super.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. /*
  2. * super.c
  3. *
  4. * Copyright (c) 1999 Al Smith
  5. *
  6. * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
  7. */
  8. #include <linux/init.h>
  9. #include <linux/module.h>
  10. #include <linux/exportfs.h>
  11. #include <linux/slab.h>
  12. #include <linux/buffer_head.h>
  13. #include <linux/vfs.h>
  14. #include "efs.h"
  15. #include <linux/efs_vh.h>
  16. #include <linux/efs_fs_sb.h>
  17. static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
  18. static int efs_fill_super(struct super_block *s, void *d, int silent);
  19. static struct dentry *efs_mount(struct file_system_type *fs_type,
  20. int flags, const char *dev_name, void *data)
  21. {
  22. return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
  23. }
  24. static struct file_system_type efs_fs_type = {
  25. .owner = THIS_MODULE,
  26. .name = "efs",
  27. .mount = efs_mount,
  28. .kill_sb = kill_block_super,
  29. .fs_flags = FS_REQUIRES_DEV,
  30. };
  31. static struct pt_types sgi_pt_types[] = {
  32. {0x00, "SGI vh"},
  33. {0x01, "SGI trkrepl"},
  34. {0x02, "SGI secrepl"},
  35. {0x03, "SGI raw"},
  36. {0x04, "SGI bsd"},
  37. {SGI_SYSV, "SGI sysv"},
  38. {0x06, "SGI vol"},
  39. {SGI_EFS, "SGI efs"},
  40. {0x08, "SGI lv"},
  41. {0x09, "SGI rlv"},
  42. {0x0A, "SGI xfs"},
  43. {0x0B, "SGI xfslog"},
  44. {0x0C, "SGI xlv"},
  45. {0x82, "Linux swap"},
  46. {0x83, "Linux native"},
  47. {0, NULL}
  48. };
  49. static struct kmem_cache * efs_inode_cachep;
  50. static struct inode *efs_alloc_inode(struct super_block *sb)
  51. {
  52. struct efs_inode_info *ei;
  53. ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
  54. if (!ei)
  55. return NULL;
  56. return &ei->vfs_inode;
  57. }
  58. static void efs_i_callback(struct rcu_head *head)
  59. {
  60. struct inode *inode = container_of(head, struct inode, i_rcu);
  61. INIT_LIST_HEAD(&inode->i_dentry);
  62. kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
  63. }
  64. static void efs_destroy_inode(struct inode *inode)
  65. {
  66. call_rcu(&inode->i_rcu, efs_i_callback);
  67. }
  68. static void init_once(void *foo)
  69. {
  70. struct efs_inode_info *ei = (struct efs_inode_info *) foo;
  71. inode_init_once(&ei->vfs_inode);
  72. }
  73. static int init_inodecache(void)
  74. {
  75. efs_inode_cachep = kmem_cache_create("efs_inode_cache",
  76. sizeof(struct efs_inode_info),
  77. 0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
  78. init_once);
  79. if (efs_inode_cachep == NULL)
  80. return -ENOMEM;
  81. return 0;
  82. }
  83. static void destroy_inodecache(void)
  84. {
  85. kmem_cache_destroy(efs_inode_cachep);
  86. }
  87. static void efs_put_super(struct super_block *s)
  88. {
  89. kfree(s->s_fs_info);
  90. s->s_fs_info = NULL;
  91. }
  92. static int efs_remount(struct super_block *sb, int *flags, char *data)
  93. {
  94. *flags |= MS_RDONLY;
  95. return 0;
  96. }
  97. static const struct super_operations efs_superblock_operations = {
  98. .alloc_inode = efs_alloc_inode,
  99. .destroy_inode = efs_destroy_inode,
  100. .put_super = efs_put_super,
  101. .statfs = efs_statfs,
  102. .remount_fs = efs_remount,
  103. };
  104. static const struct export_operations efs_export_ops = {
  105. .fh_to_dentry = efs_fh_to_dentry,
  106. .fh_to_parent = efs_fh_to_parent,
  107. .get_parent = efs_get_parent,
  108. };
  109. static int __init init_efs_fs(void) {
  110. int err;
  111. printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
  112. err = init_inodecache();
  113. if (err)
  114. goto out1;
  115. err = register_filesystem(&efs_fs_type);
  116. if (err)
  117. goto out;
  118. return 0;
  119. out:
  120. destroy_inodecache();
  121. out1:
  122. return err;
  123. }
  124. static void __exit exit_efs_fs(void) {
  125. unregister_filesystem(&efs_fs_type);
  126. destroy_inodecache();
  127. }
  128. module_init(init_efs_fs)
  129. module_exit(exit_efs_fs)
  130. static efs_block_t efs_validate_vh(struct volume_header *vh) {
  131. int i;
  132. __be32 cs, *ui;
  133. int csum;
  134. efs_block_t sblock = 0; /* shuts up gcc */
  135. struct pt_types *pt_entry;
  136. int pt_type, slice = -1;
  137. if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
  138. /*
  139. * assume that we're dealing with a partition and allow
  140. * read_super() to try and detect a valid superblock
  141. * on the next block.
  142. */
  143. return 0;
  144. }
  145. ui = ((__be32 *) (vh + 1)) - 1;
  146. for(csum = 0; ui >= ((__be32 *) vh);) {
  147. cs = *ui--;
  148. csum += be32_to_cpu(cs);
  149. }
  150. if (csum) {
  151. printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
  152. return 0;
  153. }
  154. #ifdef DEBUG
  155. printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
  156. for(i = 0; i < NVDIR; i++) {
  157. int j;
  158. char name[VDNAMESIZE+1];
  159. for(j = 0; j < VDNAMESIZE; j++) {
  160. name[j] = vh->vh_vd[i].vd_name[j];
  161. }
  162. name[j] = (char) 0;
  163. if (name[0]) {
  164. printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
  165. name,
  166. (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
  167. (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
  168. }
  169. }
  170. #endif
  171. for(i = 0; i < NPARTAB; i++) {
  172. pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
  173. for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
  174. if (pt_type == pt_entry->pt_type) break;
  175. }
  176. #ifdef DEBUG
  177. if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
  178. printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
  179. i,
  180. (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
  181. (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
  182. pt_type,
  183. (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
  184. }
  185. #endif
  186. if (IS_EFS(pt_type)) {
  187. sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
  188. slice = i;
  189. }
  190. }
  191. if (slice == -1) {
  192. printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
  193. #ifdef DEBUG
  194. } else {
  195. printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
  196. slice,
  197. (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
  198. sblock);
  199. #endif
  200. }
  201. return sblock;
  202. }
  203. static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
  204. if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
  205. return -1;
  206. sb->fs_magic = be32_to_cpu(super->fs_magic);
  207. sb->total_blocks = be32_to_cpu(super->fs_size);
  208. sb->first_block = be32_to_cpu(super->fs_firstcg);
  209. sb->group_size = be32_to_cpu(super->fs_cgfsize);
  210. sb->data_free = be32_to_cpu(super->fs_tfree);
  211. sb->inode_free = be32_to_cpu(super->fs_tinode);
  212. sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
  213. sb->total_groups = be16_to_cpu(super->fs_ncg);
  214. return 0;
  215. }
  216. static int efs_fill_super(struct super_block *s, void *d, int silent)
  217. {
  218. struct efs_sb_info *sb;
  219. struct buffer_head *bh;
  220. struct inode *root;
  221. int ret = -EINVAL;
  222. sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
  223. if (!sb)
  224. return -ENOMEM;
  225. s->s_fs_info = sb;
  226. s->s_magic = EFS_SUPER_MAGIC;
  227. if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
  228. printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
  229. EFS_BLOCKSIZE);
  230. goto out_no_fs_ul;
  231. }
  232. /* read the vh (volume header) block */
  233. bh = sb_bread(s, 0);
  234. if (!bh) {
  235. printk(KERN_ERR "EFS: cannot read volume header\n");
  236. goto out_no_fs_ul;
  237. }
  238. /*
  239. * if this returns zero then we didn't find any partition table.
  240. * this isn't (yet) an error - just assume for the moment that
  241. * the device is valid and go on to search for a superblock.
  242. */
  243. sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
  244. brelse(bh);
  245. if (sb->fs_start == -1) {
  246. goto out_no_fs_ul;
  247. }
  248. bh = sb_bread(s, sb->fs_start + EFS_SUPER);
  249. if (!bh) {
  250. printk(KERN_ERR "EFS: cannot read superblock\n");
  251. goto out_no_fs_ul;
  252. }
  253. if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
  254. #ifdef DEBUG
  255. printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
  256. #endif
  257. brelse(bh);
  258. goto out_no_fs_ul;
  259. }
  260. brelse(bh);
  261. if (!(s->s_flags & MS_RDONLY)) {
  262. #ifdef DEBUG
  263. printk(KERN_INFO "EFS: forcing read-only mode\n");
  264. #endif
  265. s->s_flags |= MS_RDONLY;
  266. }
  267. s->s_op = &efs_superblock_operations;
  268. s->s_export_op = &efs_export_ops;
  269. root = efs_iget(s, EFS_ROOTINODE);
  270. if (IS_ERR(root)) {
  271. printk(KERN_ERR "EFS: get root inode failed\n");
  272. ret = PTR_ERR(root);
  273. goto out_no_fs;
  274. }
  275. s->s_root = d_alloc_root(root);
  276. if (!(s->s_root)) {
  277. printk(KERN_ERR "EFS: get root dentry failed\n");
  278. iput(root);
  279. ret = -ENOMEM;
  280. goto out_no_fs;
  281. }
  282. return 0;
  283. out_no_fs_ul:
  284. out_no_fs:
  285. s->s_fs_info = NULL;
  286. kfree(sb);
  287. return ret;
  288. }
  289. static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
  290. struct super_block *sb = dentry->d_sb;
  291. struct efs_sb_info *sbi = SUPER_INFO(sb);
  292. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  293. buf->f_type = EFS_SUPER_MAGIC; /* efs magic number */
  294. buf->f_bsize = EFS_BLOCKSIZE; /* blocksize */
  295. buf->f_blocks = sbi->total_groups * /* total data blocks */
  296. (sbi->group_size - sbi->inode_blocks);
  297. buf->f_bfree = sbi->data_free; /* free data blocks */
  298. buf->f_bavail = sbi->data_free; /* free blocks for non-root */
  299. buf->f_files = sbi->total_groups * /* total inodes */
  300. sbi->inode_blocks *
  301. (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
  302. buf->f_ffree = sbi->inode_free; /* free inodes */
  303. buf->f_fsid.val[0] = (u32)id;
  304. buf->f_fsid.val[1] = (u32)(id >> 32);
  305. buf->f_namelen = EFS_MAXNAMELEN; /* max filename length */
  306. return 0;
  307. }