1217. ret = walk_page_buffers(handle, page_buffers(page),
  1218. from, to, NULL, journal_dirty_data_fn);
  1219. if (ret == 0)
  1220. update_file_sizes(inode, pos, copied);
  1221. /*
  1222. * There may be allocated blocks outside of i_size because
  1223. * we failed to copy some data. Prepare for truncate.
  1224. */
  1225. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1226. ext3_orphan_add(handle, inode);
  1227. ret2 = ext3_journal_stop(handle);
  1228. if (!ret)
  1229. ret = ret2;
  1230. unlock_page(page);
  1231. page_cache_release(page);
  1232. if (pos + len > inode->i_size)
  1233. ext3_truncate_failed_write(inode);
  1234. return ret ? ret : copied;
  1235. }
  1236. static int ext3_writeback_write_end(struct file *file,
  1237. struct address_space *mapping,
  1238. loff_t pos, unsigned len, unsigned copied,
  1239. struct page *page, void *fsdata)
  1240. {
  1241. handle_t *handle = ext3_journal_current_handle();
  1242. struct inode *inode = file->f_mapping->host;
  1243. int ret;
  1244. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1245. update_file_sizes(inode, pos, copied);
  1246. /*
  1247. * There may be allocated blocks outside of i_size because
  1248. * we failed to copy some data. Prepare for truncate.
  1249. */
  1250. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1251. ext3_orphan_add(handle, inode);
  1252. ret = ext3_journal_stop(handle);
  1253. unlock_page(page);
  1254. page_cache_release(page);
  1255. if (pos + len > inode->i_size)
  1256. ext3_truncate_failed_write(inode);
  1257. return ret ? ret : copied;
  1258. }
  1259. static int ext3_journalled_write_end(struct file *file,
  1260. struct address_space *mapping,
  1261. loff_t pos, unsigned len, unsigned copied,
  1262. struct page *page, void *fsdata)
  1263. {
  1264. handle_t *handle = ext3_journal_current_handle();
  1265. struct inode *inode = mapping->host;
  1266. int ret = 0, ret2;
  1267. int partial = 0;
  1268. unsigned from, to;
  1269. from = pos & (PAGE_CACHE_SIZE - 1);
  1270. to = from + len;
  1271. if (copied < len) {
  1272. if (!PageUptodate(page))
  1273. copied = 0;
  1274. page_zero_new_buffers(page, from + copied, to);
  1275. to = from + copied;
  1276. }
  1277. ret = walk_page_buffers(handle, page_buffers(page), from,
  1278. to, &partial, write_end_fn);
  1279. if (!partial)
  1280. SetPageUptodate(page);
  1281. if (pos + copied > inode->i_size)
  1282. i_size_write(inode, pos + copied);
  1283. /*
  1284. * There may be allocated blocks outside of i_size because
  1285. * we failed to copy some data. Prepare for truncate.
  1286. */
  1287. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1288. ext3_orphan_add(handle, inode);
  1289. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1290. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1291. EXT3_I(inode)->i_disksize = inode->i_size;
  1292. ret2 = ext3_mark_inode_dirty(handle, inode);
  1293. if (!ret)
  1294. ret = ret2;
  1295. }
  1296. ret2 = ext3_journal_stop(handle);
  1297. if (!ret)
  1298. ret = ret2;
  1299. unlock_page(page);
  1300. page_cache_release(page);
  1301. if (pos + len > inode->i_size)
  1302. ext3_truncate_failed_write(inode);
  1303. return ret ? ret : copied;
  1304. }
  1305. /*
  1306. * bmap() is special. It gets used by applications such as lilo and by
  1307. * the swapper to find the on-disk block of a specific piece of data.
  1308. *
  1309. * Naturally, this is dangerous if the block concerned is still in the
  1310. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1311. * filesystem and enables swap, then they may get a nasty shock when the
  1312. * data getting swapped to that swapfile suddenly gets overwritten by
  1313. * the original zero's written out previously to the journal and
  1314. * awaiting writeback in the kernel's buffer cache.
  1315. *
  1316. * So, if we see any bmap calls here on a modified, data-journaled file,
  1317. * take extra steps to flush any blocks which might be in the cache.
  1318. */
  1319. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1320. {
  1321. struct inode *inode = mapping->host;
  1322. journal_t *journal;
  1323. int err;
  1324. if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
  1325. /*
  1326. * This is a REALLY heavyweight approach, but the use of
  1327. * bmap on dirty files is expected to be extremely rare:
  1328. * only if we run lilo or swapon on a freshly made file
  1329. * do we expect this to happen.
  1330. *
  1331. * (bmap requires CAP_SYS_RAWIO so this does not
  1332. * represent an unprivileged user DOS attack --- we'd be
  1333. * in trouble if mortal users could trigger this path at
  1334. * will.)
  1335. *
  1336. * NB. EXT3_STATE_JDATA is not set on files other than
  1337. * regular files. If somebody wants to bmap a directory
  1338. * or symlink and gets confused because the buffer
  1339. * hasn't yet been flushed to disk, they deserve
  1340. * everything they get.
  1341. */
  1342. ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
  1343. journal = EXT3_JOURNAL(inode);
  1344. journal_lock_updates(journal);
  1345. err = journal_flush(journal);
  1346. journal_unlock_updates(journal);
  1347. if (err)
  1348. return 0;
  1349. }
  1350. return generic_block_bmap(mapping,block,ext3_get_block);
  1351. }
  1352. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1353. {
  1354. get_bh(bh);
  1355. return 0;
  1356. }
  1357. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1358. {
  1359. put_bh(bh);
  1360. return 0;
  1361. }
  1362. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1363. {
  1364. return !buffer_mapped(bh);
  1365. }
  1366. /*
  1367. * Note that we always start a transaction even if we're not journalling
  1368. * data. This is to preserve ordering: any hole instantiation within
  1369. * __block_write_full_page -> ext3_get_block() should be journalled
  1370. * along with the data so we don't crash and then get metadata which
  1371. * refers to old data.
  1372. *
  1373. * In all journalling modes block_write_full_page() will start the I/O.
  1374. *
  1375. * Problem:
  1376. *
  1377. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1378. * ext3_writepage()
  1379. *
  1380. * Similar for:
  1381. *
  1382. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1383. *
  1384. * Same applies to ext3_get_block(). We will deadlock on various things like
  1385. * lock_journal and i_truncate_mutex.
  1386. *
  1387. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1388. * allocations fail.
  1389. *
  1390. * 16May01: If we're reentered then journal_current_handle() will be
  1391. * non-zero. We simply *return*.
  1392. *
  1393. * 1 July 2001: @@@ FIXME:
  1394. * In journalled data mode, a data buffer may be metadata against the
  1395. * current transaction. But the same file is part of a shared mapping
  1396. * and someone does a writepage() on it.
  1397. *
  1398. * We will move the buffer onto the async_data list, but *after* it has
  1399. * been dirtied. So there's a small window where we have dirty data on
  1400. * BJ_Metadata.
  1401. *
  1402. * Note that this only applies to the last partial page in the file. The
  1403. * bit which block_write_full_page() uses prepare/commit for. (That's
  1404. * broken code anyway: it's wrong for msync()).
  1405. *
  1406. * It's a rare case: affects the final partial page, for journalled data
  1407. * where the file is subject to bith write() and writepage() in the same
  1408. * transction. To fix it we'll need a custom block_write_full_page().
  1409. * We'll probably need that anyway for journalling writepage() output.
  1410. *
  1411. * We don't honour synchronous mounts for writepage(). That would be
  1412. * disastrous. Any write() or metadata operation will sync the fs for
  1413. * us.
  1414. *
  1415. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1416. * we don't need to open a transaction here.
  1417. */
  1418. static int ext3_ordered_writepage(struct page *page,
  1419. struct writeback_control *wbc)
  1420. {
  1421. struct inode *inode = page->mapping->host;
  1422. struct buffer_head *page_bufs;
  1423. handle_t *handle = NULL;
  1424. int ret = 0;
  1425. int err;
  1426. J_ASSERT(PageLocked(page));
  1427. /*
  1428. * We don't want to warn for emergency remount. The condition is
  1429. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1430. * avoid slow-downs.
  1431. */
  1432. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1433. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1434. /*
  1435. * We give up here if we're reentered, because it might be for a
  1436. * different filesystem.
  1437. */
  1438. if (ext3_journal_current_handle())
  1439. goto out_fail;
  1440. if (!page_has_buffers(page)) {
  1441. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1442. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1443. page_bufs = page_buffers(page);
  1444. } else {
  1445. page_bufs = page_buffers(page);
  1446. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1447. NULL, buffer_unmapped)) {
  1448. /* Provide NULL get_block() to catch bugs if buffers
  1449. * weren't really mapped */
  1450. return block_write_full_page(page, NULL, wbc);
  1451. }
  1452. }
  1453. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1454. if (IS_ERR(handle)) {
  1455. ret = PTR_ERR(handle);
  1456. goto out_fail;
  1457. }
  1458. walk_page_buffers(handle, page_bufs, 0,
  1459. PAGE_CACHE_SIZE, NULL, bget_one);
  1460. ret = block_write_full_page(page, ext3_get_block, wbc);
  1461. /*
  1462. * The page can become unlocked at any point now, and
  1463. * truncate can then come in and change things. So we
  1464. * can't touch *page from now on. But *page_bufs is
  1465. * safe due to elevated refcount.
  1466. */
  1467. /*
  1468. * And attach them to the current transaction. But only if
  1469. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1470. * and generally junk.
  1471. */
  1472. if (ret == 0) {
  1473. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1474. NULL, journal_dirty_data_fn);
  1475. if (!ret)
  1476. ret = err;
  1477. }
  1478. walk_page_buffers(handle, page_bufs, 0,
  1479. PAGE_CACHE_SIZE, NULL, bput_one);
  1480. err = ext3_journal_stop(handle);
  1481. if (!ret)
  1482. ret = err;
  1483. return ret;
  1484. out_fail:
  1485. redirty_page_for_writepage(wbc, page);
  1486. unlock_page(page);
  1487. return ret;
  1488. }
  1489. static int ext3_writeback_writepage(struct page *page,
  1490. struct writeback_control *wbc)
  1491. {
  1492. struct inode *inode = page->mapping->host;
  1493. handle_t *handle = NULL;
  1494. int ret = 0;
  1495. int err;
  1496. J_ASSERT(PageLocked(page));
  1497. /*
  1498. * We don't want to warn for emergency remount. The condition is
  1499. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1500. * avoid slow-downs.
  1501. */
  1502. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1503. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1504. if (ext3_journal_current_handle())
  1505. goto out_fail;
  1506. if (page_has_buffers(page)) {
  1507. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1508. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1509. /* Provide NULL get_block() to catch bugs if buffers
  1510. * weren't really mapped */
  1511. return block_write_full_page(page, NULL, wbc);
  1512. }
  1513. }
  1514. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1515. if (IS_ERR(handle)) {
  1516. ret = PTR_ERR(handle);
  1517. goto out_fail;
  1518. }
  1519. ret = block_write_full_page(page, ext3_get_block, wbc);
  1520. err = ext3_journal_stop(handle);
  1521. if (!ret)
  1522. ret = err;
  1523. return ret;
  1524. out_fail:
  1525. redirty_page_for_writepage(wbc, page);
  1526. unlock_page(page);
  1527. return ret;
  1528. }
  1529. static int ext3_journalled_writepage(struct page *page,
  1530. struct writeback_control *wbc)
  1531. {
  1532. struct inode *inode = page->mapping->host;
  1533. handle_t *handle = NULL;
  1534. int ret = 0;
  1535. int err;
  1536. J_ASSERT(PageLocked(page));
  1537. /*
  1538. * We don't want to warn for emergency remount. The condition is
  1539. * ordered to avoid dereferencing inode->i_sb in non-error case to
  1540. * avoid slow-downs.
  1541. */
  1542. WARN_ON_ONCE(IS_RDONLY(inode) &&
  1543. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ERROR_FS));
  1544. if (ext3_journal_current_handle())
  1545. goto no_write;
  1546. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1547. if (IS_ERR(handle)) {
  1548. ret = PTR_ERR(handle);
  1549. goto no_write;
  1550. }
  1551. if (!page_has_buffers(page) || PageChecked(page)) {
  1552. /*
  1553. * It's mmapped pagecache. Add buffers and journal it. There
  1554. * doesn't seem much point in redirtying the page here.
  1555. */
  1556. ClearPageChecked(page);
  1557. ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
  1558. ext3_get_block);
  1559. if (ret != 0) {
  1560. ext3_journal_stop(handle);
  1561. goto out_unlock;
  1562. }
  1563. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1564. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1565. err = walk_page_buffers(handle, page_buffers(page), 0,
  1566. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1567. if (ret == 0)
  1568. ret = err;
  1569. ext3_set_inode_state(inode, EXT3_STATE_JDATA);
  1570. unlock_page(page);
  1571. } else {
  1572. /*
  1573. * It may be a page full of checkpoint-mode buffers. We don't
  1574. * really know unless we go poke around in the buffer_heads.
  1575. * But block_write_full_page will do the right thing.
  1576. */
  1577. ret = block_write_full_page(page, ext3_get_block, wbc);
  1578. }
  1579. err = ext3_journal_stop(handle);
  1580. if (!ret)
  1581. ret = err;
  1582. out:
  1583. return ret;
  1584. no_write:
  1585. redirty_page_for_writepage(wbc, page);
  1586. out_unlock:
  1587. unlock_page(page);
  1588. goto out;
  1589. }
  1590. static int ext3_readpage(struct file *file, struct page *page)
  1591. {
  1592. return mpage_readpage(page, ext3_get_block);
  1593. }
  1594. static int
  1595. ext3_readpages(struct file *file, struct address_space *mapping,
  1596. struct list_head *pages, unsigned nr_pages)
  1597. {
  1598. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1599. }
  1600. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1601. {
  1602. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1603. /*
  1604. * If it's a full truncate we just forget about the pending dirtying
  1605. */
  1606. if (offset == 0)
  1607. ClearPageChecked(page);
  1608. journal_invalidatepage(journal, page, offset);
  1609. }
  1610. static int ext3_releasepage(struct page *page, gfp_t wait)
  1611. {
  1612. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1613. WARN_ON(PageChecked(page));
  1614. if (!page_has_buffers(page))
  1615. return 0;
  1616. return journal_try_to_free_buffers(journal, page, wait);
  1617. }
  1618. /*
  1619. * If the O_DIRECT write will extend the file then add this inode to the
  1620. * orphan list. So recovery will truncate it back to the original size
  1621. * if the machine crashes during the write.
  1622. *
  1623. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1624. * crashes then stale disk data _may_ be exposed inside the file. But current
  1625. * VFS code falls back into buffered path in that case so we are safe.
  1626. */
  1627. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1628. const struct iovec *iov, loff_t offset,
  1629. unsigned long nr_segs)
  1630. {
  1631. struct file *file = iocb->ki_filp;
  1632. struct inode *inode = file->f_mapping->host;
  1633. struct ext3_inode_info *ei = EXT3_I(inode);
  1634. handle_t *handle;
  1635. ssize_t ret;
  1636. int orphan = 0;
  1637. size_t count = iov_length(iov, nr_segs);
  1638. int retries = 0;
  1639. if (rw == WRITE) {
  1640. loff_t final_size = offset + count;
  1641. if (final_size > inode->i_size) {
  1642. /* Credits for sb + inode write */
  1643. handle = ext3_journal_start(inode, 2);
  1644. if (IS_ERR(handle)) {
  1645. ret = PTR_ERR(handle);
  1646. goto out;
  1647. }
  1648. ret = ext3_orphan_add(handle, inode);
  1649. if (ret) {
  1650. ext3_journal_stop(handle);
  1651. goto out;
  1652. }
  1653. orphan = 1;
  1654. ei->i_disksize = inode->i_size;
  1655. ext3_journal_stop(handle);
  1656. }
  1657. }
  1658. retry:
  1659. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1660. offset, nr_segs,
  1661. ext3_get_block, NULL);
  1662. /*
  1663. * In case of error extending write may have instantiated a few
  1664. * blocks outside i_size. Trim these off again.
  1665. */
  1666. if (unlikely((rw & WRITE) && ret < 0)) {
  1667. loff_t isize = i_size_read(inode);
  1668. loff_t end = offset + iov_length(iov, nr_segs);
  1669. if (end > isize)
  1670. vmtruncate(inode, isize);
  1671. }
  1672. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1673. goto retry;
  1674. if (orphan) {
  1675. int err;
  1676. /* Credits for sb + inode write */
  1677. handle = ext3_journal_start(inode, 2);
  1678. if (IS_ERR(handle)) {
  1679. /* This is really bad luck. We've written the data
  1680. * but cannot extend i_size. Truncate allocated blocks
  1681. * and pretend the write failed... */
  1682. ext3_truncate(inode);
  1683. ret = PTR_ERR(handle);
  1684. goto out;
  1685. }
  1686. if (inode->i_nlink)
  1687. ext3_orphan_del(handle, inode);
  1688. if (ret > 0) {
  1689. loff_t end = offset + ret;
  1690. if (end > inode->i_size) {
  1691. ei->i_disksize = end;
  1692. i_size_write(inode, end);
  1693. /*
  1694. * We're going to return a positive `ret'
  1695. * here due to non-zero-length I/O, so there's
  1696. * no way of reporting error returns from
  1697. * ext3_mark_inode_dirty() to userspace. So
  1698. * ignore it.
  1699. */
  1700. ext3_mark_inode_dirty(handle, inode);
  1701. }
  1702. }
  1703. err = ext3_journal_stop(handle);
  1704. if (ret == 0)
  1705. ret = err;
  1706. }
  1707. out:
  1708. return ret;
  1709. }
  1710. /*
  1711. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1712. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1713. * much here because ->set_page_dirty is called under VFS locks. The page is
  1714. * not necessarily locked.
  1715. *
  1716. * We cannot just dirty the page and leave attached buffers clean, because the
  1717. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1718. * or jbddirty because all the journalling code will explode.
  1719. *
  1720. * So what we do is to mark the page "pending dirty" and next time writepage
  1721. * is called, propagate that into the buffers appropriately.
  1722. */
  1723. static int ext3_journalled_set_page_dirty(struct page *page)
  1724. {
  1725. SetPageChecked(page);
  1726. return __set_page_dirty_nobuffers(page);
  1727. }
  1728. static const struct address_space_operations ext3_ordered_aops = {
  1729. .readpage = ext3_readpage,
  1730. .readpages = ext3_readpages,
  1731. .writepage = ext3_ordered_writepage,
  1732. .write_begin = ext3_write_begin,
  1733. .write_end = ext3_ordered_write_end,
  1734. .bmap = ext3_bmap,
  1735. .invalidatepage = ext3_invalidatepage,
  1736. .releasepage = ext3_releasepage,
  1737. .direct_IO = ext3_direct_IO,
  1738. .migratepage = buffer_migrate_page,
  1739. .is_partially_uptodate = block_is_partially_uptodate,
  1740. .error_remove_page = generic_error_remove_page,
  1741. };
  1742. static const struct address_space_operations ext3_writeback_aops = {
  1743. .readpage = ext3_readpage,
  1744. .readpages = ext3_readpages,
  1745. .writepage = ext3_writeback_writepage,
  1746. .write_begin = ext3_write_begin,
  1747. .write_end = ext3_writeback_write_end,
  1748. .bmap = ext3_bmap,
  1749. .invalidatepage = ext3_invalidatepage,
  1750. .releasepage = ext3_releasepage,
  1751. .direct_IO = ext3_direct_IO,
  1752. .migratepage = buffer_migrate_page,
  1753. .is_partially_uptodate = block_is_partially_uptodate,
  1754. .error_remove_page = generic_error_remove_page,
  1755. };
  1756. static const struct address_space_operations ext3_journalled_aops = {
  1757. .readpage = ext3_readpage,
  1758. .readpages = ext3_readpages,
  1759. .writepage = ext3_journalled_writepage,
  1760. .write_begin = ext3_write_begin,
  1761. .write_end = ext3_journalled_write_end,
  1762. .set_page_dirty = ext3_journalled_set_page_dirty,
  1763. .bmap = ext3_bmap,
  1764. .invalidatepage = ext3_invalidatepage,
  1765. .releasepage = ext3_releasepage,
  1766. .is_partially_uptodate = block_is_partially_uptodate,
  1767. .error_remove_page = generic_error_remove_page,
  1768. };
  1769. void ext3_set_aops(struct inode *inode)
  1770. {
  1771. if (ext3_should_order_data(inode))
  1772. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1773. else if (ext3_should_writeback_data(inode))
  1774. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1775. else
  1776. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1777. }
  1778. /*
  1779. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1780. * up to the end of the block which corresponds to `from'.
  1781. * This required during truncate. We need to physically zero the tail end
  1782. * of that block so it doesn't yield old data if the file is later grown.
  1783. */
  1784. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1785. struct address_space *mapping, loff_t from)
  1786. {
  1787. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1788. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1789. unsigned blocksize, iblock, length, pos;
  1790. struct inode *inode = mapping->host;
  1791. struct buffer_head *bh;
  1792. int err = 0;
  1793. blocksize = inode->i_sb->s_blocksize;
  1794. length = blocksize - (offset & (blocksize - 1));
  1795. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1796. if (!page_has_buffers(page))
  1797. create_empty_buffers(page, blocksize, 0);
  1798. /* Find the buffer that contains "offset" */
  1799. bh = page_buffers(page);
  1800. pos = blocksize;
  1801. while (offset >= pos) {
  1802. bh = bh->b_this_page;
  1803. iblock++;
  1804. pos += blocksize;
  1805. }
  1806. err = 0;
  1807. if (buffer_freed(bh)) {
  1808. BUFFER_TRACE(bh, "freed: skip");
  1809. goto unlock;
  1810. }
  1811. if (!buffer_mapped(bh)) {
  1812. BUFFER_TRACE(bh, "unmapped");
  1813. ext3_get_block(inode, iblock, bh, 0);
  1814. /* unmapped? It's a hole - nothing to do */
  1815. if (!buffer_mapped(bh)) {
  1816. BUFFER_TRACE(bh, "still unmapped");
  1817. goto unlock;
  1818. }
  1819. }
  1820. /* Ok, it's mapped. Make sure it's up-to-date */
  1821. if (PageUptodate(page))
  1822. set_buffer_uptodate(bh);
  1823. if (!buffer_uptodate(bh)) {
  1824. err = -EIO;
  1825. ll_rw_block(READ, 1, &bh);
  1826. wait_on_buffer(bh);
  1827. /* Uhhuh. Read error. Complain and punt. */
  1828. if (!buffer_uptodate(bh))
  1829. goto unlock;
  1830. }
  1831. if (ext3_should_journal_data(inode)) {
  1832. BUFFER_TRACE(bh, "get write access");
  1833. err = ext3_journal_get_write_access(handle, bh);
  1834. if (err)
  1835. goto unlock;
  1836. }
  1837. zero_user(page, offset, length);
  1838. BUFFER_TRACE(bh, "zeroed end of block");
  1839. err = 0;
  1840. if (ext3_should_journal_data(inode)) {
  1841. err = ext3_journal_dirty_metadata(handle, bh);
  1842. } else {
  1843. if (ext3_should_order_data(inode))
  1844. err = ext3_journal_dirty_data(handle, bh);
  1845. mark_buffer_dirty(bh);
  1846. }
  1847. unlock:
  1848. unlock_page(page);
  1849. page_cache_release(page);
  1850. return err;
  1851. }
  1852. /*
  1853. * Probably it should be a library function... search for first non-zero word
  1854. * or memcmp with zero_page, whatever is better for particular architecture.
  1855. * Linus?
  1856. */
  1857. static inline int all_zeroes(__le32 *p, __le32 *q)
  1858. {
  1859. while (p < q)
  1860. if (*p++)
  1861. return 0;
  1862. return 1;
  1863. }
  1864. /**
  1865. * ext3_find_shared - find the indirect blocks for partial truncation.
  1866. * @inode: inode in question
  1867. * @depth: depth of the affected branch
  1868. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1869. * @chain: place to store the pointers to partial indirect blocks
  1870. * @top: place to the (detached) top of branch
  1871. *
  1872. * This is a helper function used by ext3_truncate().
  1873. *
  1874. * When we do truncate() we may have to clean the ends of several
  1875. * indirect blocks but leave the blocks themselves alive. Block is
  1876. * partially truncated if some data below the new i_size is referred
  1877. * from it (and it is on the path to the first completely truncated
  1878. * data block, indeed). We have to free the top of that path along
  1879. * with everything to the right of the path. Since no allocation
  1880. * past the truncation point is possible until ext3_truncate()
  1881. * finishes, we may safely do the latter, but top of branch may
  1882. * require special attention - pageout below the truncation point
  1883. * might try to populate it.
  1884. *
  1885. * We atomically detach the top of branch from the tree, store the
  1886. * block number of its root in *@top, pointers to buffer_heads of
  1887. * partially truncated blocks - in @chain[].bh and pointers to
  1888. * their last elements that should not be removed - in
  1889. * @chain[].p. Return value is the pointer to last filled element
  1890. * of @chain.
  1891. *
  1892. * The work left to caller to do the actual freeing of subtrees:
  1893. * a) free the subtree starting from *@top
  1894. * b) free the subtrees whose roots are stored in
  1895. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1896. * c) free the subtrees growing from the inode past the @chain[0].
  1897. * (no partially truncated stuff there). */
  1898. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1899. int offsets[4], Indirect chain[4], __le32 *top)
  1900. {
  1901. Indirect *partial, *p;
  1902. int k, err;
  1903. *top = 0;
  1904. /* Make k index the deepest non-null offset + 1 */
  1905. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1906. ;
  1907. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1908. /* Writer: pointers */
  1909. if (!partial)
  1910. partial = chain + k-1;
  1911. /*
  1912. * If the branch acquired continuation since we've looked at it -
  1913. * fine, it should all survive and (new) top doesn't belong to us.
  1914. */
  1915. if (!partial->key && *partial->p)
  1916. /* Writer: end */
  1917. goto no_top;
  1918. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1919. ;
  1920. /*
  1921. * OK, we've found the last block that must survive. The rest of our
  1922. * branch should be detached before unlocking. However, if that rest
  1923. * of branch is all ours and does not grow immediately from the inode
  1924. * it's easier to cheat and just decrement partial->p.
  1925. */
  1926. if (p == chain + k - 1 && p > chain) {
  1927. p->p--;
  1928. } else {
  1929. *top = *p->p;
  1930. /* Nope, don't do this in ext3. Must leave the tree intact */
  1931. #if 0
  1932. *p->p = 0;
  1933. #endif
  1934. }
  1935. /* Writer: end */
  1936. while(partial > p) {
  1937. brelse(partial->bh);
  1938. partial--;
  1939. }
  1940. no_top:
  1941. return partial;
  1942. }
  1943. /*
  1944. * Zero a number of block pointers in either an inode or an indirect block.
  1945. * If we restart the transaction we must again get write access to the
  1946. * indirect block for further modification.
  1947. *
  1948. * We release `count' blocks on disk, but (last - first) may be greater
  1949. * than `count' because there can be holes in there.
  1950. */
  1951. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1952. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1953. unsigned long count, __le32 *first, __le32 *last)
  1954. {
  1955. __le32 *p;
  1956. if (try_to_extend_transaction(handle, inode)) {
  1957. if (bh) {
  1958. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1959. if (ext3_journal_dirty_metadata(handle, bh))
  1960. return;
  1961. }
  1962. ext3_mark_inode_dirty(handle, inode);
  1963. truncate_restart_transaction(handle, inode);
  1964. if (bh) {
  1965. BUFFER_TRACE(bh, "retaking write access");
  1966. if (ext3_journal_get_write_access(handle, bh))
  1967. return;
  1968. }
  1969. }
  1970. /*
  1971. * Any buffers which are on the journal will be in memory. We find
  1972. * them on the hash table so journal_revoke() will run journal_forget()
  1973. * on them. We've already detached each block from the file, so
  1974. * bforget() in journal_forget() should be safe.
  1975. *
  1976. * AKPM: turn on bforget in journal_forget()!!!
  1977. */
  1978. for (p = first; p < last; p++) {
  1979. u32 nr = le32_to_cpu(*p);
  1980. if (nr) {
  1981. struct buffer_head *bh;
  1982. *p = 0;
  1983. bh = sb_find_get_block(inode->i_sb, nr);
  1984. ext3_forget(handle, 0, inode, bh, nr);
  1985. }
  1986. }
  1987. ext3_free_blocks(handle, inode, block_to_free, count);
  1988. }
  1989. /**
  1990. * ext3_free_data - free a list of data blocks
  1991. * @handle: handle for this transaction
  1992. * @inode: inode we are dealing with
  1993. * @this_bh: indirect buffer_head which contains *@first and *@last
  1994. * @first: array of block numbers
  1995. * @last: points immediately past the end of array
  1996. *
  1997. * We are freeing all blocks referred from that array (numbers are stored as
  1998. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1999. *
  2000. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  2001. * blocks are contiguous then releasing them at one time will only affect one
  2002. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  2003. * actually use a lot of journal space.
  2004. *
  2005. * @this_bh will be %NULL if @first and @last point into the inode's direct
  2006. * block pointers.
  2007. */
  2008. static void ext3_free_data(handle_t *handle, struct inode *inode,
  2009. struct buffer_head *this_bh,
  2010. __le32 *first, __le32 *last)
  2011. {
  2012. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  2013. unsigned long count = 0; /* Number of blocks in the run */
  2014. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  2015. corresponding to
  2016. block_to_free */
  2017. ext3_fsblk_t nr; /* Current block # */
  2018. __le32 *p; /* Pointer into inode/ind
  2019. for current block */
  2020. int err;
  2021. if (this_bh) { /* For indirect block */
  2022. BUFFER_TRACE(this_bh, "get_write_access");
  2023. err = ext3_journal_get_write_access(handle, this_bh);
  2024. /* Important: if we can't update the indirect pointers
  2025. * to the blocks, we can't free them. */
  2026. if (err)
  2027. return;
  2028. }
  2029. for (p = first; p < last; p++) {
  2030. nr = le32_to_cpu(*p);
  2031. if (nr) {
  2032. /* accumulate blocks to free if they're contiguous */
  2033. if (count == 0) {
  2034. block_to_free = nr;
  2035. block_to_free_p = p;
  2036. count = 1;
  2037. } else if (nr == block_to_free + count) {
  2038. count++;
  2039. } else {
  2040. ext3_clear_blocks(handle, inode, this_bh,
  2041. block_to_free,
  2042. count, block_to_free_p, p);
  2043. block_to_free = nr;
  2044. block_to_free_p = p;
  2045. count = 1;
  2046. }
  2047. }
  2048. }
  2049. if (count > 0)
  2050. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  2051. count, block_to_free_p, p);
  2052. if (this_bh) {
  2053. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  2054. /*
  2055. * The buffer head should have an attached journal head at this
  2056. * point. However, if the data is corrupted and an indirect
  2057. * block pointed to itself, it would have been detached when
  2058. * the block was cleared. Check for this instead of OOPSing.
  2059. */
  2060. if (bh2jh(this_bh))
  2061. ext3_journal_dirty_metadata(handle, this_bh);
  2062. else
  2063. ext3_error(inode->i_sb, "ext3_free_data",
  2064. "circular indirect block detected, "
  2065. "inode=%lu, block=%llu",
  2066. inode->i_ino,
  2067. (unsigned long long)this_bh->b_blocknr);
  2068. }
  2069. }
  2070. /**
  2071. * ext3_free_branches - free an array of branches
  2072. * @handle: JBD handle for this transaction
  2073. * @inode: inode we are dealing with
  2074. * @parent_bh: the buffer_head which contains *@first and *@last
  2075. * @first: array of block numbers
  2076. * @last: pointer immediately past the end of array
  2077. * @depth: depth of the branches to free
  2078. *
  2079. * We are freeing all blocks referred from these branches (numbers are
  2080. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2081. * appropriately.
  2082. */
  2083. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  2084. struct buffer_head *parent_bh,
  2085. __le32 *first, __le32 *last, int depth)
  2086. {
  2087. ext3_fsblk_t nr;
  2088. __le32 *p;
  2089. if (is_handle_aborted(handle))
  2090. return;
  2091. if (depth--) {
  2092. struct buffer_head *bh;
  2093. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2094. p = last;
  2095. while (--p >= first) {
  2096. nr = le32_to_cpu(*p);
  2097. if (!nr)
  2098. continue; /* A hole */
  2099. /* Go read the buffer for the next level down */
  2100. bh = sb_bread(inode->i_sb, nr);
  2101. /*
  2102. * A read failure? Report error and clear slot
  2103. * (should be rare).
  2104. */
  2105. if (!bh) {
  2106. ext3_error(inode->i_sb, "ext3_free_branches",
  2107. "Read failure, inode=%lu, block="E3FSBLK,
  2108. inode->i_ino, nr);
  2109. continue;
  2110. }
  2111. /* This zaps the entire block. Bottom up. */
  2112. BUFFER_TRACE(bh, "free child branches");
  2113. ext3_free_branches(handle, inode, bh,
  2114. (__le32*)bh->b_data,
  2115. (__le32*)bh->b_data + addr_per_block,
  2116. depth);
  2117. /*
  2118. * Everything below this this pointer has been
  2119. * released. Now let this top-of-subtree go.
  2120. *
  2121. * We want the freeing of this indirect block to be
  2122. * atomic in the journal with the updating of the
  2123. * bitmap block which owns it. So make some room in
  2124. * the journal.
  2125. *
  2126. * We zero the parent pointer *after* freeing its
  2127. * pointee in the bitmaps, so if extend_transaction()
  2128. * for some reason fails to put the bitmap changes and
  2129. * the release into the same transaction, recovery
  2130. * will merely complain about releasing a free block,
  2131. * rather than leaking blocks.
  2132. */
  2133. if (is_handle_aborted(handle))
  2134. return;
  2135. if (try_to_extend_transaction(handle, inode)) {
  2136. ext3_mark_inode_dirty(handle, inode);
  2137. truncate_restart_transaction(handle, inode);
  2138. }
  2139. /*
  2140. * We've probably journalled the indirect block several
  2141. * times during the truncate. But it's no longer
  2142. * needed and we now drop it from the transaction via
  2143. * journal_revoke().
  2144. *
  2145. * That's easy if it's exclusively part of this
  2146. * transaction. But if it's part of the committing
  2147. * transaction then journal_forget() will simply
  2148. * brelse() it. That means that if the underlying
  2149. * block is reallocated in ext3_get_block(),
  2150. * unmap_underlying_metadata() will find this block
  2151. * and will try to get rid of it. damn, damn. Thus
  2152. * we don't allow a block to be reallocated until
  2153. * a transaction freeing it has fully committed.
  2154. *
  2155. * We also have to make sure journal replay after a
  2156. * crash does not overwrite non-journaled data blocks
  2157. * with old metadata when the block got reallocated for
  2158. * data. Thus we have to store a revoke record for a
  2159. * block in the same transaction in which we free the
  2160. * block.
  2161. */
  2162. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2163. ext3_free_blocks(handle, inode, nr, 1);
  2164. if (parent_bh) {
  2165. /*
  2166. * The block which we have just freed is
  2167. * pointed to by an indirect block: journal it
  2168. */
  2169. BUFFER_TRACE(parent_bh, "get_write_access");
  2170. if (!ext3_journal_get_write_access(handle,
  2171. parent_bh)){
  2172. *p = 0;
  2173. BUFFER_TRACE(parent_bh,
  2174. "call ext3_journal_dirty_metadata");
  2175. ext3_journal_dirty_metadata(handle,
  2176. parent_bh);
  2177. }
  2178. }
  2179. }
  2180. } else {
  2181. /* We have reached the bottom of the tree. */
  2182. BUFFER_TRACE(parent_bh, "free data blocks");
  2183. ext3_free_data(handle, inode, parent_bh, first, last);
  2184. }
  2185. }
  2186. int ext3_can_truncate(struct inode *inode)
  2187. {
  2188. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2189. return 0;
  2190. if (S_ISREG(inode->i_mode))
  2191. return 1;
  2192. if (S_ISDIR(inode->i_mode))
  2193. return 1;
  2194. if (S_ISLNK(inode->i_mode))
  2195. return !ext3_inode_is_fast_symlink(inode);
  2196. return 0;
  2197. }
  2198. /*
  2199. * ext3_truncate()
  2200. *
  2201. * We block out ext3_get_block() block instantiations across the entire
  2202. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2203. * simultaneously on behalf of the same inode.
  2204. *
  2205. * As we work through the truncate and commmit bits of it to the journal there
  2206. * is one core, guiding principle: the file's tree must always be consistent on
  2207. * disk. We must be able to restart the truncate after a crash.
  2208. *
  2209. * The file's tree may be transiently inconsistent in memory (although it
  2210. * probably isn't), but whenever we close off and commit a journal transaction,
  2211. * the contents of (the filesystem + the journal) must be consistent and
  2212. * restartable. It's pretty simple, really: bottom up, right to left (although
  2213. * left-to-right works OK too).
  2214. *
  2215. * Note that at recovery time, journal replay occurs *before* the restart of
  2216. * truncate against the orphan inode list.
  2217. *
  2218. * The committed inode has the new, desired i_size (which is the same as
  2219. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2220. * that this inode's truncate did not complete and it will again call
  2221. * ext3_truncate() to have another go. So there will be instantiated blocks
  2222. * to the right of the truncation point in a crashed ext3 filesystem. But
  2223. * that's fine - as long as they are linked from the inode, the post-crash
  2224. * ext3_truncate() run will find them and release them.
  2225. */
  2226. void ext3_truncate(struct inode *inode)
  2227. {
  2228. handle_t *handle;
  2229. struct ext3_inode_info *ei = EXT3_I(inode);
  2230. __le32 *i_data = ei->i_data;
  2231. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2232. struct address_space *mapping = inode->i_mapping;
  2233. int offsets[4];
  2234. Indirect chain[4];
  2235. Indirect *partial;
  2236. __le32 nr = 0;
  2237. int n;
  2238. long last_block;
  2239. unsigned blocksize = inode->i_sb->s_blocksize;
  2240. struct page *page;
  2241. if (!ext3_can_truncate(inode))
  2242. goto out_notrans;
  2243. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2244. ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
  2245. /*
  2246. * We have to lock the EOF page here, because lock_page() nests
  2247. * outside journal_start().
  2248. */
  2249. if ((inode->i_size & (blocksize - 1)) == 0) {
  2250. /* Block boundary? Nothing to do */
  2251. page = NULL;
  2252. } else {
  2253. page = grab_cache_page(mapping,
  2254. inode->i_size >> PAGE_CACHE_SHIFT);
  2255. if (!page)
  2256. goto out_notrans;
  2257. }
  2258. handle = start_transaction(inode);
  2259. if (IS_ERR(handle)) {
  2260. if (page) {
  2261. clear_highpage(page);
  2262. flush_dcache_page(page);
  2263. unlock_page(page);
  2264. page_cache_release(page);
  2265. }
  2266. goto out_notrans;
  2267. }
  2268. last_block = (inode->i_size + blocksize-1)
  2269. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2270. if (page)
  2271. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2272. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2273. if (n == 0)
  2274. goto out_stop; /* error */
  2275. /*
  2276. * OK. This truncate is going to happen. We add the inode to the
  2277. * orphan list, so that if this truncate spans multiple transactions,
  2278. * and we crash, we will resume the truncate when the filesystem
  2279. * recovers. It also marks the inode dirty, to catch the new size.
  2280. *
  2281. * Implication: the file must always be in a sane, consistent
  2282. * truncatable state while each transaction commits.
  2283. */
  2284. if (ext3_orphan_add(handle, inode))
  2285. goto out_stop;
  2286. /*
  2287. * The orphan list entry will now protect us from any crash which
  2288. * occurs before the truncate completes, so it is now safe to propagate
  2289. * the new, shorter inode size (held for now in i_size) into the
  2290. * on-disk inode. We do this via i_disksize, which is the value which
  2291. * ext3 *really* writes onto the disk inode.
  2292. */
  2293. ei->i_disksize = inode->i_size;
  2294. /*
  2295. * From here we block out all ext3_get_block() callers who want to
  2296. * modify the block allocation tree.
  2297. */
  2298. mutex_lock(&ei->truncate_mutex);
  2299. if (n == 1) { /* direct blocks */
  2300. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2301. i_data + EXT3_NDIR_BLOCKS);
  2302. goto do_indirects;
  2303. }
  2304. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2305. /* Kill the top of shared branch (not detached) */
  2306. if (nr) {
  2307. if (partial == chain) {
  2308. /* Shared branch grows from the inode */
  2309. ext3_free_branches(handle, inode, NULL,
  2310. &nr, &nr+1, (chain+n-1) - partial);
  2311. *partial->p = 0;
  2312. /*
  2313. * We mark the inode dirty prior to restart,
  2314. * and prior to stop. No need for it here.
  2315. */
  2316. } else {
  2317. /* Shared branch grows from an indirect block */
  2318. ext3_free_branches(handle, inode, partial->bh,
  2319. partial->p,
  2320. partial->p+1, (chain+n-1) - partial);
  2321. }
  2322. }
  2323. /* Clear the ends of indirect blocks on the shared branch */
  2324. while (partial > chain) {
  2325. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2326. (__le32*)partial->bh->b_data+addr_per_block,
  2327. (chain+n-1) - partial);
  2328. BUFFER_TRACE(partial->bh, "call brelse");
  2329. brelse (partial->bh);
  2330. partial--;
  2331. }
  2332. do_indirects:
  2333. /* Kill the remaining (whole) subtrees */
  2334. switch (offsets[0]) {
  2335. default:
  2336. nr = i_data[EXT3_IND_BLOCK];
  2337. if (nr) {
  2338. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2339. i_data[EXT3_IND_BLOCK] = 0;
  2340. }
  2341. case EXT3_IND_BLOCK:
  2342. nr = i_data[EXT3_DIND_BLOCK];
  2343. if (nr) {
  2344. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2345. i_data[EXT3_DIND_BLOCK] = 0;
  2346. }
  2347. case EXT3_DIND_BLOCK:
  2348. nr = i_data[EXT3_TIND_BLOCK];
  2349. if (nr) {
  2350. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2351. i_data[EXT3_TIND_BLOCK] = 0;
  2352. }
  2353. case EXT3_TIND_BLOCK:
  2354. ;
  2355. }
  2356. ext3_discard_reservation(inode);
  2357. mutex_unlock(&ei->truncate_mutex);
  2358. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2359. ext3_mark_inode_dirty(handle, inode);
  2360. /*
  2361. * In a multi-transaction truncate, we only make the final transaction
  2362. * synchronous
  2363. */
  2364. if (IS_SYNC(inode))
  2365. handle->h_sync = 1;
  2366. out_stop:
  2367. /*
  2368. * If this was a simple ftruncate(), and the file will remain alive
  2369. * then we need to clear up the orphan record which we created above.
  2370. * However, if this was a real unlink then we were called by
  2371. * ext3_evict_inode(), and we allow that function to clean up the
  2372. * orphan info for us.
  2373. */
  2374. if (inode->i_nlink)
  2375. ext3_orphan_del(handle, inode);
  2376. ext3_journal_stop(handle);
  2377. return;
  2378. out_notrans:
  2379. /*
  2380. * Delete the inode from orphan list so that it doesn't stay there
  2381. * forever and trigger assertion on umount.
  2382. */
  2383. if (inode->i_nlink)
  2384. ext3_orphan_del(NULL, inode);
  2385. }
  2386. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2387. unsigned long ino, struct ext3_iloc *iloc)
  2388. {
  2389. unsigned long block_group;
  2390. unsigned long offset;
  2391. ext3_fsblk_t block;
  2392. struct ext3_group_desc *gdp;
  2393. if (!ext3_valid_inum(sb, ino)) {
  2394. /*
  2395. * This error is already checked for in namei.c unless we are
  2396. * looking at an NFS filehandle, in which case no error
  2397. * report is needed
  2398. */
  2399. return 0;
  2400. }
  2401. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2402. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2403. if (!gdp)
  2404. return 0;
  2405. /*
  2406. * Figure out the offset within the block group inode table
  2407. */
  2408. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2409. EXT3_INODE_SIZE(sb);
  2410. block = le32_to_cpu(gdp->bg_inode_table) +
  2411. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2412. iloc->block_group = block_group;
  2413. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2414. return block;
  2415. }
  2416. /*
  2417. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2418. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2419. * data in memory that is needed to recreate the on-disk version of this
  2420. * inode.
  2421. */
  2422. static int __ext3_get_inode_loc(struct inode *inode,
  2423. struct ext3_iloc *iloc, int in_mem)
  2424. {
  2425. ext3_fsblk_t block;
  2426. struct buffer_head *bh;
  2427. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2428. if (!block)
  2429. return -EIO;
  2430. bh = sb_getblk(inode->i_sb, block);
  2431. if (!bh) {
  2432. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2433. "unable to read inode block - "
  2434. "inode=%lu, block="E3FSBLK,
  2435. inode->i_ino, block);
  2436. return -EIO;
  2437. }
  2438. if (!buffer_uptodate(bh)) {
  2439. lock_buffer(bh);
  2440. /*
  2441. * If the buffer has the write error flag, we have failed
  2442. * to write out another inode in the same block. In this
  2443. * case, we don't have to read the block because we may
  2444. * read the old inode data successfully.
  2445. */
  2446. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2447. set_buffer_uptodate(bh);
  2448. if (buffer_uptodate(bh)) {
  2449. /* someone brought it uptodate while we waited */
  2450. unlock_buffer(bh);
  2451. goto has_buffer;
  2452. }
  2453. /*
  2454. * If we have all information of the inode in memory and this
  2455. * is the only valid inode in the block, we need not read the
  2456. * block.
  2457. */
  2458. if (in_mem) {
  2459. struct buffer_head *bitmap_bh;
  2460. struct ext3_group_desc *desc;
  2461. int inodes_per_buffer;
  2462. int inode_offset, i;
  2463. int block_group;
  2464. int start;
  2465. block_group = (inode->i_ino - 1) /
  2466. EXT3_INODES_PER_GROUP(inode->i_sb);
  2467. inodes_per_buffer = bh->b_size /
  2468. EXT3_INODE_SIZE(inode->i_sb);
  2469. inode_offset = ((inode->i_ino - 1) %
  2470. EXT3_INODES_PER_GROUP(inode->i_sb));
  2471. start = inode_offset & ~(inodes_per_buffer - 1);
  2472. /* Is the inode bitmap in cache? */
  2473. desc = ext3_get_group_desc(inode->i_sb,
  2474. block_group, NULL);
  2475. if (!desc)
  2476. goto make_io;
  2477. bitmap_bh = sb_getblk(inode->i_sb,
  2478. le32_to_cpu(desc->bg_inode_bitmap));
  2479. if (!bitmap_bh)
  2480. goto make_io;
  2481. /*
  2482. * If the inode bitmap isn't in cache then the
  2483. * optimisation may end up performing two reads instead
  2484. * of one, so skip it.
  2485. */
  2486. if (!buffer_uptodate(bitmap_bh)) {
  2487. brelse(bitmap_bh);
  2488. goto make_io;
  2489. }
  2490. for (i = start; i < start + inodes_per_buffer; i++) {
  2491. if (i == inode_offset)
  2492. continue;
  2493. if (ext3_test_bit(i, bitmap_bh->b_data))
  2494. break;
  2495. }
  2496. brelse(bitmap_bh);
  2497. if (i == start + inodes_per_buffer) {
  2498. /* all other inodes are free, so skip I/O */
  2499. memset(bh->b_data, 0, bh->b_size);
  2500. set_buffer_uptodate(bh);
  2501. unlock_buffer(bh);
  2502. goto has_buffer;
  2503. }
  2504. }
  2505. make_io:
  2506. /*
  2507. * There are other valid inodes in the buffer, this inode
  2508. * has in-inode xattrs, or we don't have this inode in memory.
  2509. * Read the block from disk.
  2510. */
  2511. get_bh(bh);
  2512. bh->b_end_io = end_buffer_read_sync;
  2513. submit_bh(READ_META, bh);
  2514. wait_on_buffer(bh);
  2515. if (!buffer_uptodate(bh)) {
  2516. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2517. "unable to read inode block - "
  2518. "inode=%lu, block="E3FSBLK,
  2519. inode->i_ino, block);
  2520. brelse(bh);
  2521. return -EIO;
  2522. }
  2523. }
  2524. has_buffer:
  2525. iloc->bh = bh;
  2526. return 0;
  2527. }
  2528. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2529. {
  2530. /* We have all inode data except xattrs in memory here. */
  2531. return __ext3_get_inode_loc(inode, iloc,
  2532. !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
  2533. }
  2534. void ext3_set_inode_flags(struct inode *inode)
  2535. {
  2536. unsigned int flags = EXT3_I(inode)->i_flags;
  2537. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2538. if (flags & EXT3_SYNC_FL)
  2539. inode->i_flags |= S_SYNC;
  2540. if (flags & EXT3_APPEND_FL)
  2541. inode->i_flags |= S_APPEND;
  2542. if (flags & EXT3_IMMUTABLE_FL)
  2543. inode->i_flags |= S_IMMUTABLE;
  2544. if (flags & EXT3_NOATIME_FL)
  2545. inode->i_flags |= S_NOATIME;
  2546. if (flags & EXT3_DIRSYNC_FL)
  2547. inode->i_flags |= S_DIRSYNC;
  2548. }
  2549. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2550. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2551. {
  2552. unsigned int flags = ei->vfs_inode.i_flags;
  2553. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2554. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2555. if (flags & S_SYNC)
  2556. ei->i_flags |= EXT3_SYNC_FL;
  2557. if (flags & S_APPEND)
  2558. ei->i_flags |= EXT3_APPEND_FL;
  2559. if (flags & S_IMMUTABLE)
  2560. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2561. if (flags & S_NOATIME)
  2562. ei->i_flags |= EXT3_NOATIME_FL;
  2563. if (flags & S_DIRSYNC)
  2564. ei->i_flags |= EXT3_DIRSYNC_FL;
  2565. }
  2566. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2567. {
  2568. struct ext3_iloc iloc;
  2569. struct ext3_inode *raw_inode;
  2570. struct ext3_inode_info *ei;
  2571. struct buffer_head *bh;
  2572. struct inode *inode;
  2573. journal_t *journal = EXT3_SB(sb)->s_journal;
  2574. transaction_t *transaction;
  2575. long ret;
  2576. int block;
  2577. inode = iget_locked(sb, ino);
  2578. if (!inode)
  2579. return ERR_PTR(-ENOMEM);
  2580. if (!(inode->i_state & I_NEW))
  2581. return inode;
  2582. ei = EXT3_I(inode);
  2583. ei->i_block_alloc_info = NULL;
  2584. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2585. if (ret < 0)
  2586. goto bad_inode;
  2587. bh = iloc.bh;
  2588. raw_inode = ext3_raw_inode(&iloc);
  2589. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2590. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2591. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2592. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2593. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2594. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2595. }
  2596. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2597. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2598. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2599. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2600. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2601. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2602. ei->i_state_flags = 0;
  2603. ei->i_dir_start_lookup = 0;
  2604. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2605. /* We now have enough fields to check if the inode was active or not.
  2606. * This is needed because nfsd might try to access dead inodes
  2607. * the test is that same one that e2fsck uses
  2608. * NeilBrown 1999oct15
  2609. */
  2610. if (inode->i_nlink == 0) {
  2611. if (inode->i_mode == 0 ||
  2612. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2613. /* this inode is deleted */
  2614. brelse (bh);
  2615. ret = -ESTALE;
  2616. goto bad_inode;
  2617. }
  2618. /* The only unlinked inodes we let through here have
  2619. * valid i_mode and are being read by the orphan
  2620. * recovery code: that's fine, we're about to complete
  2621. * the process of deleting those. */
  2622. }
  2623. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2624. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2625. #ifdef EXT3_FRAGMENTS
  2626. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2627. ei->i_frag_no = raw_inode->i_frag;
  2628. ei->i_frag_size = raw_inode->i_fsize;
  2629. #endif
  2630. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2631. if (!S_ISREG(inode->i_mode)) {
  2632. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2633. } else {
  2634. inode->i_size |=
  2635. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2636. }
  2637. ei->i_disksize = inode->i_size;
  2638. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2639. ei->i_block_group = iloc.block_group;
  2640. /*
  2641. * NOTE! The in-memory inode i_data array is in little-endian order
  2642. * even on big-endian machines: we do NOT byteswap the block numbers!
  2643. */
  2644. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2645. ei->i_data[block] = raw_inode->i_block[block];
  2646. INIT_LIST_HEAD(&ei->i_orphan);
  2647. /*
  2648. * Set transaction id's of transactions that have to be committed
  2649. * to finish f[data]sync. We set them to currently running transaction
  2650. * as we cannot be sure that the inode or some of its metadata isn't
  2651. * part of the transaction - the inode could have been reclaimed and
  2652. * now it is reread from disk.
  2653. */
  2654. if (journal) {
  2655. tid_t tid;
  2656. spin_lock(&journal->j_state_lock);
  2657. if (journal->j_running_transaction)
  2658. transaction = journal->j_running_transaction;
  2659. else
  2660. transaction = journal->j_committing_transaction;
  2661. if (transaction)
  2662. tid = transaction->t_tid;
  2663. else
  2664. tid = journal->j_commit_sequence;
  2665. spin_unlock(&journal->j_state_lock);
  2666. atomic_set(&ei->i_sync_tid, tid);
  2667. atomic_set(&ei->i_datasync_tid, tid);
  2668. }
  2669. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2670. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2671. /*
  2672. * When mke2fs creates big inodes it does not zero out
  2673. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2674. * so ignore those first few inodes.
  2675. */
  2676. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2677. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2678. EXT3_INODE_SIZE(inode->i_sb)) {
  2679. brelse (bh);
  2680. ret = -EIO;
  2681. goto bad_inode;
  2682. }
  2683. if (ei->i_extra_isize == 0) {
  2684. /* The extra space is currently unused. Use it. */
  2685. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2686. EXT3_GOOD_OLD_INODE_SIZE;
  2687. } else {
  2688. __le32 *magic = (void *)raw_inode +
  2689. EXT3_GOOD_OLD_INODE_SIZE +
  2690. ei->i_extra_isize;
  2691. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2692. ext3_set_inode_state(inode, EXT3_STATE_XATTR);
  2693. }
  2694. } else
  2695. ei->i_extra_isize = 0;
  2696. if (S_ISREG(inode->i_mode)) {
  2697. inode->i_op = &ext3_file_inode_operations;
  2698. inode->i_fop = &ext3_file_operations;
  2699. ext3_set_aops(inode);
  2700. } else if (S_ISDIR(inode->i_mode)) {
  2701. inode->i_op = &ext3_dir_inode_operations;
  2702. inode->i_fop = &ext3_dir_operations;
  2703. } else if (S_ISLNK(inode->i_mode)) {
  2704. if (ext3_inode_is_fast_symlink(inode)) {
  2705. inode->i_op = &ext3_fast_symlink_inode_operations;
  2706. nd_terminate_link(ei->i_data, inode->i_size,
  2707. sizeof(ei->i_data) - 1);
  2708. } else {
  2709. inode->i_op = &ext3_symlink_inode_operations;
  2710. ext3_set_aops(inode);
  2711. }
  2712. } else {
  2713. inode->i_op = &ext3_special_inode_operations;
  2714. if (raw_inode->i_block[0])
  2715. init_special_inode(inode, inode->i_mode,
  2716. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2717. else
  2718. init_special_inode(inode, inode->i_mode,
  2719. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2720. }
  2721. brelse (iloc.bh);
  2722. ext3_set_inode_flags(inode);
  2723. unlock_new_inode(inode);
  2724. return inode;
  2725. bad_inode:
  2726. iget_failed(inode);
  2727. return ERR_PTR(ret);
  2728. }
  2729. /*
  2730. * Post the struct inode info into an on-disk inode location in the
  2731. * buffer-cache. This gobbles the caller's reference to the
  2732. * buffer_head in the inode location struct.
  2733. *
  2734. * The caller must have write access to iloc->bh.
  2735. */
  2736. static int ext3_do_update_inode(handle_t *handle,
  2737. struct inode *inode,
  2738. struct ext3_iloc *iloc)
  2739. {
  2740. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2741. struct ext3_inode_info *ei = EXT3_I(inode);
  2742. struct buffer_head *bh = iloc->bh;
  2743. int err = 0, rc, block;
  2744. again:
  2745. /* we can't allow multiple procs in here at once, its a bit racey */
  2746. lock_buffer(bh);
  2747. /* For fields not not tracking in the in-memory inode,
  2748. * initialise them to zero for new inodes. */
  2749. if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
  2750. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2751. ext3_get_inode_flags(ei);
  2752. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2753. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2754. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2755. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2756. /*
  2757. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2758. * re-used with the upper 16 bits of the uid/gid intact
  2759. */
  2760. if(!ei->i_dtime) {
  2761. raw_inode->i_uid_high =
  2762. cpu_to_le16(high_16_bits(inode->i_uid));
  2763. raw_inode->i_gid_high =
  2764. cpu_to_le16(high_16_bits(inode->i_gid));
  2765. } else {
  2766. raw_inode->i_uid_high = 0;
  2767. raw_inode->i_gid_high = 0;
  2768. }
  2769. } else {
  2770. raw_inode->i_uid_low =
  2771. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2772. raw_inode->i_gid_low =
  2773. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2774. raw_inode->i_uid_high = 0;
  2775. raw_inode->i_gid_high = 0;
  2776. }
  2777. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2778. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2779. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2780. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2781. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2782. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2783. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2784. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2785. #ifdef EXT3_FRAGMENTS
  2786. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2787. raw_inode->i_frag = ei->i_frag_no;
  2788. raw_inode->i_fsize = ei->i_frag_size;
  2789. #endif
  2790. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2791. if (!S_ISREG(inode->i_mode)) {
  2792. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2793. } else {
  2794. raw_inode->i_size_high =
  2795. cpu_to_le32(ei->i_disksize >> 32);
  2796. if (ei->i_disksize > 0x7fffffffULL) {
  2797. struct super_block *sb = inode->i_sb;
  2798. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2799. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2800. EXT3_SB(sb)->s_es->s_rev_level ==
  2801. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2802. /* If this is the first large file
  2803. * created, add a flag to the superblock.
  2804. */
  2805. unlock_buffer(bh);
  2806. err = ext3_journal_get_write_access(handle,
  2807. EXT3_SB(sb)->s_sbh);
  2808. if (err)
  2809. goto out_brelse;
  2810. ext3_update_dynamic_rev(sb);
  2811. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2812. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2813. handle->h_sync = 1;
  2814. err = ext3_journal_dirty_metadata(handle,
  2815. EXT3_SB(sb)->s_sbh);
  2816. /* get our lock and start over */
  2817. goto again;
  2818. }
  2819. }
  2820. }
  2821. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2822. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2823. if (old_valid_dev(inode->i_rdev)) {
  2824. raw_inode->i_block[0] =
  2825. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2826. raw_inode->i_block[1] = 0;
  2827. } else {
  2828. raw_inode->i_block[0] = 0;
  2829. raw_inode->i_block[1] =
  2830. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2831. raw_inode->i_block[2] = 0;
  2832. }
  2833. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2834. raw_inode->i_block[block] = ei->i_data[block];
  2835. if (ei->i_extra_isize)
  2836. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2837. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2838. unlock_buffer(bh);
  2839. rc = ext3_journal_dirty_metadata(handle, bh);
  2840. if (!err)
  2841. err = rc;
  2842. ext3_clear_inode_state(inode, EXT3_STATE_NEW);
  2843. atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
  2844. out_brelse:
  2845. brelse (bh);
  2846. ext3_std_error(inode->i_sb, err);
  2847. return err;
  2848. }
  2849. /*
  2850. * ext3_write_inode()
  2851. *
  2852. * We are called from a few places:
  2853. *
  2854. * - Within generic_file_write() for O_SYNC files.
  2855. * Here, there will be no transaction running. We wait for any running
  2856. * trasnaction to commit.
  2857. *
  2858. * - Within sys_sync(), kupdate and such.
  2859. * We wait on commit, if tol to.
  2860. *
  2861. * - Within prune_icache() (PF_MEMALLOC == true)
  2862. * Here we simply return. We can't afford to block kswapd on the
  2863. * journal commit.
  2864. *
  2865. * In all cases it is actually safe for us to return without doing anything,
  2866. * because the inode has been copied into a raw inode buffer in
  2867. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2868. * knfsd.
  2869. *
  2870. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2871. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2872. * which we are interested.
  2873. *
  2874. * It would be a bug for them to not do this. The code:
  2875. *
  2876. * mark_inode_dirty(inode)
  2877. * stuff();
  2878. * inode->i_size = expr;
  2879. *
  2880. * is in error because a kswapd-driven write_inode() could occur while
  2881. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2882. * will no longer be on the superblock's dirty inode list.
  2883. */
  2884. int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
  2885. {
  2886. if (current->flags & PF_MEMALLOC)
  2887. return 0;
  2888. if (ext3_journal_current_handle()) {
  2889. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2890. dump_stack();
  2891. return -EIO;
  2892. }
  2893. if (wbc->sync_mode != WB_SYNC_ALL)
  2894. return 0;
  2895. return ext3_force_commit(inode->i_sb);
  2896. }
  2897. /*
  2898. * ext3_setattr()
  2899. *
  2900. * Called from notify_change.
  2901. *
  2902. * We want to trap VFS attempts to truncate the file as soon as
  2903. * possible. In particular, we want to make sure that when the VFS
  2904. * shrinks i_size, we put the inode on the orphan list and modify
  2905. * i_disksize immediately, so that during the subsequent flushing of
  2906. * dirty pages and freeing of disk blocks, we can guarantee that any
  2907. * commit will leave the blocks being flushed in an unused state on
  2908. * disk. (On recovery, the inode will get truncated and the blocks will
  2909. * be freed, so we have a strong guarantee that no future commit will
  2910. * leave these blocks visible to the user.)
  2911. *
  2912. * Called with inode->sem down.
  2913. */
  2914. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2915. {
  2916. struct inode *inode = dentry->d_inode;
  2917. int error, rc = 0;
  2918. const unsigned int ia_valid = attr->ia_valid;
  2919. error = inode_change_ok(inode, attr);
  2920. if (error)
  2921. return error;
  2922. if (is_quota_modification(inode, attr))
  2923. dquot_initialize(inode);
  2924. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2925. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2926. handle_t *handle;
  2927. /* (user+group)*(old+new) structure, inode write (sb,
  2928. * inode block, ? - but truncate inode update has it) */
  2929. handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  2930. EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
  2931. if (IS_ERR(handle)) {
  2932. error = PTR_ERR(handle);
  2933. goto err_out;
  2934. }
  2935. error = dquot_transfer(inode, attr);
  2936. if (error) {
  2937. ext3_journal_stop(handle);
  2938. return error;
  2939. }
  2940. /* Update corresponding info in inode so that everything is in
  2941. * one transaction */
  2942. if (attr->ia_valid & ATTR_UID)
  2943. inode->i_uid = attr->ia_uid;
  2944. if (attr->ia_valid & ATTR_GID)
  2945. inode->i_gid = attr->ia_gid;
  2946. error = ext3_mark_inode_dirty(handle, inode);
  2947. ext3_journal_stop(handle);
  2948. }
  2949. if (S_ISREG(inode->i_mode) &&
  2950. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2951. handle_t *handle;
  2952. handle = ext3_journal_start(inode, 3);
  2953. if (IS_ERR(handle)) {
  2954. error = PTR_ERR(handle);
  2955. goto err_out;
  2956. }
  2957. error = ext3_orphan_add(handle, inode);
  2958. EXT3_I(inode)->i_disksize = attr->ia_size;
  2959. rc = ext3_mark_inode_dirty(handle, inode);
  2960. if (!error)
  2961. error = rc;
  2962. ext3_journal_stop(handle);
  2963. }
  2964. if ((attr->ia_valid & ATTR_SIZE) &&
  2965. attr->ia_size != i_size_read(inode)) {
  2966. rc = vmtruncate(inode, attr->ia_size);
  2967. if (rc)
  2968. goto err_out;
  2969. }
  2970. setattr_copy(inode, attr);
  2971. mark_inode_dirty(inode);
  2972. if (ia_valid & ATTR_MODE)
  2973. rc = ext3_acl_chmod(inode);
  2974. err_out:
  2975. ext3_std_error(inode->i_sb, error);
  2976. if (!error)
  2977. error = rc;
  2978. return error;
  2979. }
  2980. /*
  2981. * How many blocks doth make a writepage()?
  2982. *
  2983. * With N blocks per page, it may be:
  2984. * N data blocks
  2985. * 2 indirect block
  2986. * 2 dindirect
  2987. * 1 tindirect
  2988. * N+5 bitmap blocks (from the above)
  2989. * N+5 group descriptor summary blocks
  2990. * 1 inode block
  2991. * 1 superblock.
  2992. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2993. *
  2994. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2995. *
  2996. * With ordered or writeback data it's the same, less the N data blocks.
  2997. *
  2998. * If the inode's direct blocks can hold an integral number of pages then a
  2999. * page cannot straddle two indirect blocks, and we can only touch one indirect
  3000. * and dindirect block, and the "5" above becomes "3".
  3001. *
  3002. * This still overestimates under most circumstances. If we were to pass the
  3003. * start and end offsets in here as well we could do block_to_path() on each
  3004. * block and work out the exact number of indirects which are touched. Pah.
  3005. */
  3006. static int ext3_writepage_trans_blocks(struct inode *inode)
  3007. {
  3008. int bpp = ext3_journal_blocks_per_page(inode);
  3009. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  3010. int ret;
  3011. if (ext3_should_journal_data(inode))
  3012. ret = 3 * (bpp + indirects) + 2;
  3013. else
  3014. ret = 2 * (bpp + indirects) + indirects + 2;
  3015. #ifdef CONFIG_QUOTA
  3016. /* We know that structure was already allocated during dquot_initialize so
  3017. * we will be updating only the data blocks + inodes */
  3018. ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
  3019. #endif
  3020. return ret;
  3021. }
  3022. /*
  3023. * The caller must have previously called ext3_reserve_inode_write().
  3024. * Give this, we know that the caller already has write access to iloc->bh.
  3025. */
  3026. int ext3_mark_iloc_dirty(handle_t *handle,
  3027. struct inode *inode, struct ext3_iloc *iloc)
  3028. {
  3029. int err = 0;
  3030. /* the do_update_inode consumes one bh->b_count */
  3031. get_bh(iloc->bh);
  3032. /* ext3_do_update_inode() does journal_dirty_metadata */
  3033. err = ext3_do_update_inode(handle, inode, iloc);
  3034. put_bh(iloc->bh);
  3035. return err;
  3036. }
  3037. /*
  3038. * On success, We end up with an outstanding reference count against
  3039. * iloc->bh. This _must_ be cleaned up later.
  3040. */
  3041. int
  3042. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  3043. struct ext3_iloc *iloc)
  3044. {
  3045. int err = 0;
  3046. if (handle) {
  3047. err = ext3_get_inode_loc(inode, iloc);
  3048. if (!err) {
  3049. BUFFER_TRACE(iloc->bh, "get_write_access");
  3050. err = ext3_journal_get_write_access(handle, iloc->bh);
  3051. if (err) {
  3052. brelse(iloc->bh);
  3053. iloc->bh = NULL;
  3054. }
  3055. }
  3056. }
  3057. ext3_std_error(inode->i_sb, err);
  3058. return err;
  3059. }
  3060. /*
  3061. * What we do here is to mark the in-core inode as clean with respect to inode
  3062. * dirtiness (it may still be data-dirty).
  3063. * This means that the in-core inode may be reaped by prune_icache
  3064. * without having to perform any I/O. This is a very good thing,
  3065. * because *any* task may call prune_icache - even ones which
  3066. * have a transaction open against a different journal.
  3067. *
  3068. * Is this cheating? Not really. Sure, we haven't written the
  3069. * inode out, but prune_icache isn't a user-visible syncing function.
  3070. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3071. * we start and wait on commits.
  3072. *
  3073. * Is this efficient/effective? Well, we're being nice to the system
  3074. * by cleaning up our inodes proactively so they can be reaped
  3075. * without I/O. But we are potentially leaving up to five seconds'
  3076. * worth of inodes floating about which prune_icache wants us to
  3077. * write out. One way to fix that would be to get prune_icache()
  3078. * to do a write_super() to free up some memory. It has the desired
  3079. * effect.
  3080. */
  3081. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3082. {
  3083. struct ext3_iloc iloc;
  3084. int err;
  3085. might_sleep();
  3086. err = ext3_reserve_inode_write(handle, inode, &iloc);
  3087. if (!err)
  3088. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  3089. return err;
  3090. }
  3091. /*
  3092. * ext3_dirty_inode() is called from __mark_inode_dirty()
  3093. *
  3094. * We're really interested in the case where a file is being extended.
  3095. * i_size has been changed by generic_commit_write() and we thus need
  3096. * to include the updated inode in the current transaction.
  3097. *
  3098. * Also, dquot_alloc_space() will always dirty the inode when blocks
  3099. * are allocated to the file.
  3100. *
  3101. * If the inode is marked synchronous, we don't honour that here - doing
  3102. * so would cause a commit on atime updates, which we don't bother doing.
  3103. * We handle synchronous inodes at the highest possible level.
  3104. */
  3105. void ext3_dirty_inode(struct inode *inode, int flags)
  3106. {
  3107. handle_t *current_handle = ext3_journal_current_handle();
  3108. handle_t *handle;
  3109. handle = ext3_journal_start(inode, 2);
  3110. if (IS_ERR(handle))
  3111. goto out;
  3112. if (current_handle &&
  3113. current_handle->h_transaction != handle->h_transaction) {
  3114. /* This task has a transaction open against a different fs */
  3115. printk(KERN_EMERG "%s: transactions do not match!\n",
  3116. __func__);
  3117. } else {
  3118. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3119. current_handle);
  3120. ext3_mark_inode_dirty(handle, inode);
  3121. }
  3122. ext3_journal_stop(handle);
  3123. out:
  3124. return;
  3125. }
  3126. #if 0
  3127. /*
  3128. * Bind an inode's backing buffer_head into this transaction, to prevent
  3129. * it from being flushed to disk early. Unlike
  3130. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3131. * returns no iloc structure, so the caller needs to repeat the iloc
  3132. * lookup to mark the inode dirty later.
  3133. */
  3134. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3135. {
  3136. struct ext3_iloc iloc;
  3137. int err = 0;
  3138. if (handle) {
  3139. err = ext3_get_inode_loc(inode, &iloc);
  3140. if (!err) {
  3141. BUFFER_TRACE(iloc.bh, "get_write_access");
  3142. err = journal_get_write_access(handle, iloc.bh);
  3143. if (!err)
  3144. err = ext3_journal_dirty_metadata(handle,
  3145. iloc.bh);
  3146. brelse(iloc.bh);
  3147. }
  3148. }
  3149. ext3_std_error(inode->i_sb, err);
  3150. return err;
  3151. }
  3152. #endif
  3153. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3154. {
  3155. journal_t *journal;
  3156. handle_t *handle;
  3157. int err;
  3158. /*
  3159. * We have to be very careful here: changing a data block's
  3160. * journaling status dynamically is dangerous. If we write a
  3161. * data block to the journal, change the status and then delete
  3162. * that block, we risk forgetting to revoke the old log record
  3163. * from the journal and so a subsequent replay can corrupt data.
  3164. * So, first we make sure that the journal is empty and that
  3165. * nobody is changing anything.
  3166. */
  3167. journal = EXT3_JOURNAL(inode);
  3168. if (is_journal_aborted(journal))
  3169. return -EROFS;
  3170. journal_lock_updates(journal);
  3171. journal_flush(journal);
  3172. /*
  3173. * OK, there are no updates running now, and all cached data is
  3174. * synced to disk. We are now in a completely consistent state
  3175. * which doesn't have anything in the journal, and we know that
  3176. * no filesystem updates are running, so it is safe to modify
  3177. * the inode's in-core data-journaling state flag now.
  3178. */
  3179. if (val)
  3180. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3181. else
  3182. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3183. ext3_set_aops(inode);
  3184. journal_unlock_updates(journal);
  3185. /* Finally we can mark the inode as dirty. */
  3186. handle = ext3_journal_start(inode, 1);
  3187. if (IS_ERR(handle))
  3188. return PTR_ERR(handle);
  3189. err = ext3_mark_inode_dirty(handle, inode);
  3190. handle->h_sync = 1;
  3191. ext3_journal_stop(handle);
  3192. ext3_std_error(inode->i_sb, err);
  3193. return err;
  3194. }