amd5536udc.c 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. /*
  22. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  23. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  24. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  25. *
  26. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  27. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  28. * by BIOS init).
  29. *
  30. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  31. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  32. * can be used with gadget ether.
  33. */
  34. /* debug control */
  35. /* #define UDC_VERBOSE */
  36. /* Driver strings */
  37. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  38. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  39. /* system */
  40. #include <linux/module.h>
  41. #include <linux/pci.h>
  42. #include <linux/kernel.h>
  43. #include <linux/delay.h>
  44. #include <linux/ioport.h>
  45. #include <linux/sched.h>
  46. #include <linux/slab.h>
  47. #include <linux/errno.h>
  48. #include <linux/init.h>
  49. #include <linux/timer.h>
  50. #include <linux/list.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/ioctl.h>
  53. #include <linux/fs.h>
  54. #include <linux/dmapool.h>
  55. #include <linux/moduleparam.h>
  56. #include <linux/device.h>
  57. #include <linux/io.h>
  58. #include <linux/irq.h>
  59. #include <linux/prefetch.h>
  60. #include <asm/byteorder.h>
  61. #include <asm/system.h>
  62. #include <asm/unaligned.h>
  63. /* gadget stack */
  64. #include <linux/usb/ch9.h>
  65. #include <linux/usb/gadget.h>
  66. /* udc specific */
  67. #include "amd5536udc.h"
  68. static void udc_tasklet_disconnect(unsigned long);
  69. static void empty_req_queue(struct udc_ep *);
  70. static int udc_probe(struct udc *dev);
  71. static void udc_basic_init(struct udc *dev);
  72. static void udc_setup_endpoints(struct udc *dev);
  73. static void udc_soft_reset(struct udc *dev);
  74. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  75. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  76. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  77. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  78. unsigned long buf_len, gfp_t gfp_flags);
  79. static int udc_remote_wakeup(struct udc *dev);
  80. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  81. static void udc_pci_remove(struct pci_dev *pdev);
  82. /* description */
  83. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  84. static const char name[] = "amd5536udc";
  85. /* structure to hold endpoint function pointers */
  86. static const struct usb_ep_ops udc_ep_ops;
  87. /* received setup data */
  88. static union udc_setup_data setup_data;
  89. /* pointer to device object */
  90. static struct udc *udc;
  91. /* irq spin lock for soft reset */
  92. static DEFINE_SPINLOCK(udc_irq_spinlock);
  93. /* stall spin lock */
  94. static DEFINE_SPINLOCK(udc_stall_spinlock);
  95. /*
  96. * slave mode: pending bytes in rx fifo after nyet,
  97. * used if EPIN irq came but no req was available
  98. */
  99. static unsigned int udc_rxfifo_pending;
  100. /* count soft resets after suspend to avoid loop */
  101. static int soft_reset_occured;
  102. static int soft_reset_after_usbreset_occured;
  103. /* timer */
  104. static struct timer_list udc_timer;
  105. static int stop_timer;
  106. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  107. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  108. * all OUT endpoints. So we have to handle race conditions like
  109. * when OUT data reaches the fifo but no request was queued yet.
  110. * This cannot be solved by letting the RX DMA disabled until a
  111. * request gets queued because there may be other OUT packets
  112. * in the FIFO (important for not blocking control traffic).
  113. * The value of set_rde controls the correspondig timer.
  114. *
  115. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  116. * set_rde 0 == do not touch RDE, do no start the RDE timer
  117. * set_rde 1 == timer function will look whether FIFO has data
  118. * set_rde 2 == set by timer function to enable RX DMA on next call
  119. */
  120. static int set_rde = -1;
  121. static DECLARE_COMPLETION(on_exit);
  122. static struct timer_list udc_pollstall_timer;
  123. static int stop_pollstall_timer;
  124. static DECLARE_COMPLETION(on_pollstall_exit);
  125. /* tasklet for usb disconnect */
  126. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  127. (unsigned long) &udc);
  128. /* endpoint names used for print */
  129. static const char ep0_string[] = "ep0in";
  130. static const char *ep_string[] = {
  131. ep0_string,
  132. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  133. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  134. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  135. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  136. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  137. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  138. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  139. };
  140. /* DMA usage flag */
  141. static int use_dma = 1;
  142. /* packet per buffer dma */
  143. static int use_dma_ppb = 1;
  144. /* with per descr. update */
  145. static int use_dma_ppb_du;
  146. /* buffer fill mode */
  147. static int use_dma_bufferfill_mode;
  148. /* full speed only mode */
  149. static int use_fullspeed;
  150. /* tx buffer size for high speed */
  151. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  152. /* module parameters */
  153. module_param(use_dma, bool, S_IRUGO);
  154. MODULE_PARM_DESC(use_dma, "true for DMA");
  155. module_param(use_dma_ppb, bool, S_IRUGO);
  156. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  157. module_param(use_dma_ppb_du, bool, S_IRUGO);
  158. MODULE_PARM_DESC(use_dma_ppb_du,
  159. "true for DMA in packet per buffer mode with descriptor update");
  160. module_param(use_fullspeed, bool, S_IRUGO);
  161. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  162. /*---------------------------------------------------------------------------*/
  163. /* Prints UDC device registers and endpoint irq registers */
  164. static void print_regs(struct udc *dev)
  165. {
  166. DBG(dev, "------- Device registers -------\n");
  167. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  168. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  169. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  170. DBG(dev, "\n");
  171. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  172. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  173. DBG(dev, "\n");
  174. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  175. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  176. DBG(dev, "\n");
  177. DBG(dev, "USE DMA = %d\n", use_dma);
  178. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  179. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  180. "WITHOUT desc. update)\n");
  181. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  182. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  183. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  184. "WITH desc. update)\n");
  185. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  186. }
  187. if (use_dma && use_dma_bufferfill_mode) {
  188. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  189. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  190. }
  191. if (!use_dma) {
  192. dev_info(&dev->pdev->dev, "FIFO mode\n");
  193. }
  194. DBG(dev, "-------------------------------------------------------\n");
  195. }
  196. /* Masks unused interrupts */
  197. static int udc_mask_unused_interrupts(struct udc *dev)
  198. {
  199. u32 tmp;
  200. /* mask all dev interrupts */
  201. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  202. AMD_BIT(UDC_DEVINT_ENUM) |
  203. AMD_BIT(UDC_DEVINT_US) |
  204. AMD_BIT(UDC_DEVINT_UR) |
  205. AMD_BIT(UDC_DEVINT_ES) |
  206. AMD_BIT(UDC_DEVINT_SI) |
  207. AMD_BIT(UDC_DEVINT_SOF)|
  208. AMD_BIT(UDC_DEVINT_SC);
  209. writel(tmp, &dev->regs->irqmsk);
  210. /* mask all ep interrupts */
  211. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  212. return 0;
  213. }
  214. /* Enables endpoint 0 interrupts */
  215. static int udc_enable_ep0_interrupts(struct udc *dev)
  216. {
  217. u32 tmp;
  218. DBG(dev, "udc_enable_ep0_interrupts()\n");
  219. /* read irq mask */
  220. tmp = readl(&dev->regs->ep_irqmsk);
  221. /* enable ep0 irq's */
  222. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  223. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  224. writel(tmp, &dev->regs->ep_irqmsk);
  225. return 0;
  226. }
  227. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  228. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  229. {
  230. u32 tmp;
  231. DBG(dev, "enable device interrupts for setup data\n");
  232. /* read irq mask */
  233. tmp = readl(&dev->regs->irqmsk);
  234. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  235. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  236. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  237. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  238. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  239. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  240. writel(tmp, &dev->regs->irqmsk);
  241. return 0;
  242. }
  243. /* Calculates fifo start of endpoint based on preceding endpoints */
  244. static int udc_set_txfifo_addr(struct udc_ep *ep)
  245. {
  246. struct udc *dev;
  247. u32 tmp;
  248. int i;
  249. if (!ep || !(ep->in))
  250. return -EINVAL;
  251. dev = ep->dev;
  252. ep->txfifo = dev->txfifo;
  253. /* traverse ep's */
  254. for (i = 0; i < ep->num; i++) {
  255. if (dev->ep[i].regs) {
  256. /* read fifo size */
  257. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  258. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  259. ep->txfifo += tmp;
  260. }
  261. }
  262. return 0;
  263. }
  264. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  265. static u32 cnak_pending;
  266. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  267. {
  268. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  269. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  270. cnak_pending |= 1 << (num);
  271. ep->naking = 1;
  272. } else
  273. cnak_pending = cnak_pending & (~(1 << (num)));
  274. }
  275. /* Enables endpoint, is called by gadget driver */
  276. static int
  277. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  278. {
  279. struct udc_ep *ep;
  280. struct udc *dev;
  281. u32 tmp;
  282. unsigned long iflags;
  283. u8 udc_csr_epix;
  284. unsigned maxpacket;
  285. if (!usbep
  286. || usbep->name == ep0_string
  287. || !desc
  288. || desc->bDescriptorType != USB_DT_ENDPOINT)
  289. return -EINVAL;
  290. ep = container_of(usbep, struct udc_ep, ep);
  291. dev = ep->dev;
  292. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  293. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  294. return -ESHUTDOWN;
  295. spin_lock_irqsave(&dev->lock, iflags);
  296. ep->desc = desc;
  297. ep->halted = 0;
  298. /* set traffic type */
  299. tmp = readl(&dev->ep[ep->num].regs->ctl);
  300. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  301. writel(tmp, &dev->ep[ep->num].regs->ctl);
  302. /* set max packet size */
  303. maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  304. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  305. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  306. ep->ep.maxpacket = maxpacket;
  307. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  308. /* IN ep */
  309. if (ep->in) {
  310. /* ep ix in UDC CSR register space */
  311. udc_csr_epix = ep->num;
  312. /* set buffer size (tx fifo entries) */
  313. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  314. /* double buffering: fifo size = 2 x max packet size */
  315. tmp = AMD_ADDBITS(
  316. tmp,
  317. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  318. / UDC_DWORD_BYTES,
  319. UDC_EPIN_BUFF_SIZE);
  320. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  321. /* calc. tx fifo base addr */
  322. udc_set_txfifo_addr(ep);
  323. /* flush fifo */
  324. tmp = readl(&ep->regs->ctl);
  325. tmp |= AMD_BIT(UDC_EPCTL_F);
  326. writel(tmp, &ep->regs->ctl);
  327. /* OUT ep */
  328. } else {
  329. /* ep ix in UDC CSR register space */
  330. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  331. /* set max packet size UDC CSR */
  332. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  333. tmp = AMD_ADDBITS(tmp, maxpacket,
  334. UDC_CSR_NE_MAX_PKT);
  335. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  336. if (use_dma && !ep->in) {
  337. /* alloc and init BNA dummy request */
  338. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  339. ep->bna_occurred = 0;
  340. }
  341. if (ep->num != UDC_EP0OUT_IX)
  342. dev->data_ep_enabled = 1;
  343. }
  344. /* set ep values */
  345. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  346. /* max packet */
  347. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  348. /* ep number */
  349. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  350. /* ep direction */
  351. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  352. /* ep type */
  353. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  354. /* ep config */
  355. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  356. /* ep interface */
  357. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  358. /* ep alt */
  359. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  360. /* write reg */
  361. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  362. /* enable ep irq */
  363. tmp = readl(&dev->regs->ep_irqmsk);
  364. tmp &= AMD_UNMASK_BIT(ep->num);
  365. writel(tmp, &dev->regs->ep_irqmsk);
  366. /*
  367. * clear NAK by writing CNAK
  368. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  369. */
  370. if (!use_dma || ep->in) {
  371. tmp = readl(&ep->regs->ctl);
  372. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  373. writel(tmp, &ep->regs->ctl);
  374. ep->naking = 0;
  375. UDC_QUEUE_CNAK(ep, ep->num);
  376. }
  377. tmp = desc->bEndpointAddress;
  378. DBG(dev, "%s enabled\n", usbep->name);
  379. spin_unlock_irqrestore(&dev->lock, iflags);
  380. return 0;
  381. }
  382. /* Resets endpoint */
  383. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  384. {
  385. u32 tmp;
  386. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  387. ep->desc = NULL;
  388. ep->ep.ops = &udc_ep_ops;
  389. INIT_LIST_HEAD(&ep->queue);
  390. ep->ep.maxpacket = (u16) ~0;
  391. /* set NAK */
  392. tmp = readl(&ep->regs->ctl);
  393. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  394. writel(tmp, &ep->regs->ctl);
  395. ep->naking = 1;
  396. /* disable interrupt */
  397. tmp = readl(&regs->ep_irqmsk);
  398. tmp |= AMD_BIT(ep->num);
  399. writel(tmp, &regs->ep_irqmsk);
  400. if (ep->in) {
  401. /* unset P and IN bit of potential former DMA */
  402. tmp = readl(&ep->regs->ctl);
  403. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  404. writel(tmp, &ep->regs->ctl);
  405. tmp = readl(&ep->regs->sts);
  406. tmp |= AMD_BIT(UDC_EPSTS_IN);
  407. writel(tmp, &ep->regs->sts);
  408. /* flush the fifo */
  409. tmp = readl(&ep->regs->ctl);
  410. tmp |= AMD_BIT(UDC_EPCTL_F);
  411. writel(tmp, &ep->regs->ctl);
  412. }
  413. /* reset desc pointer */
  414. writel(0, &ep->regs->desptr);
  415. }
  416. /* Disables endpoint, is called by gadget driver */
  417. static int udc_ep_disable(struct usb_ep *usbep)
  418. {
  419. struct udc_ep *ep = NULL;
  420. unsigned long iflags;
  421. if (!usbep)
  422. return -EINVAL;
  423. ep = container_of(usbep, struct udc_ep, ep);
  424. if (usbep->name == ep0_string || !ep->desc)
  425. return -EINVAL;
  426. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  427. spin_lock_irqsave(&ep->dev->lock, iflags);
  428. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  429. empty_req_queue(ep);
  430. ep_init(ep->dev->regs, ep);
  431. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  432. return 0;
  433. }
  434. /* Allocates request packet, called by gadget driver */
  435. static struct usb_request *
  436. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  437. {
  438. struct udc_request *req;
  439. struct udc_data_dma *dma_desc;
  440. struct udc_ep *ep;
  441. if (!usbep)
  442. return NULL;
  443. ep = container_of(usbep, struct udc_ep, ep);
  444. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  445. req = kzalloc(sizeof(struct udc_request), gfp);
  446. if (!req)
  447. return NULL;
  448. req->req.dma = DMA_DONT_USE;
  449. INIT_LIST_HEAD(&req->queue);
  450. if (ep->dma) {
  451. /* ep0 in requests are allocated from data pool here */
  452. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  453. &req->td_phys);
  454. if (!dma_desc) {
  455. kfree(req);
  456. return NULL;
  457. }
  458. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  459. "td_phys = %lx\n",
  460. req, dma_desc,
  461. (unsigned long)req->td_phys);
  462. /* prevent from using desc. - set HOST BUSY */
  463. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  464. UDC_DMA_STP_STS_BS_HOST_BUSY,
  465. UDC_DMA_STP_STS_BS);
  466. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  467. req->td_data = dma_desc;
  468. req->td_data_last = NULL;
  469. req->chain_len = 1;
  470. }
  471. return &req->req;
  472. }
  473. /* Frees request packet, called by gadget driver */
  474. static void
  475. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  476. {
  477. struct udc_ep *ep;
  478. struct udc_request *req;
  479. if (!usbep || !usbreq)
  480. return;
  481. ep = container_of(usbep, struct udc_ep, ep);
  482. req = container_of(usbreq, struct udc_request, req);
  483. VDBG(ep->dev, "free_req req=%p\n", req);
  484. BUG_ON(!list_empty(&req->queue));
  485. if (req->td_data) {
  486. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  487. /* free dma chain if created */
  488. if (req->chain_len > 1) {
  489. udc_free_dma_chain(ep->dev, req);
  490. }
  491. pci_pool_free(ep->dev->data_requests, req->td_data,
  492. req->td_phys);
  493. }
  494. kfree(req);
  495. }
  496. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  497. static void udc_init_bna_dummy(struct udc_request *req)
  498. {
  499. if (req) {
  500. /* set last bit */
  501. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  502. /* set next pointer to itself */
  503. req->td_data->next = req->td_phys;
  504. /* set HOST BUSY */
  505. req->td_data->status
  506. = AMD_ADDBITS(req->td_data->status,
  507. UDC_DMA_STP_STS_BS_DMA_DONE,
  508. UDC_DMA_STP_STS_BS);
  509. #ifdef UDC_VERBOSE
  510. pr_debug("bna desc = %p, sts = %08x\n",
  511. req->td_data, req->td_data->status);
  512. #endif
  513. }
  514. }
  515. /* Allocate BNA dummy descriptor */
  516. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  517. {
  518. struct udc_request *req = NULL;
  519. struct usb_request *_req = NULL;
  520. /* alloc the dummy request */
  521. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  522. if (_req) {
  523. req = container_of(_req, struct udc_request, req);
  524. ep->bna_dummy_req = req;
  525. udc_init_bna_dummy(req);
  526. }
  527. return req;
  528. }
  529. /* Write data to TX fifo for IN packets */
  530. static void
  531. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  532. {
  533. u8 *req_buf;
  534. u32 *buf;
  535. int i, j;
  536. unsigned bytes = 0;
  537. unsigned remaining = 0;
  538. if (!req || !ep)
  539. return;
  540. req_buf = req->buf + req->actual;
  541. prefetch(req_buf);
  542. remaining = req->length - req->actual;
  543. buf = (u32 *) req_buf;
  544. bytes = ep->ep.maxpacket;
  545. if (bytes > remaining)
  546. bytes = remaining;
  547. /* dwords first */
  548. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  549. writel(*(buf + i), ep->txfifo);
  550. }
  551. /* remaining bytes must be written by byte access */
  552. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  553. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  554. ep->txfifo);
  555. }
  556. /* dummy write confirm */
  557. writel(0, &ep->regs->confirm);
  558. }
  559. /* Read dwords from RX fifo for OUT transfers */
  560. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  561. {
  562. int i;
  563. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  564. for (i = 0; i < dwords; i++) {
  565. *(buf + i) = readl(dev->rxfifo);
  566. }
  567. return 0;
  568. }
  569. /* Read bytes from RX fifo for OUT transfers */
  570. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  571. {
  572. int i, j;
  573. u32 tmp;
  574. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  575. /* dwords first */
  576. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  577. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  578. }
  579. /* remaining bytes must be read by byte access */
  580. if (bytes % UDC_DWORD_BYTES) {
  581. tmp = readl(dev->rxfifo);
  582. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  583. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  584. tmp = tmp >> UDC_BITS_PER_BYTE;
  585. }
  586. }
  587. return 0;
  588. }
  589. /* Read data from RX fifo for OUT transfers */
  590. static int
  591. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  592. {
  593. u8 *buf;
  594. unsigned buf_space;
  595. unsigned bytes = 0;
  596. unsigned finished = 0;
  597. /* received number bytes */
  598. bytes = readl(&ep->regs->sts);
  599. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  600. buf_space = req->req.length - req->req.actual;
  601. buf = req->req.buf + req->req.actual;
  602. if (bytes > buf_space) {
  603. if ((buf_space % ep->ep.maxpacket) != 0) {
  604. DBG(ep->dev,
  605. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  606. ep->ep.name, bytes, buf_space);
  607. req->req.status = -EOVERFLOW;
  608. }
  609. bytes = buf_space;
  610. }
  611. req->req.actual += bytes;
  612. /* last packet ? */
  613. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  614. || ((req->req.actual == req->req.length) && !req->req.zero))
  615. finished = 1;
  616. /* read rx fifo bytes */
  617. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  618. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  619. return finished;
  620. }
  621. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  622. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  623. {
  624. int retval = 0;
  625. u32 tmp;
  626. VDBG(ep->dev, "prep_dma\n");
  627. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  628. ep->num, req->td_data);
  629. /* set buffer pointer */
  630. req->td_data->bufptr = req->req.dma;
  631. /* set last bit */
  632. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  633. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  634. if (use_dma_ppb) {
  635. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  636. if (retval != 0) {
  637. if (retval == -ENOMEM)
  638. DBG(ep->dev, "Out of DMA memory\n");
  639. return retval;
  640. }
  641. if (ep->in) {
  642. if (req->req.length == ep->ep.maxpacket) {
  643. /* write tx bytes */
  644. req->td_data->status =
  645. AMD_ADDBITS(req->td_data->status,
  646. ep->ep.maxpacket,
  647. UDC_DMA_IN_STS_TXBYTES);
  648. }
  649. }
  650. }
  651. if (ep->in) {
  652. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  653. "maxpacket=%d ep%d\n",
  654. use_dma_ppb, req->req.length,
  655. ep->ep.maxpacket, ep->num);
  656. /*
  657. * if bytes < max packet then tx bytes must
  658. * be written in packet per buffer mode
  659. */
  660. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  661. || ep->num == UDC_EP0OUT_IX
  662. || ep->num == UDC_EP0IN_IX) {
  663. /* write tx bytes */
  664. req->td_data->status =
  665. AMD_ADDBITS(req->td_data->status,
  666. req->req.length,
  667. UDC_DMA_IN_STS_TXBYTES);
  668. /* reset frame num */
  669. req->td_data->status =
  670. AMD_ADDBITS(req->td_data->status,
  671. 0,
  672. UDC_DMA_IN_STS_FRAMENUM);
  673. }
  674. /* set HOST BUSY */
  675. req->td_data->status =
  676. AMD_ADDBITS(req->td_data->status,
  677. UDC_DMA_STP_STS_BS_HOST_BUSY,
  678. UDC_DMA_STP_STS_BS);
  679. } else {
  680. VDBG(ep->dev, "OUT set host ready\n");
  681. /* set HOST READY */
  682. req->td_data->status =
  683. AMD_ADDBITS(req->td_data->status,
  684. UDC_DMA_STP_STS_BS_HOST_READY,
  685. UDC_DMA_STP_STS_BS);
  686. /* clear NAK by writing CNAK */
  687. if (ep->naking) {
  688. tmp = readl(&ep->regs->ctl);
  689. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  690. writel(tmp, &ep->regs->ctl);
  691. ep->naking = 0;
  692. UDC_QUEUE_CNAK(ep, ep->num);
  693. }
  694. }
  695. return retval;
  696. }
  697. /* Completes request packet ... caller MUST hold lock */
  698. static void
  699. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  700. __releases(ep->dev->lock)
  701. __acquires(ep->dev->lock)
  702. {
  703. struct udc *dev;
  704. unsigned halted;
  705. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  706. dev = ep->dev;
  707. /* unmap DMA */
  708. if (req->dma_mapping) {
  709. if (ep->in)
  710. pci_unmap_single(dev->pdev,
  711. req->req.dma,
  712. req->req.length,
  713. PCI_DMA_TODEVICE);
  714. else
  715. pci_unmap_single(dev->pdev,
  716. req->req.dma,
  717. req->req.length,
  718. PCI_DMA_FROMDEVICE);
  719. req->dma_mapping = 0;
  720. req->req.dma = DMA_DONT_USE;
  721. }
  722. halted = ep->halted;
  723. ep->halted = 1;
  724. /* set new status if pending */
  725. if (req->req.status == -EINPROGRESS)
  726. req->req.status = sts;
  727. /* remove from ep queue */
  728. list_del_init(&req->queue);
  729. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  730. &req->req, req->req.length, ep->ep.name, sts);
  731. spin_unlock(&dev->lock);
  732. req->req.complete(&ep->ep, &req->req);
  733. spin_lock(&dev->lock);
  734. ep->halted = halted;
  735. }
  736. /* frees pci pool descriptors of a DMA chain */
  737. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  738. {
  739. int ret_val = 0;
  740. struct udc_data_dma *td;
  741. struct udc_data_dma *td_last = NULL;
  742. unsigned int i;
  743. DBG(dev, "free chain req = %p\n", req);
  744. /* do not free first desc., will be done by free for request */
  745. td_last = req->td_data;
  746. td = phys_to_virt(td_last->next);
  747. for (i = 1; i < req->chain_len; i++) {
  748. pci_pool_free(dev->data_requests, td,
  749. (dma_addr_t) td_last->next);
  750. td_last = td;
  751. td = phys_to_virt(td_last->next);
  752. }
  753. return ret_val;
  754. }
  755. /* Iterates to the end of a DMA chain and returns last descriptor */
  756. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  757. {
  758. struct udc_data_dma *td;
  759. td = req->td_data;
  760. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  761. td = phys_to_virt(td->next);
  762. }
  763. return td;
  764. }
  765. /* Iterates to the end of a DMA chain and counts bytes received */
  766. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  767. {
  768. struct udc_data_dma *td;
  769. u32 count;
  770. td = req->td_data;
  771. /* received number bytes */
  772. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  773. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  774. td = phys_to_virt(td->next);
  775. /* received number bytes */
  776. if (td) {
  777. count += AMD_GETBITS(td->status,
  778. UDC_DMA_OUT_STS_RXBYTES);
  779. }
  780. }
  781. return count;
  782. }
  783. /* Creates or re-inits a DMA chain */
  784. static int udc_create_dma_chain(
  785. struct udc_ep *ep,
  786. struct udc_request *req,
  787. unsigned long buf_len, gfp_t gfp_flags
  788. )
  789. {
  790. unsigned long bytes = req->req.length;
  791. unsigned int i;
  792. dma_addr_t dma_addr;
  793. struct udc_data_dma *td = NULL;
  794. struct udc_data_dma *last = NULL;
  795. unsigned long txbytes;
  796. unsigned create_new_chain = 0;
  797. unsigned len;
  798. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  799. bytes, buf_len);
  800. dma_addr = DMA_DONT_USE;
  801. /* unset L bit in first desc for OUT */
  802. if (!ep->in) {
  803. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  804. }
  805. /* alloc only new desc's if not already available */
  806. len = req->req.length / ep->ep.maxpacket;
  807. if (req->req.length % ep->ep.maxpacket) {
  808. len++;
  809. }
  810. if (len > req->chain_len) {
  811. /* shorter chain already allocated before */
  812. if (req->chain_len > 1) {
  813. udc_free_dma_chain(ep->dev, req);
  814. }
  815. req->chain_len = len;
  816. create_new_chain = 1;
  817. }
  818. td = req->td_data;
  819. /* gen. required number of descriptors and buffers */
  820. for (i = buf_len; i < bytes; i += buf_len) {
  821. /* create or determine next desc. */
  822. if (create_new_chain) {
  823. td = pci_pool_alloc(ep->dev->data_requests,
  824. gfp_flags, &dma_addr);
  825. if (!td)
  826. return -ENOMEM;
  827. td->status = 0;
  828. } else if (i == buf_len) {
  829. /* first td */
  830. td = (struct udc_data_dma *) phys_to_virt(
  831. req->td_data->next);
  832. td->status = 0;
  833. } else {
  834. td = (struct udc_data_dma *) phys_to_virt(last->next);
  835. td->status = 0;
  836. }
  837. if (td)
  838. td->bufptr = req->req.dma + i; /* assign buffer */
  839. else
  840. break;
  841. /* short packet ? */
  842. if ((bytes - i) >= buf_len) {
  843. txbytes = buf_len;
  844. } else {
  845. /* short packet */
  846. txbytes = bytes - i;
  847. }
  848. /* link td and assign tx bytes */
  849. if (i == buf_len) {
  850. if (create_new_chain) {
  851. req->td_data->next = dma_addr;
  852. } else {
  853. /* req->td_data->next = virt_to_phys(td); */
  854. }
  855. /* write tx bytes */
  856. if (ep->in) {
  857. /* first desc */
  858. req->td_data->status =
  859. AMD_ADDBITS(req->td_data->status,
  860. ep->ep.maxpacket,
  861. UDC_DMA_IN_STS_TXBYTES);
  862. /* second desc */
  863. td->status = AMD_ADDBITS(td->status,
  864. txbytes,
  865. UDC_DMA_IN_STS_TXBYTES);
  866. }
  867. } else {
  868. if (create_new_chain) {
  869. last->next = dma_addr;
  870. } else {
  871. /* last->next = virt_to_phys(td); */
  872. }
  873. if (ep->in) {
  874. /* write tx bytes */
  875. td->status = AMD_ADDBITS(td->status,
  876. txbytes,
  877. UDC_DMA_IN_STS_TXBYTES);
  878. }
  879. }
  880. last = td;
  881. }
  882. /* set last bit */
  883. if (td) {
  884. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  885. /* last desc. points to itself */
  886. req->td_data_last = td;
  887. }
  888. return 0;
  889. }
  890. /* Enabling RX DMA */
  891. static void udc_set_rde(struct udc *dev)
  892. {
  893. u32 tmp;
  894. VDBG(dev, "udc_set_rde()\n");
  895. /* stop RDE timer */
  896. if (timer_pending(&udc_timer)) {
  897. set_rde = 0;
  898. mod_timer(&udc_timer, jiffies - 1);
  899. }
  900. /* set RDE */
  901. tmp = readl(&dev->regs->ctl);
  902. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  903. writel(tmp, &dev->regs->ctl);
  904. }
  905. /* Queues a request packet, called by gadget driver */
  906. static int
  907. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  908. {
  909. int retval = 0;
  910. u8 open_rxfifo = 0;
  911. unsigned long iflags;
  912. struct udc_ep *ep;
  913. struct udc_request *req;
  914. struct udc *dev;
  915. u32 tmp;
  916. /* check the inputs */
  917. req = container_of(usbreq, struct udc_request, req);
  918. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  919. || !list_empty(&req->queue))
  920. return -EINVAL;
  921. ep = container_of(usbep, struct udc_ep, ep);
  922. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  923. return -EINVAL;
  924. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  925. dev = ep->dev;
  926. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  927. return -ESHUTDOWN;
  928. /* map dma (usually done before) */
  929. if (ep->dma && usbreq->length != 0
  930. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  931. VDBG(dev, "DMA map req %p\n", req);
  932. if (ep->in)
  933. usbreq->dma = pci_map_single(dev->pdev,
  934. usbreq->buf,
  935. usbreq->length,
  936. PCI_DMA_TODEVICE);
  937. else
  938. usbreq->dma = pci_map_single(dev->pdev,
  939. usbreq->buf,
  940. usbreq->length,
  941. PCI_DMA_FROMDEVICE);
  942. req->dma_mapping = 1;
  943. }
  944. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  945. usbep->name, usbreq, usbreq->length,
  946. req->td_data, usbreq->buf);
  947. spin_lock_irqsave(&dev->lock, iflags);
  948. usbreq->actual = 0;
  949. usbreq->status = -EINPROGRESS;
  950. req->dma_done = 0;
  951. /* on empty queue just do first transfer */
  952. if (list_empty(&ep->queue)) {
  953. /* zlp */
  954. if (usbreq->length == 0) {
  955. /* IN zlp's are handled by hardware */
  956. complete_req(ep, req, 0);
  957. VDBG(dev, "%s: zlp\n", ep->ep.name);
  958. /*
  959. * if set_config or set_intf is waiting for ack by zlp
  960. * then set CSR_DONE
  961. */
  962. if (dev->set_cfg_not_acked) {
  963. tmp = readl(&dev->regs->ctl);
  964. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  965. writel(tmp, &dev->regs->ctl);
  966. dev->set_cfg_not_acked = 0;
  967. }
  968. /* setup command is ACK'ed now by zlp */
  969. if (dev->waiting_zlp_ack_ep0in) {
  970. /* clear NAK by writing CNAK in EP0_IN */
  971. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  972. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  973. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  974. dev->ep[UDC_EP0IN_IX].naking = 0;
  975. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  976. UDC_EP0IN_IX);
  977. dev->waiting_zlp_ack_ep0in = 0;
  978. }
  979. goto finished;
  980. }
  981. if (ep->dma) {
  982. retval = prep_dma(ep, req, gfp);
  983. if (retval != 0)
  984. goto finished;
  985. /* write desc pointer to enable DMA */
  986. if (ep->in) {
  987. /* set HOST READY */
  988. req->td_data->status =
  989. AMD_ADDBITS(req->td_data->status,
  990. UDC_DMA_IN_STS_BS_HOST_READY,
  991. UDC_DMA_IN_STS_BS);
  992. }
  993. /* disabled rx dma while descriptor update */
  994. if (!ep->in) {
  995. /* stop RDE timer */
  996. if (timer_pending(&udc_timer)) {
  997. set_rde = 0;
  998. mod_timer(&udc_timer, jiffies - 1);
  999. }
  1000. /* clear RDE */
  1001. tmp = readl(&dev->regs->ctl);
  1002. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1003. writel(tmp, &dev->regs->ctl);
  1004. open_rxfifo = 1;
  1005. /*
  1006. * if BNA occurred then let BNA dummy desc.
  1007. * point to current desc.
  1008. */
  1009. if (ep->bna_occurred) {
  1010. VDBG(dev, "copy to BNA dummy desc.\n");
  1011. memcpy(ep->bna_dummy_req->td_data,
  1012. req->td_data,
  1013. sizeof(struct udc_data_dma));
  1014. }
  1015. }
  1016. /* write desc pointer */
  1017. writel(req->td_phys, &ep->regs->desptr);
  1018. /* clear NAK by writing CNAK */
  1019. if (ep->naking) {
  1020. tmp = readl(&ep->regs->ctl);
  1021. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1022. writel(tmp, &ep->regs->ctl);
  1023. ep->naking = 0;
  1024. UDC_QUEUE_CNAK(ep, ep->num);
  1025. }
  1026. if (ep->in) {
  1027. /* enable ep irq */
  1028. tmp = readl(&dev->regs->ep_irqmsk);
  1029. tmp &= AMD_UNMASK_BIT(ep->num);
  1030. writel(tmp, &dev->regs->ep_irqmsk);
  1031. }
  1032. } else if (ep->in) {
  1033. /* enable ep irq */
  1034. tmp = readl(&dev->regs->ep_irqmsk);
  1035. tmp &= AMD_UNMASK_BIT(ep->num);
  1036. writel(tmp, &dev->regs->ep_irqmsk);
  1037. }
  1038. } else if (ep->dma) {
  1039. /*
  1040. * prep_dma not used for OUT ep's, this is not possible
  1041. * for PPB modes, because of chain creation reasons
  1042. */
  1043. if (ep->in) {
  1044. retval = prep_dma(ep, req, gfp);
  1045. if (retval != 0)
  1046. goto finished;
  1047. }
  1048. }
  1049. VDBG(dev, "list_add\n");
  1050. /* add request to ep queue */
  1051. if (req) {
  1052. list_add_tail(&req->queue, &ep->queue);
  1053. /* open rxfifo if out data queued */
  1054. if (open_rxfifo) {
  1055. /* enable DMA */
  1056. req->dma_going = 1;
  1057. udc_set_rde(dev);
  1058. if (ep->num != UDC_EP0OUT_IX)
  1059. dev->data_ep_queued = 1;
  1060. }
  1061. /* stop OUT naking */
  1062. if (!ep->in) {
  1063. if (!use_dma && udc_rxfifo_pending) {
  1064. DBG(dev, "udc_queue(): pending bytes in "
  1065. "rxfifo after nyet\n");
  1066. /*
  1067. * read pending bytes afer nyet:
  1068. * referring to isr
  1069. */
  1070. if (udc_rxfifo_read(ep, req)) {
  1071. /* finish */
  1072. complete_req(ep, req, 0);
  1073. }
  1074. udc_rxfifo_pending = 0;
  1075. }
  1076. }
  1077. }
  1078. finished:
  1079. spin_unlock_irqrestore(&dev->lock, iflags);
  1080. return retval;
  1081. }
  1082. /* Empty request queue of an endpoint; caller holds spinlock */
  1083. static void empty_req_queue(struct udc_ep *ep)
  1084. {
  1085. struct udc_request *req;
  1086. ep->halted = 1;
  1087. while (!list_empty(&ep->queue)) {
  1088. req = list_entry(ep->queue.next,
  1089. struct udc_request,
  1090. queue);
  1091. complete_req(ep, req, -ESHUTDOWN);
  1092. }
  1093. }
  1094. /* Dequeues a request packet, called by gadget driver */
  1095. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1096. {
  1097. struct udc_ep *ep;
  1098. struct udc_request *req;
  1099. unsigned halted;
  1100. unsigned long iflags;
  1101. ep = container_of(usbep, struct udc_ep, ep);
  1102. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1103. && ep->num != UDC_EP0OUT_IX)))
  1104. return -EINVAL;
  1105. req = container_of(usbreq, struct udc_request, req);
  1106. spin_lock_irqsave(&ep->dev->lock, iflags);
  1107. halted = ep->halted;
  1108. ep->halted = 1;
  1109. /* request in processing or next one */
  1110. if (ep->queue.next == &req->queue) {
  1111. if (ep->dma && req->dma_going) {
  1112. if (ep->in)
  1113. ep->cancel_transfer = 1;
  1114. else {
  1115. u32 tmp;
  1116. u32 dma_sts;
  1117. /* stop potential receive DMA */
  1118. tmp = readl(&udc->regs->ctl);
  1119. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1120. &udc->regs->ctl);
  1121. /*
  1122. * Cancel transfer later in ISR
  1123. * if descriptor was touched.
  1124. */
  1125. dma_sts = AMD_GETBITS(req->td_data->status,
  1126. UDC_DMA_OUT_STS_BS);
  1127. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1128. ep->cancel_transfer = 1;
  1129. else {
  1130. udc_init_bna_dummy(ep->req);
  1131. writel(ep->bna_dummy_req->td_phys,
  1132. &ep->regs->desptr);
  1133. }
  1134. writel(tmp, &udc->regs->ctl);
  1135. }
  1136. }
  1137. }
  1138. complete_req(ep, req, -ECONNRESET);
  1139. ep->halted = halted;
  1140. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1141. return 0;
  1142. }
  1143. /* Halt or clear halt of endpoint */
  1144. static int
  1145. udc_set_halt(struct usb_ep *usbep, int halt)
  1146. {
  1147. struct udc_ep *ep;
  1148. u32 tmp;
  1149. unsigned long iflags;
  1150. int retval = 0;
  1151. if (!usbep)
  1152. return -EINVAL;
  1153. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1154. ep = container_of(usbep, struct udc_ep, ep);
  1155. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1156. return -EINVAL;
  1157. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1158. return -ESHUTDOWN;
  1159. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1160. /* halt or clear halt */
  1161. if (halt) {
  1162. if (ep->num == 0)
  1163. ep->dev->stall_ep0in = 1;
  1164. else {
  1165. /*
  1166. * set STALL
  1167. * rxfifo empty not taken into acount
  1168. */
  1169. tmp = readl(&ep->regs->ctl);
  1170. tmp |= AMD_BIT(UDC_EPCTL_S);
  1171. writel(tmp, &ep->regs->ctl);
  1172. ep->halted = 1;
  1173. /* setup poll timer */
  1174. if (!timer_pending(&udc_pollstall_timer)) {
  1175. udc_pollstall_timer.expires = jiffies +
  1176. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1177. / (1000 * 1000);
  1178. if (!stop_pollstall_timer) {
  1179. DBG(ep->dev, "start polltimer\n");
  1180. add_timer(&udc_pollstall_timer);
  1181. }
  1182. }
  1183. }
  1184. } else {
  1185. /* ep is halted by set_halt() before */
  1186. if (ep->halted) {
  1187. tmp = readl(&ep->regs->ctl);
  1188. /* clear stall bit */
  1189. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1190. /* clear NAK by writing CNAK */
  1191. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1192. writel(tmp, &ep->regs->ctl);
  1193. ep->halted = 0;
  1194. UDC_QUEUE_CNAK(ep, ep->num);
  1195. }
  1196. }
  1197. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1198. return retval;
  1199. }
  1200. /* gadget interface */
  1201. static const struct usb_ep_ops udc_ep_ops = {
  1202. .enable = udc_ep_enable,
  1203. .disable = udc_ep_disable,
  1204. .alloc_request = udc_alloc_request,
  1205. .free_request = udc_free_request,
  1206. .queue = udc_queue,
  1207. .dequeue = udc_dequeue,
  1208. .set_halt = udc_set_halt,
  1209. /* fifo ops not implemented */
  1210. };
  1211. /*-------------------------------------------------------------------------*/
  1212. /* Get frame counter (not implemented) */
  1213. static int udc_get_frame(struct usb_gadget *gadget)
  1214. {
  1215. return -EOPNOTSUPP;
  1216. }
  1217. /* Remote wakeup gadget interface */
  1218. static int udc_wakeup(struct usb_gadget *gadget)
  1219. {
  1220. struct udc *dev;
  1221. if (!gadget)
  1222. return -EINVAL;
  1223. dev = container_of(gadget, struct udc, gadget);
  1224. udc_remote_wakeup(dev);
  1225. return 0;
  1226. }
  1227. /* gadget operations */
  1228. static const struct usb_gadget_ops udc_ops = {
  1229. .wakeup = udc_wakeup,
  1230. .get_frame = udc_get_frame,
  1231. };
  1232. /* Setups endpoint parameters, adds endpoints to linked list */
  1233. static void make_ep_lists(struct udc *dev)
  1234. {
  1235. /* make gadget ep lists */
  1236. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1237. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1238. &dev->gadget.ep_list);
  1239. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1240. &dev->gadget.ep_list);
  1241. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1242. &dev->gadget.ep_list);
  1243. /* fifo config */
  1244. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1245. if (dev->gadget.speed == USB_SPEED_FULL)
  1246. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1247. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1248. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1249. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1250. }
  1251. /* init registers at driver load time */
  1252. static int startup_registers(struct udc *dev)
  1253. {
  1254. u32 tmp;
  1255. /* init controller by soft reset */
  1256. udc_soft_reset(dev);
  1257. /* mask not needed interrupts */
  1258. udc_mask_unused_interrupts(dev);
  1259. /* put into initial config */
  1260. udc_basic_init(dev);
  1261. /* link up all endpoints */
  1262. udc_setup_endpoints(dev);
  1263. /* program speed */
  1264. tmp = readl(&dev->regs->cfg);
  1265. if (use_fullspeed) {
  1266. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1267. } else {
  1268. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1269. }
  1270. writel(tmp, &dev->regs->cfg);
  1271. return 0;
  1272. }
  1273. /* Inits UDC context */
  1274. static void udc_basic_init(struct udc *dev)
  1275. {
  1276. u32 tmp;
  1277. DBG(dev, "udc_basic_init()\n");
  1278. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1279. /* stop RDE timer */
  1280. if (timer_pending(&udc_timer)) {
  1281. set_rde = 0;
  1282. mod_timer(&udc_timer, jiffies - 1);
  1283. }
  1284. /* stop poll stall timer */
  1285. if (timer_pending(&udc_pollstall_timer)) {
  1286. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1287. }
  1288. /* disable DMA */
  1289. tmp = readl(&dev->regs->ctl);
  1290. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1291. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1292. writel(tmp, &dev->regs->ctl);
  1293. /* enable dynamic CSR programming */
  1294. tmp = readl(&dev->regs->cfg);
  1295. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1296. /* set self powered */
  1297. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1298. /* set remote wakeupable */
  1299. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1300. writel(tmp, &dev->regs->cfg);
  1301. make_ep_lists(dev);
  1302. dev->data_ep_enabled = 0;
  1303. dev->data_ep_queued = 0;
  1304. }
  1305. /* Sets initial endpoint parameters */
  1306. static void udc_setup_endpoints(struct udc *dev)
  1307. {
  1308. struct udc_ep *ep;
  1309. u32 tmp;
  1310. u32 reg;
  1311. DBG(dev, "udc_setup_endpoints()\n");
  1312. /* read enum speed */
  1313. tmp = readl(&dev->regs->sts);
  1314. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1315. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1316. dev->gadget.speed = USB_SPEED_HIGH;
  1317. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1318. dev->gadget.speed = USB_SPEED_FULL;
  1319. }
  1320. /* set basic ep parameters */
  1321. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1322. ep = &dev->ep[tmp];
  1323. ep->dev = dev;
  1324. ep->ep.name = ep_string[tmp];
  1325. ep->num = tmp;
  1326. /* txfifo size is calculated at enable time */
  1327. ep->txfifo = dev->txfifo;
  1328. /* fifo size */
  1329. if (tmp < UDC_EPIN_NUM) {
  1330. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1331. ep->in = 1;
  1332. } else {
  1333. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1334. ep->in = 0;
  1335. }
  1336. ep->regs = &dev->ep_regs[tmp];
  1337. /*
  1338. * ep will be reset only if ep was not enabled before to avoid
  1339. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1340. * not enabled by gadget driver
  1341. */
  1342. if (!ep->desc) {
  1343. ep_init(dev->regs, ep);
  1344. }
  1345. if (use_dma) {
  1346. /*
  1347. * ep->dma is not really used, just to indicate that
  1348. * DMA is active: remove this
  1349. * dma regs = dev control regs
  1350. */
  1351. ep->dma = &dev->regs->ctl;
  1352. /* nak OUT endpoints until enable - not for ep0 */
  1353. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1354. && tmp > UDC_EPIN_NUM) {
  1355. /* set NAK */
  1356. reg = readl(&dev->ep[tmp].regs->ctl);
  1357. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1358. writel(reg, &dev->ep[tmp].regs->ctl);
  1359. dev->ep[tmp].naking = 1;
  1360. }
  1361. }
  1362. }
  1363. /* EP0 max packet */
  1364. if (dev->gadget.speed == USB_SPEED_FULL) {
  1365. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1366. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1367. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1368. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1369. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1370. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1371. }
  1372. /*
  1373. * with suspend bug workaround, ep0 params for gadget driver
  1374. * are set at gadget driver bind() call
  1375. */
  1376. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1377. dev->ep[UDC_EP0IN_IX].halted = 0;
  1378. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1379. /* init cfg/alt/int */
  1380. dev->cur_config = 0;
  1381. dev->cur_intf = 0;
  1382. dev->cur_alt = 0;
  1383. }
  1384. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1385. static void usb_connect(struct udc *dev)
  1386. {
  1387. dev_info(&dev->pdev->dev, "USB Connect\n");
  1388. dev->connected = 1;
  1389. /* put into initial config */
  1390. udc_basic_init(dev);
  1391. /* enable device setup interrupts */
  1392. udc_enable_dev_setup_interrupts(dev);
  1393. }
  1394. /*
  1395. * Calls gadget with disconnect event and resets the UDC and makes
  1396. * initial bringup to be ready for ep0 events
  1397. */
  1398. static void usb_disconnect(struct udc *dev)
  1399. {
  1400. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1401. dev->connected = 0;
  1402. /* mask interrupts */
  1403. udc_mask_unused_interrupts(dev);
  1404. /* REVISIT there doesn't seem to be a point to having this
  1405. * talk to a tasklet ... do it directly, we already hold
  1406. * the spinlock needed to process the disconnect.
  1407. */
  1408. tasklet_schedule(&disconnect_tasklet);
  1409. }
  1410. /* Tasklet for disconnect to be outside of interrupt context */
  1411. static void udc_tasklet_disconnect(unsigned long par)
  1412. {
  1413. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1414. u32 tmp;
  1415. DBG(dev, "Tasklet disconnect\n");
  1416. spin_lock_irq(&dev->lock);
  1417. if (dev->driver) {
  1418. spin_unlock(&dev->lock);
  1419. dev->driver->disconnect(&dev->gadget);
  1420. spin_lock(&dev->lock);
  1421. /* empty queues */
  1422. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1423. empty_req_queue(&dev->ep[tmp]);
  1424. }
  1425. }
  1426. /* disable ep0 */
  1427. ep_init(dev->regs,
  1428. &dev->ep[UDC_EP0IN_IX]);
  1429. if (!soft_reset_occured) {
  1430. /* init controller by soft reset */
  1431. udc_soft_reset(dev);
  1432. soft_reset_occured++;
  1433. }
  1434. /* re-enable dev interrupts */
  1435. udc_enable_dev_setup_interrupts(dev);
  1436. /* back to full speed ? */
  1437. if (use_fullspeed) {
  1438. tmp = readl(&dev->regs->cfg);
  1439. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1440. writel(tmp, &dev->regs->cfg);
  1441. }
  1442. spin_unlock_irq(&dev->lock);
  1443. }
  1444. /* Reset the UDC core */
  1445. static void udc_soft_reset(struct udc *dev)
  1446. {
  1447. unsigned long flags;
  1448. DBG(dev, "Soft reset\n");
  1449. /*
  1450. * reset possible waiting interrupts, because int.
  1451. * status is lost after soft reset,
  1452. * ep int. status reset
  1453. */
  1454. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1455. /* device int. status reset */
  1456. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1457. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1458. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1459. readl(&dev->regs->cfg);
  1460. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1461. }
  1462. /* RDE timer callback to set RDE bit */
  1463. static void udc_timer_function(unsigned long v)
  1464. {
  1465. u32 tmp;
  1466. spin_lock_irq(&udc_irq_spinlock);
  1467. if (set_rde > 0) {
  1468. /*
  1469. * open the fifo if fifo was filled on last timer call
  1470. * conditionally
  1471. */
  1472. if (set_rde > 1) {
  1473. /* set RDE to receive setup data */
  1474. tmp = readl(&udc->regs->ctl);
  1475. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1476. writel(tmp, &udc->regs->ctl);
  1477. set_rde = -1;
  1478. } else if (readl(&udc->regs->sts)
  1479. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1480. /*
  1481. * if fifo empty setup polling, do not just
  1482. * open the fifo
  1483. */
  1484. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1485. if (!stop_timer) {
  1486. add_timer(&udc_timer);
  1487. }
  1488. } else {
  1489. /*
  1490. * fifo contains data now, setup timer for opening
  1491. * the fifo when timer expires to be able to receive
  1492. * setup packets, when data packets gets queued by
  1493. * gadget layer then timer will forced to expire with
  1494. * set_rde=0 (RDE is set in udc_queue())
  1495. */
  1496. set_rde++;
  1497. /* debug: lhadmot_timer_start = 221070 */
  1498. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1499. if (!stop_timer) {
  1500. add_timer(&udc_timer);
  1501. }
  1502. }
  1503. } else
  1504. set_rde = -1; /* RDE was set by udc_queue() */
  1505. spin_unlock_irq(&udc_irq_spinlock);
  1506. if (stop_timer)
  1507. complete(&on_exit);
  1508. }
  1509. /* Handle halt state, used in stall poll timer */
  1510. static void udc_handle_halt_state(struct udc_ep *ep)
  1511. {
  1512. u32 tmp;
  1513. /* set stall as long not halted */
  1514. if (ep->halted == 1) {
  1515. tmp = readl(&ep->regs->ctl);
  1516. /* STALL cleared ? */
  1517. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1518. /*
  1519. * FIXME: MSC spec requires that stall remains
  1520. * even on receivng of CLEAR_FEATURE HALT. So
  1521. * we would set STALL again here to be compliant.
  1522. * But with current mass storage drivers this does
  1523. * not work (would produce endless host retries).
  1524. * So we clear halt on CLEAR_FEATURE.
  1525. *
  1526. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1527. tmp |= AMD_BIT(UDC_EPCTL_S);
  1528. writel(tmp, &ep->regs->ctl);*/
  1529. /* clear NAK by writing CNAK */
  1530. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1531. writel(tmp, &ep->regs->ctl);
  1532. ep->halted = 0;
  1533. UDC_QUEUE_CNAK(ep, ep->num);
  1534. }
  1535. }
  1536. }
  1537. /* Stall timer callback to poll S bit and set it again after */
  1538. static void udc_pollstall_timer_function(unsigned long v)
  1539. {
  1540. struct udc_ep *ep;
  1541. int halted = 0;
  1542. spin_lock_irq(&udc_stall_spinlock);
  1543. /*
  1544. * only one IN and OUT endpoints are handled
  1545. * IN poll stall
  1546. */
  1547. ep = &udc->ep[UDC_EPIN_IX];
  1548. udc_handle_halt_state(ep);
  1549. if (ep->halted)
  1550. halted = 1;
  1551. /* OUT poll stall */
  1552. ep = &udc->ep[UDC_EPOUT_IX];
  1553. udc_handle_halt_state(ep);
  1554. if (ep->halted)
  1555. halted = 1;
  1556. /* setup timer again when still halted */
  1557. if (!stop_pollstall_timer && halted) {
  1558. udc_pollstall_timer.expires = jiffies +
  1559. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1560. / (1000 * 1000);
  1561. add_timer(&udc_pollstall_timer);
  1562. }
  1563. spin_unlock_irq(&udc_stall_spinlock);
  1564. if (stop_pollstall_timer)
  1565. complete(&on_pollstall_exit);
  1566. }
  1567. /* Inits endpoint 0 so that SETUP packets are processed */
  1568. static void activate_control_endpoints(struct udc *dev)
  1569. {
  1570. u32 tmp;
  1571. DBG(dev, "activate_control_endpoints\n");
  1572. /* flush fifo */
  1573. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1574. tmp |= AMD_BIT(UDC_EPCTL_F);
  1575. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1576. /* set ep0 directions */
  1577. dev->ep[UDC_EP0IN_IX].in = 1;
  1578. dev->ep[UDC_EP0OUT_IX].in = 0;
  1579. /* set buffer size (tx fifo entries) of EP0_IN */
  1580. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1581. if (dev->gadget.speed == USB_SPEED_FULL)
  1582. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1583. UDC_EPIN_BUFF_SIZE);
  1584. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1585. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1586. UDC_EPIN_BUFF_SIZE);
  1587. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1588. /* set max packet size of EP0_IN */
  1589. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1590. if (dev->gadget.speed == USB_SPEED_FULL)
  1591. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1592. UDC_EP_MAX_PKT_SIZE);
  1593. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1594. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1595. UDC_EP_MAX_PKT_SIZE);
  1596. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1597. /* set max packet size of EP0_OUT */
  1598. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1599. if (dev->gadget.speed == USB_SPEED_FULL)
  1600. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1601. UDC_EP_MAX_PKT_SIZE);
  1602. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1603. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1604. UDC_EP_MAX_PKT_SIZE);
  1605. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1606. /* set max packet size of EP0 in UDC CSR */
  1607. tmp = readl(&dev->csr->ne[0]);
  1608. if (dev->gadget.speed == USB_SPEED_FULL)
  1609. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1610. UDC_CSR_NE_MAX_PKT);
  1611. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1612. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1613. UDC_CSR_NE_MAX_PKT);
  1614. writel(tmp, &dev->csr->ne[0]);
  1615. if (use_dma) {
  1616. dev->ep[UDC_EP0OUT_IX].td->status |=
  1617. AMD_BIT(UDC_DMA_OUT_STS_L);
  1618. /* write dma desc address */
  1619. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1620. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1621. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1622. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1623. /* stop RDE timer */
  1624. if (timer_pending(&udc_timer)) {
  1625. set_rde = 0;
  1626. mod_timer(&udc_timer, jiffies - 1);
  1627. }
  1628. /* stop pollstall timer */
  1629. if (timer_pending(&udc_pollstall_timer)) {
  1630. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1631. }
  1632. /* enable DMA */
  1633. tmp = readl(&dev->regs->ctl);
  1634. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1635. | AMD_BIT(UDC_DEVCTL_RDE)
  1636. | AMD_BIT(UDC_DEVCTL_TDE);
  1637. if (use_dma_bufferfill_mode) {
  1638. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1639. } else if (use_dma_ppb_du) {
  1640. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1641. }
  1642. writel(tmp, &dev->regs->ctl);
  1643. }
  1644. /* clear NAK by writing CNAK for EP0IN */
  1645. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1646. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1647. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1648. dev->ep[UDC_EP0IN_IX].naking = 0;
  1649. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1650. /* clear NAK by writing CNAK for EP0OUT */
  1651. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1652. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1653. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1654. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1655. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1656. }
  1657. /* Make endpoint 0 ready for control traffic */
  1658. static int setup_ep0(struct udc *dev)
  1659. {
  1660. activate_control_endpoints(dev);
  1661. /* enable ep0 interrupts */
  1662. udc_enable_ep0_interrupts(dev);
  1663. /* enable device setup interrupts */
  1664. udc_enable_dev_setup_interrupts(dev);
  1665. return 0;
  1666. }
  1667. /* Called by gadget driver to register itself */
  1668. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  1669. int (*bind)(struct usb_gadget *))
  1670. {
  1671. struct udc *dev = udc;
  1672. int retval;
  1673. u32 tmp;
  1674. if (!driver || !bind || !driver->setup
  1675. || driver->speed != USB_SPEED_HIGH)
  1676. return -EINVAL;
  1677. if (!dev)
  1678. return -ENODEV;
  1679. if (dev->driver)
  1680. return -EBUSY;
  1681. driver->driver.bus = NULL;
  1682. dev->driver = driver;
  1683. dev->gadget.dev.driver = &driver->driver;
  1684. retval = bind(&dev->gadget);
  1685. /* Some gadget drivers use both ep0 directions.
  1686. * NOTE: to gadget driver, ep0 is just one endpoint...
  1687. */
  1688. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1689. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1690. if (retval) {
  1691. DBG(dev, "binding to %s returning %d\n",
  1692. driver->driver.name, retval);
  1693. dev->driver = NULL;
  1694. dev->gadget.dev.driver = NULL;
  1695. return retval;
  1696. }
  1697. /* get ready for ep0 traffic */
  1698. setup_ep0(dev);
  1699. /* clear SD */
  1700. tmp = readl(&dev->regs->ctl);
  1701. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1702. writel(tmp, &dev->regs->ctl);
  1703. usb_connect(dev);
  1704. return 0;
  1705. }
  1706. EXPORT_SYMBOL(usb_gadget_probe_driver);
  1707. /* shutdown requests and disconnect from gadget */
  1708. static void
  1709. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1710. __releases(dev->lock)
  1711. __acquires(dev->lock)
  1712. {
  1713. int tmp;
  1714. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1715. spin_unlock(&dev->lock);
  1716. driver->disconnect(&dev->gadget);
  1717. spin_lock(&dev->lock);
  1718. }
  1719. /* empty queues and init hardware */
  1720. udc_basic_init(dev);
  1721. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1722. empty_req_queue(&dev->ep[tmp]);
  1723. udc_setup_endpoints(dev);
  1724. }
  1725. /* Called by gadget driver to unregister itself */
  1726. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  1727. {
  1728. struct udc *dev = udc;
  1729. unsigned long flags;
  1730. u32 tmp;
  1731. if (!dev)
  1732. return -ENODEV;
  1733. if (!driver || driver != dev->driver || !driver->unbind)
  1734. return -EINVAL;
  1735. spin_lock_irqsave(&dev->lock, flags);
  1736. udc_mask_unused_interrupts(dev);
  1737. shutdown(dev, driver);
  1738. spin_unlock_irqrestore(&dev->lock, flags);
  1739. driver->unbind(&dev->gadget);
  1740. dev->gadget.dev.driver = NULL;
  1741. dev->driver = NULL;
  1742. /* set SD */
  1743. tmp = readl(&dev->regs->ctl);
  1744. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1745. writel(tmp, &dev->regs->ctl);
  1746. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1747. return 0;
  1748. }
  1749. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  1750. /* Clear pending NAK bits */
  1751. static void udc_process_cnak_queue(struct udc *dev)
  1752. {
  1753. u32 tmp;
  1754. u32 reg;
  1755. /* check epin's */
  1756. DBG(dev, "CNAK pending queue processing\n");
  1757. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1758. if (cnak_pending & (1 << tmp)) {
  1759. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1760. /* clear NAK by writing CNAK */
  1761. reg = readl(&dev->ep[tmp].regs->ctl);
  1762. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1763. writel(reg, &dev->ep[tmp].regs->ctl);
  1764. dev->ep[tmp].naking = 0;
  1765. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1766. }
  1767. }
  1768. /* ... and ep0out */
  1769. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1770. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1771. /* clear NAK by writing CNAK */
  1772. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1773. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1774. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1775. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1776. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1777. dev->ep[UDC_EP0OUT_IX].num);
  1778. }
  1779. }
  1780. /* Enabling RX DMA after setup packet */
  1781. static void udc_ep0_set_rde(struct udc *dev)
  1782. {
  1783. if (use_dma) {
  1784. /*
  1785. * only enable RXDMA when no data endpoint enabled
  1786. * or data is queued
  1787. */
  1788. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1789. udc_set_rde(dev);
  1790. } else {
  1791. /*
  1792. * setup timer for enabling RDE (to not enable
  1793. * RXFIFO DMA for data endpoints to early)
  1794. */
  1795. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1796. udc_timer.expires =
  1797. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1798. set_rde = 1;
  1799. if (!stop_timer) {
  1800. add_timer(&udc_timer);
  1801. }
  1802. }
  1803. }
  1804. }
  1805. }
  1806. /* Interrupt handler for data OUT traffic */
  1807. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1808. {
  1809. irqreturn_t ret_val = IRQ_NONE;
  1810. u32 tmp;
  1811. struct udc_ep *ep;
  1812. struct udc_request *req;
  1813. unsigned int count;
  1814. struct udc_data_dma *td = NULL;
  1815. unsigned dma_done;
  1816. VDBG(dev, "ep%d irq\n", ep_ix);
  1817. ep = &dev->ep[ep_ix];
  1818. tmp = readl(&ep->regs->sts);
  1819. if (use_dma) {
  1820. /* BNA event ? */
  1821. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1822. DBG(dev, "BNA ep%dout occurred - DESPTR = %x \n",
  1823. ep->num, readl(&ep->regs->desptr));
  1824. /* clear BNA */
  1825. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1826. if (!ep->cancel_transfer)
  1827. ep->bna_occurred = 1;
  1828. else
  1829. ep->cancel_transfer = 0;
  1830. ret_val = IRQ_HANDLED;
  1831. goto finished;
  1832. }
  1833. }
  1834. /* HE event ? */
  1835. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1836. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1837. /* clear HE */
  1838. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1839. ret_val = IRQ_HANDLED;
  1840. goto finished;
  1841. }
  1842. if (!list_empty(&ep->queue)) {
  1843. /* next request */
  1844. req = list_entry(ep->queue.next,
  1845. struct udc_request, queue);
  1846. } else {
  1847. req = NULL;
  1848. udc_rxfifo_pending = 1;
  1849. }
  1850. VDBG(dev, "req = %p\n", req);
  1851. /* fifo mode */
  1852. if (!use_dma) {
  1853. /* read fifo */
  1854. if (req && udc_rxfifo_read(ep, req)) {
  1855. ret_val = IRQ_HANDLED;
  1856. /* finish */
  1857. complete_req(ep, req, 0);
  1858. /* next request */
  1859. if (!list_empty(&ep->queue) && !ep->halted) {
  1860. req = list_entry(ep->queue.next,
  1861. struct udc_request, queue);
  1862. } else
  1863. req = NULL;
  1864. }
  1865. /* DMA */
  1866. } else if (!ep->cancel_transfer && req != NULL) {
  1867. ret_val = IRQ_HANDLED;
  1868. /* check for DMA done */
  1869. if (!use_dma_ppb) {
  1870. dma_done = AMD_GETBITS(req->td_data->status,
  1871. UDC_DMA_OUT_STS_BS);
  1872. /* packet per buffer mode - rx bytes */
  1873. } else {
  1874. /*
  1875. * if BNA occurred then recover desc. from
  1876. * BNA dummy desc.
  1877. */
  1878. if (ep->bna_occurred) {
  1879. VDBG(dev, "Recover desc. from BNA dummy\n");
  1880. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1881. sizeof(struct udc_data_dma));
  1882. ep->bna_occurred = 0;
  1883. udc_init_bna_dummy(ep->req);
  1884. }
  1885. td = udc_get_last_dma_desc(req);
  1886. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1887. }
  1888. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1889. /* buffer fill mode - rx bytes */
  1890. if (!use_dma_ppb) {
  1891. /* received number bytes */
  1892. count = AMD_GETBITS(req->td_data->status,
  1893. UDC_DMA_OUT_STS_RXBYTES);
  1894. VDBG(dev, "rx bytes=%u\n", count);
  1895. /* packet per buffer mode - rx bytes */
  1896. } else {
  1897. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1898. VDBG(dev, "last desc = %p\n", td);
  1899. /* received number bytes */
  1900. if (use_dma_ppb_du) {
  1901. /* every desc. counts bytes */
  1902. count = udc_get_ppbdu_rxbytes(req);
  1903. } else {
  1904. /* last desc. counts bytes */
  1905. count = AMD_GETBITS(td->status,
  1906. UDC_DMA_OUT_STS_RXBYTES);
  1907. if (!count && req->req.length
  1908. == UDC_DMA_MAXPACKET) {
  1909. /*
  1910. * on 64k packets the RXBYTES
  1911. * field is zero
  1912. */
  1913. count = UDC_DMA_MAXPACKET;
  1914. }
  1915. }
  1916. VDBG(dev, "last desc rx bytes=%u\n", count);
  1917. }
  1918. tmp = req->req.length - req->req.actual;
  1919. if (count > tmp) {
  1920. if ((tmp % ep->ep.maxpacket) != 0) {
  1921. DBG(dev, "%s: rx %db, space=%db\n",
  1922. ep->ep.name, count, tmp);
  1923. req->req.status = -EOVERFLOW;
  1924. }
  1925. count = tmp;
  1926. }
  1927. req->req.actual += count;
  1928. req->dma_going = 0;
  1929. /* complete request */
  1930. complete_req(ep, req, 0);
  1931. /* next request */
  1932. if (!list_empty(&ep->queue) && !ep->halted) {
  1933. req = list_entry(ep->queue.next,
  1934. struct udc_request,
  1935. queue);
  1936. /*
  1937. * DMA may be already started by udc_queue()
  1938. * called by gadget drivers completion
  1939. * routine. This happens when queue
  1940. * holds one request only.
  1941. */
  1942. if (req->dma_going == 0) {
  1943. /* next dma */
  1944. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1945. goto finished;
  1946. /* write desc pointer */
  1947. writel(req->td_phys,
  1948. &ep->regs->desptr);
  1949. req->dma_going = 1;
  1950. /* enable DMA */
  1951. udc_set_rde(dev);
  1952. }
  1953. } else {
  1954. /*
  1955. * implant BNA dummy descriptor to allow
  1956. * RXFIFO opening by RDE
  1957. */
  1958. if (ep->bna_dummy_req) {
  1959. /* write desc pointer */
  1960. writel(ep->bna_dummy_req->td_phys,
  1961. &ep->regs->desptr);
  1962. ep->bna_occurred = 0;
  1963. }
  1964. /*
  1965. * schedule timer for setting RDE if queue
  1966. * remains empty to allow ep0 packets pass
  1967. * through
  1968. */
  1969. if (set_rde != 0
  1970. && !timer_pending(&udc_timer)) {
  1971. udc_timer.expires =
  1972. jiffies
  1973. + HZ*UDC_RDE_TIMER_SECONDS;
  1974. set_rde = 1;
  1975. if (!stop_timer) {
  1976. add_timer(&udc_timer);
  1977. }
  1978. }
  1979. if (ep->num != UDC_EP0OUT_IX)
  1980. dev->data_ep_queued = 0;
  1981. }
  1982. } else {
  1983. /*
  1984. * RX DMA must be reenabled for each desc in PPBDU mode
  1985. * and must be enabled for PPBNDU mode in case of BNA
  1986. */
  1987. udc_set_rde(dev);
  1988. }
  1989. } else if (ep->cancel_transfer) {
  1990. ret_val = IRQ_HANDLED;
  1991. ep->cancel_transfer = 0;
  1992. }
  1993. /* check pending CNAKS */
  1994. if (cnak_pending) {
  1995. /* CNAk processing when rxfifo empty only */
  1996. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1997. udc_process_cnak_queue(dev);
  1998. }
  1999. }
  2000. /* clear OUT bits in ep status */
  2001. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  2002. finished:
  2003. return ret_val;
  2004. }
  2005. /* Interrupt handler for data IN traffic */
  2006. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2007. {
  2008. irqreturn_t ret_val = IRQ_NONE;
  2009. u32 tmp;
  2010. u32 epsts;
  2011. struct udc_ep *ep;
  2012. struct udc_request *req;
  2013. struct udc_data_dma *td;
  2014. unsigned dma_done;
  2015. unsigned len;
  2016. ep = &dev->ep[ep_ix];
  2017. epsts = readl(&ep->regs->sts);
  2018. if (use_dma) {
  2019. /* BNA ? */
  2020. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2021. dev_err(&dev->pdev->dev,
  2022. "BNA ep%din occurred - DESPTR = %08lx \n",
  2023. ep->num,
  2024. (unsigned long) readl(&ep->regs->desptr));
  2025. /* clear BNA */
  2026. writel(epsts, &ep->regs->sts);
  2027. ret_val = IRQ_HANDLED;
  2028. goto finished;
  2029. }
  2030. }
  2031. /* HE event ? */
  2032. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2033. dev_err(&dev->pdev->dev,
  2034. "HE ep%dn occurred - DESPTR = %08lx \n",
  2035. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2036. /* clear HE */
  2037. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2038. ret_val = IRQ_HANDLED;
  2039. goto finished;
  2040. }
  2041. /* DMA completion */
  2042. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2043. VDBG(dev, "TDC set- completion\n");
  2044. ret_val = IRQ_HANDLED;
  2045. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2046. req = list_entry(ep->queue.next,
  2047. struct udc_request, queue);
  2048. /*
  2049. * length bytes transferred
  2050. * check dma done of last desc. in PPBDU mode
  2051. */
  2052. if (use_dma_ppb_du) {
  2053. td = udc_get_last_dma_desc(req);
  2054. if (td) {
  2055. dma_done =
  2056. AMD_GETBITS(td->status,
  2057. UDC_DMA_IN_STS_BS);
  2058. /* don't care DMA done */
  2059. req->req.actual = req->req.length;
  2060. }
  2061. } else {
  2062. /* assume all bytes transferred */
  2063. req->req.actual = req->req.length;
  2064. }
  2065. if (req->req.actual == req->req.length) {
  2066. /* complete req */
  2067. complete_req(ep, req, 0);
  2068. req->dma_going = 0;
  2069. /* further request available ? */
  2070. if (list_empty(&ep->queue)) {
  2071. /* disable interrupt */
  2072. tmp = readl(&dev->regs->ep_irqmsk);
  2073. tmp |= AMD_BIT(ep->num);
  2074. writel(tmp, &dev->regs->ep_irqmsk);
  2075. }
  2076. }
  2077. }
  2078. ep->cancel_transfer = 0;
  2079. }
  2080. /*
  2081. * status reg has IN bit set and TDC not set (if TDC was handled,
  2082. * IN must not be handled (UDC defect) ?
  2083. */
  2084. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2085. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2086. ret_val = IRQ_HANDLED;
  2087. if (!list_empty(&ep->queue)) {
  2088. /* next request */
  2089. req = list_entry(ep->queue.next,
  2090. struct udc_request, queue);
  2091. /* FIFO mode */
  2092. if (!use_dma) {
  2093. /* write fifo */
  2094. udc_txfifo_write(ep, &req->req);
  2095. len = req->req.length - req->req.actual;
  2096. if (len > ep->ep.maxpacket)
  2097. len = ep->ep.maxpacket;
  2098. req->req.actual += len;
  2099. if (req->req.actual == req->req.length
  2100. || (len != ep->ep.maxpacket)) {
  2101. /* complete req */
  2102. complete_req(ep, req, 0);
  2103. }
  2104. /* DMA */
  2105. } else if (req && !req->dma_going) {
  2106. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2107. req, req->td_data);
  2108. if (req->td_data) {
  2109. req->dma_going = 1;
  2110. /*
  2111. * unset L bit of first desc.
  2112. * for chain
  2113. */
  2114. if (use_dma_ppb && req->req.length >
  2115. ep->ep.maxpacket) {
  2116. req->td_data->status &=
  2117. AMD_CLEAR_BIT(
  2118. UDC_DMA_IN_STS_L);
  2119. }
  2120. /* write desc pointer */
  2121. writel(req->td_phys, &ep->regs->desptr);
  2122. /* set HOST READY */
  2123. req->td_data->status =
  2124. AMD_ADDBITS(
  2125. req->td_data->status,
  2126. UDC_DMA_IN_STS_BS_HOST_READY,
  2127. UDC_DMA_IN_STS_BS);
  2128. /* set poll demand bit */
  2129. tmp = readl(&ep->regs->ctl);
  2130. tmp |= AMD_BIT(UDC_EPCTL_P);
  2131. writel(tmp, &ep->regs->ctl);
  2132. }
  2133. }
  2134. } else if (!use_dma && ep->in) {
  2135. /* disable interrupt */
  2136. tmp = readl(
  2137. &dev->regs->ep_irqmsk);
  2138. tmp |= AMD_BIT(ep->num);
  2139. writel(tmp,
  2140. &dev->regs->ep_irqmsk);
  2141. }
  2142. }
  2143. /* clear status bits */
  2144. writel(epsts, &ep->regs->sts);
  2145. finished:
  2146. return ret_val;
  2147. }
  2148. /* Interrupt handler for Control OUT traffic */
  2149. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2150. __releases(dev->lock)
  2151. __acquires(dev->lock)
  2152. {
  2153. irqreturn_t ret_val = IRQ_NONE;
  2154. u32 tmp;
  2155. int setup_supported;
  2156. u32 count;
  2157. int set = 0;
  2158. struct udc_ep *ep;
  2159. struct udc_ep *ep_tmp;
  2160. ep = &dev->ep[UDC_EP0OUT_IX];
  2161. /* clear irq */
  2162. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2163. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2164. /* check BNA and clear if set */
  2165. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2166. VDBG(dev, "ep0: BNA set\n");
  2167. writel(AMD_BIT(UDC_EPSTS_BNA),
  2168. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2169. ep->bna_occurred = 1;
  2170. ret_val = IRQ_HANDLED;
  2171. goto finished;
  2172. }
  2173. /* type of data: SETUP or DATA 0 bytes */
  2174. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2175. VDBG(dev, "data_typ = %x\n", tmp);
  2176. /* setup data */
  2177. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2178. ret_val = IRQ_HANDLED;
  2179. ep->dev->stall_ep0in = 0;
  2180. dev->waiting_zlp_ack_ep0in = 0;
  2181. /* set NAK for EP0_IN */
  2182. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2183. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2184. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2185. dev->ep[UDC_EP0IN_IX].naking = 1;
  2186. /* get setup data */
  2187. if (use_dma) {
  2188. /* clear OUT bits in ep status */
  2189. writel(UDC_EPSTS_OUT_CLEAR,
  2190. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2191. setup_data.data[0] =
  2192. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2193. setup_data.data[1] =
  2194. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2195. /* set HOST READY */
  2196. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2197. UDC_DMA_STP_STS_BS_HOST_READY;
  2198. } else {
  2199. /* read fifo */
  2200. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2201. }
  2202. /* determine direction of control data */
  2203. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2204. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2205. /* enable RDE */
  2206. udc_ep0_set_rde(dev);
  2207. set = 0;
  2208. } else {
  2209. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2210. /*
  2211. * implant BNA dummy descriptor to allow RXFIFO opening
  2212. * by RDE
  2213. */
  2214. if (ep->bna_dummy_req) {
  2215. /* write desc pointer */
  2216. writel(ep->bna_dummy_req->td_phys,
  2217. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2218. ep->bna_occurred = 0;
  2219. }
  2220. set = 1;
  2221. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2222. /*
  2223. * setup timer for enabling RDE (to not enable
  2224. * RXFIFO DMA for data to early)
  2225. */
  2226. set_rde = 1;
  2227. if (!timer_pending(&udc_timer)) {
  2228. udc_timer.expires = jiffies +
  2229. HZ/UDC_RDE_TIMER_DIV;
  2230. if (!stop_timer) {
  2231. add_timer(&udc_timer);
  2232. }
  2233. }
  2234. }
  2235. /*
  2236. * mass storage reset must be processed here because
  2237. * next packet may be a CLEAR_FEATURE HALT which would not
  2238. * clear the stall bit when no STALL handshake was received
  2239. * before (autostall can cause this)
  2240. */
  2241. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2242. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2243. DBG(dev, "MSC Reset\n");
  2244. /*
  2245. * clear stall bits
  2246. * only one IN and OUT endpoints are handled
  2247. */
  2248. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2249. udc_set_halt(&ep_tmp->ep, 0);
  2250. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2251. udc_set_halt(&ep_tmp->ep, 0);
  2252. }
  2253. /* call gadget with setup data received */
  2254. spin_unlock(&dev->lock);
  2255. setup_supported = dev->driver->setup(&dev->gadget,
  2256. &setup_data.request);
  2257. spin_lock(&dev->lock);
  2258. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2259. /* ep0 in returns data (not zlp) on IN phase */
  2260. if (setup_supported >= 0 && setup_supported <
  2261. UDC_EP0IN_MAXPACKET) {
  2262. /* clear NAK by writing CNAK in EP0_IN */
  2263. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2264. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2265. dev->ep[UDC_EP0IN_IX].naking = 0;
  2266. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2267. /* if unsupported request then stall */
  2268. } else if (setup_supported < 0) {
  2269. tmp |= AMD_BIT(UDC_EPCTL_S);
  2270. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2271. } else
  2272. dev->waiting_zlp_ack_ep0in = 1;
  2273. /* clear NAK by writing CNAK in EP0_OUT */
  2274. if (!set) {
  2275. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2276. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2277. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2278. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2279. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2280. }
  2281. if (!use_dma) {
  2282. /* clear OUT bits in ep status */
  2283. writel(UDC_EPSTS_OUT_CLEAR,
  2284. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2285. }
  2286. /* data packet 0 bytes */
  2287. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2288. /* clear OUT bits in ep status */
  2289. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2290. /* get setup data: only 0 packet */
  2291. if (use_dma) {
  2292. /* no req if 0 packet, just reactivate */
  2293. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2294. VDBG(dev, "ZLP\n");
  2295. /* set HOST READY */
  2296. dev->ep[UDC_EP0OUT_IX].td->status =
  2297. AMD_ADDBITS(
  2298. dev->ep[UDC_EP0OUT_IX].td->status,
  2299. UDC_DMA_OUT_STS_BS_HOST_READY,
  2300. UDC_DMA_OUT_STS_BS);
  2301. /* enable RDE */
  2302. udc_ep0_set_rde(dev);
  2303. ret_val = IRQ_HANDLED;
  2304. } else {
  2305. /* control write */
  2306. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2307. /* re-program desc. pointer for possible ZLPs */
  2308. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2309. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2310. /* enable RDE */
  2311. udc_ep0_set_rde(dev);
  2312. }
  2313. } else {
  2314. /* received number bytes */
  2315. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2316. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2317. /* out data for fifo mode not working */
  2318. count = 0;
  2319. /* 0 packet or real data ? */
  2320. if (count != 0) {
  2321. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2322. } else {
  2323. /* dummy read confirm */
  2324. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2325. ret_val = IRQ_HANDLED;
  2326. }
  2327. }
  2328. }
  2329. /* check pending CNAKS */
  2330. if (cnak_pending) {
  2331. /* CNAk processing when rxfifo empty only */
  2332. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2333. udc_process_cnak_queue(dev);
  2334. }
  2335. }
  2336. finished:
  2337. return ret_val;
  2338. }
  2339. /* Interrupt handler for Control IN traffic */
  2340. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2341. {
  2342. irqreturn_t ret_val = IRQ_NONE;
  2343. u32 tmp;
  2344. struct udc_ep *ep;
  2345. struct udc_request *req;
  2346. unsigned len;
  2347. ep = &dev->ep[UDC_EP0IN_IX];
  2348. /* clear irq */
  2349. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2350. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2351. /* DMA completion */
  2352. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2353. VDBG(dev, "isr: TDC clear \n");
  2354. ret_val = IRQ_HANDLED;
  2355. /* clear TDC bit */
  2356. writel(AMD_BIT(UDC_EPSTS_TDC),
  2357. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2358. /* status reg has IN bit set ? */
  2359. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2360. ret_val = IRQ_HANDLED;
  2361. if (ep->dma) {
  2362. /* clear IN bit */
  2363. writel(AMD_BIT(UDC_EPSTS_IN),
  2364. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2365. }
  2366. if (dev->stall_ep0in) {
  2367. DBG(dev, "stall ep0in\n");
  2368. /* halt ep0in */
  2369. tmp = readl(&ep->regs->ctl);
  2370. tmp |= AMD_BIT(UDC_EPCTL_S);
  2371. writel(tmp, &ep->regs->ctl);
  2372. } else {
  2373. if (!list_empty(&ep->queue)) {
  2374. /* next request */
  2375. req = list_entry(ep->queue.next,
  2376. struct udc_request, queue);
  2377. if (ep->dma) {
  2378. /* write desc pointer */
  2379. writel(req->td_phys, &ep->regs->desptr);
  2380. /* set HOST READY */
  2381. req->td_data->status =
  2382. AMD_ADDBITS(
  2383. req->td_data->status,
  2384. UDC_DMA_STP_STS_BS_HOST_READY,
  2385. UDC_DMA_STP_STS_BS);
  2386. /* set poll demand bit */
  2387. tmp =
  2388. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2389. tmp |= AMD_BIT(UDC_EPCTL_P);
  2390. writel(tmp,
  2391. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2392. /* all bytes will be transferred */
  2393. req->req.actual = req->req.length;
  2394. /* complete req */
  2395. complete_req(ep, req, 0);
  2396. } else {
  2397. /* write fifo */
  2398. udc_txfifo_write(ep, &req->req);
  2399. /* lengh bytes transferred */
  2400. len = req->req.length - req->req.actual;
  2401. if (len > ep->ep.maxpacket)
  2402. len = ep->ep.maxpacket;
  2403. req->req.actual += len;
  2404. if (req->req.actual == req->req.length
  2405. || (len != ep->ep.maxpacket)) {
  2406. /* complete req */
  2407. complete_req(ep, req, 0);
  2408. }
  2409. }
  2410. }
  2411. }
  2412. ep->halted = 0;
  2413. dev->stall_ep0in = 0;
  2414. if (!ep->dma) {
  2415. /* clear IN bit */
  2416. writel(AMD_BIT(UDC_EPSTS_IN),
  2417. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2418. }
  2419. }
  2420. return ret_val;
  2421. }
  2422. /* Interrupt handler for global device events */
  2423. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2424. __releases(dev->lock)
  2425. __acquires(dev->lock)
  2426. {
  2427. irqreturn_t ret_val = IRQ_NONE;
  2428. u32 tmp;
  2429. u32 cfg;
  2430. struct udc_ep *ep;
  2431. u16 i;
  2432. u8 udc_csr_epix;
  2433. /* SET_CONFIG irq ? */
  2434. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2435. ret_val = IRQ_HANDLED;
  2436. /* read config value */
  2437. tmp = readl(&dev->regs->sts);
  2438. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2439. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2440. dev->cur_config = cfg;
  2441. dev->set_cfg_not_acked = 1;
  2442. /* make usb request for gadget driver */
  2443. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2444. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2445. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2446. /* programm the NE registers */
  2447. for (i = 0; i < UDC_EP_NUM; i++) {
  2448. ep = &dev->ep[i];
  2449. if (ep->in) {
  2450. /* ep ix in UDC CSR register space */
  2451. udc_csr_epix = ep->num;
  2452. /* OUT ep */
  2453. } else {
  2454. /* ep ix in UDC CSR register space */
  2455. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2456. }
  2457. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2458. /* ep cfg */
  2459. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2460. UDC_CSR_NE_CFG);
  2461. /* write reg */
  2462. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2463. /* clear stall bits */
  2464. ep->halted = 0;
  2465. tmp = readl(&ep->regs->ctl);
  2466. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2467. writel(tmp, &ep->regs->ctl);
  2468. }
  2469. /* call gadget zero with setup data received */
  2470. spin_unlock(&dev->lock);
  2471. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2472. spin_lock(&dev->lock);
  2473. } /* SET_INTERFACE ? */
  2474. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2475. ret_val = IRQ_HANDLED;
  2476. dev->set_cfg_not_acked = 1;
  2477. /* read interface and alt setting values */
  2478. tmp = readl(&dev->regs->sts);
  2479. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2480. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2481. /* make usb request for gadget driver */
  2482. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2483. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2484. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2485. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2486. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2487. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2488. dev->cur_alt, dev->cur_intf);
  2489. /* programm the NE registers */
  2490. for (i = 0; i < UDC_EP_NUM; i++) {
  2491. ep = &dev->ep[i];
  2492. if (ep->in) {
  2493. /* ep ix in UDC CSR register space */
  2494. udc_csr_epix = ep->num;
  2495. /* OUT ep */
  2496. } else {
  2497. /* ep ix in UDC CSR register space */
  2498. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2499. }
  2500. /* UDC CSR reg */
  2501. /* set ep values */
  2502. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2503. /* ep interface */
  2504. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2505. UDC_CSR_NE_INTF);
  2506. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2507. /* ep alt */
  2508. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2509. UDC_CSR_NE_ALT);
  2510. /* write reg */
  2511. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2512. /* clear stall bits */
  2513. ep->halted = 0;
  2514. tmp = readl(&ep->regs->ctl);
  2515. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2516. writel(tmp, &ep->regs->ctl);
  2517. }
  2518. /* call gadget zero with setup data received */
  2519. spin_unlock(&dev->lock);
  2520. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2521. spin_lock(&dev->lock);
  2522. } /* USB reset */
  2523. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2524. DBG(dev, "USB Reset interrupt\n");
  2525. ret_val = IRQ_HANDLED;
  2526. /* allow soft reset when suspend occurs */
  2527. soft_reset_occured = 0;
  2528. dev->waiting_zlp_ack_ep0in = 0;
  2529. dev->set_cfg_not_acked = 0;
  2530. /* mask not needed interrupts */
  2531. udc_mask_unused_interrupts(dev);
  2532. /* call gadget to resume and reset configs etc. */
  2533. spin_unlock(&dev->lock);
  2534. if (dev->sys_suspended && dev->driver->resume) {
  2535. dev->driver->resume(&dev->gadget);
  2536. dev->sys_suspended = 0;
  2537. }
  2538. dev->driver->disconnect(&dev->gadget);
  2539. spin_lock(&dev->lock);
  2540. /* disable ep0 to empty req queue */
  2541. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2542. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2543. /* soft reset when rxfifo not empty */
  2544. tmp = readl(&dev->regs->sts);
  2545. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2546. && !soft_reset_after_usbreset_occured) {
  2547. udc_soft_reset(dev);
  2548. soft_reset_after_usbreset_occured++;
  2549. }
  2550. /*
  2551. * DMA reset to kill potential old DMA hw hang,
  2552. * POLL bit is already reset by ep_init() through
  2553. * disconnect()
  2554. */
  2555. DBG(dev, "DMA machine reset\n");
  2556. tmp = readl(&dev->regs->cfg);
  2557. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2558. writel(tmp, &dev->regs->cfg);
  2559. /* put into initial config */
  2560. udc_basic_init(dev);
  2561. /* enable device setup interrupts */
  2562. udc_enable_dev_setup_interrupts(dev);
  2563. /* enable suspend interrupt */
  2564. tmp = readl(&dev->regs->irqmsk);
  2565. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2566. writel(tmp, &dev->regs->irqmsk);
  2567. } /* USB suspend */
  2568. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2569. DBG(dev, "USB Suspend interrupt\n");
  2570. ret_val = IRQ_HANDLED;
  2571. if (dev->driver->suspend) {
  2572. spin_unlock(&dev->lock);
  2573. dev->sys_suspended = 1;
  2574. dev->driver->suspend(&dev->gadget);
  2575. spin_lock(&dev->lock);
  2576. }
  2577. } /* new speed ? */
  2578. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2579. DBG(dev, "ENUM interrupt\n");
  2580. ret_val = IRQ_HANDLED;
  2581. soft_reset_after_usbreset_occured = 0;
  2582. /* disable ep0 to empty req queue */
  2583. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2584. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2585. /* link up all endpoints */
  2586. udc_setup_endpoints(dev);
  2587. if (dev->gadget.speed == USB_SPEED_HIGH) {
  2588. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2589. "high");
  2590. } else if (dev->gadget.speed == USB_SPEED_FULL) {
  2591. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2592. "full");
  2593. }
  2594. /* init ep 0 */
  2595. activate_control_endpoints(dev);
  2596. /* enable ep0 interrupts */
  2597. udc_enable_ep0_interrupts(dev);
  2598. }
  2599. /* session valid change interrupt */
  2600. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2601. DBG(dev, "USB SVC interrupt\n");
  2602. ret_val = IRQ_HANDLED;
  2603. /* check that session is not valid to detect disconnect */
  2604. tmp = readl(&dev->regs->sts);
  2605. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2606. /* disable suspend interrupt */
  2607. tmp = readl(&dev->regs->irqmsk);
  2608. tmp |= AMD_BIT(UDC_DEVINT_US);
  2609. writel(tmp, &dev->regs->irqmsk);
  2610. DBG(dev, "USB Disconnect (session valid low)\n");
  2611. /* cleanup on disconnect */
  2612. usb_disconnect(udc);
  2613. }
  2614. }
  2615. return ret_val;
  2616. }
  2617. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2618. static irqreturn_t udc_irq(int irq, void *pdev)
  2619. {
  2620. struct udc *dev = pdev;
  2621. u32 reg;
  2622. u16 i;
  2623. u32 ep_irq;
  2624. irqreturn_t ret_val = IRQ_NONE;
  2625. spin_lock(&dev->lock);
  2626. /* check for ep irq */
  2627. reg = readl(&dev->regs->ep_irqsts);
  2628. if (reg) {
  2629. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2630. ret_val |= udc_control_out_isr(dev);
  2631. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2632. ret_val |= udc_control_in_isr(dev);
  2633. /*
  2634. * data endpoint
  2635. * iterate ep's
  2636. */
  2637. for (i = 1; i < UDC_EP_NUM; i++) {
  2638. ep_irq = 1 << i;
  2639. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2640. continue;
  2641. /* clear irq status */
  2642. writel(ep_irq, &dev->regs->ep_irqsts);
  2643. /* irq for out ep ? */
  2644. if (i > UDC_EPIN_NUM)
  2645. ret_val |= udc_data_out_isr(dev, i);
  2646. else
  2647. ret_val |= udc_data_in_isr(dev, i);
  2648. }
  2649. }
  2650. /* check for dev irq */
  2651. reg = readl(&dev->regs->irqsts);
  2652. if (reg) {
  2653. /* clear irq */
  2654. writel(reg, &dev->regs->irqsts);
  2655. ret_val |= udc_dev_isr(dev, reg);
  2656. }
  2657. spin_unlock(&dev->lock);
  2658. return ret_val;
  2659. }
  2660. /* Tears down device */
  2661. static void gadget_release(struct device *pdev)
  2662. {
  2663. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2664. kfree(dev);
  2665. }
  2666. /* Cleanup on device remove */
  2667. static void udc_remove(struct udc *dev)
  2668. {
  2669. /* remove timer */
  2670. stop_timer++;
  2671. if (timer_pending(&udc_timer))
  2672. wait_for_completion(&on_exit);
  2673. if (udc_timer.data)
  2674. del_timer_sync(&udc_timer);
  2675. /* remove pollstall timer */
  2676. stop_pollstall_timer++;
  2677. if (timer_pending(&udc_pollstall_timer))
  2678. wait_for_completion(&on_pollstall_exit);
  2679. if (udc_pollstall_timer.data)
  2680. del_timer_sync(&udc_pollstall_timer);
  2681. udc = NULL;
  2682. }
  2683. /* Reset all pci context */
  2684. static void udc_pci_remove(struct pci_dev *pdev)
  2685. {
  2686. struct udc *dev;
  2687. dev = pci_get_drvdata(pdev);
  2688. /* gadget driver must not be registered */
  2689. BUG_ON(dev->driver != NULL);
  2690. /* dma pool cleanup */
  2691. if (dev->data_requests)
  2692. pci_pool_destroy(dev->data_requests);
  2693. if (dev->stp_requests) {
  2694. /* cleanup DMA desc's for ep0in */
  2695. pci_pool_free(dev->stp_requests,
  2696. dev->ep[UDC_EP0OUT_IX].td_stp,
  2697. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2698. pci_pool_free(dev->stp_requests,
  2699. dev->ep[UDC_EP0OUT_IX].td,
  2700. dev->ep[UDC_EP0OUT_IX].td_phys);
  2701. pci_pool_destroy(dev->stp_requests);
  2702. }
  2703. /* reset controller */
  2704. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2705. if (dev->irq_registered)
  2706. free_irq(pdev->irq, dev);
  2707. if (dev->regs)
  2708. iounmap(dev->regs);
  2709. if (dev->mem_region)
  2710. release_mem_region(pci_resource_start(pdev, 0),
  2711. pci_resource_len(pdev, 0));
  2712. if (dev->active)
  2713. pci_disable_device(pdev);
  2714. device_unregister(&dev->gadget.dev);
  2715. pci_set_drvdata(pdev, NULL);
  2716. udc_remove(dev);
  2717. }
  2718. /* create dma pools on init */
  2719. static int init_dma_pools(struct udc *dev)
  2720. {
  2721. struct udc_stp_dma *td_stp;
  2722. struct udc_data_dma *td_data;
  2723. int retval;
  2724. /* consistent DMA mode setting ? */
  2725. if (use_dma_ppb) {
  2726. use_dma_bufferfill_mode = 0;
  2727. } else {
  2728. use_dma_ppb_du = 0;
  2729. use_dma_bufferfill_mode = 1;
  2730. }
  2731. /* DMA setup */
  2732. dev->data_requests = dma_pool_create("data_requests", NULL,
  2733. sizeof(struct udc_data_dma), 0, 0);
  2734. if (!dev->data_requests) {
  2735. DBG(dev, "can't get request data pool\n");
  2736. retval = -ENOMEM;
  2737. goto finished;
  2738. }
  2739. /* EP0 in dma regs = dev control regs */
  2740. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2741. /* dma desc for setup data */
  2742. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2743. sizeof(struct udc_stp_dma), 0, 0);
  2744. if (!dev->stp_requests) {
  2745. DBG(dev, "can't get stp request pool\n");
  2746. retval = -ENOMEM;
  2747. goto finished;
  2748. }
  2749. /* setup */
  2750. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2751. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2752. if (td_stp == NULL) {
  2753. retval = -ENOMEM;
  2754. goto finished;
  2755. }
  2756. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2757. /* data: 0 packets !? */
  2758. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2759. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2760. if (td_data == NULL) {
  2761. retval = -ENOMEM;
  2762. goto finished;
  2763. }
  2764. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2765. return 0;
  2766. finished:
  2767. return retval;
  2768. }
  2769. /* Called by pci bus driver to init pci context */
  2770. static int udc_pci_probe(
  2771. struct pci_dev *pdev,
  2772. const struct pci_device_id *id
  2773. )
  2774. {
  2775. struct udc *dev;
  2776. unsigned long resource;
  2777. unsigned long len;
  2778. int retval = 0;
  2779. /* one udc only */
  2780. if (udc) {
  2781. dev_dbg(&pdev->dev, "already probed\n");
  2782. return -EBUSY;
  2783. }
  2784. /* init */
  2785. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2786. if (!dev) {
  2787. retval = -ENOMEM;
  2788. goto finished;
  2789. }
  2790. /* pci setup */
  2791. if (pci_enable_device(pdev) < 0) {
  2792. kfree(dev);
  2793. dev = NULL;
  2794. retval = -ENODEV;
  2795. goto finished;
  2796. }
  2797. dev->active = 1;
  2798. /* PCI resource allocation */
  2799. resource = pci_resource_start(pdev, 0);
  2800. len = pci_resource_len(pdev, 0);
  2801. if (!request_mem_region(resource, len, name)) {
  2802. dev_dbg(&pdev->dev, "pci device used already\n");
  2803. kfree(dev);
  2804. dev = NULL;
  2805. retval = -EBUSY;
  2806. goto finished;
  2807. }
  2808. dev->mem_region = 1;
  2809. dev->virt_addr = ioremap_nocache(resource, len);
  2810. if (dev->virt_addr == NULL) {
  2811. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2812. kfree(dev);
  2813. dev = NULL;
  2814. retval = -EFAULT;
  2815. goto finished;
  2816. }
  2817. if (!pdev->irq) {
  2818. dev_err(&dev->pdev->dev, "irq not set\n");
  2819. kfree(dev);
  2820. dev = NULL;
  2821. retval = -ENODEV;
  2822. goto finished;
  2823. }
  2824. spin_lock_init(&dev->lock);
  2825. /* udc csr registers base */
  2826. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2827. /* dev registers base */
  2828. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2829. /* ep registers base */
  2830. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2831. /* fifo's base */
  2832. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2833. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2834. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2835. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2836. kfree(dev);
  2837. dev = NULL;
  2838. retval = -EBUSY;
  2839. goto finished;
  2840. }
  2841. dev->irq_registered = 1;
  2842. pci_set_drvdata(pdev, dev);
  2843. /* chip revision for Hs AMD5536 */
  2844. dev->chiprev = pdev->revision;
  2845. pci_set_master(pdev);
  2846. pci_try_set_mwi(pdev);
  2847. /* init dma pools */
  2848. if (use_dma) {
  2849. retval = init_dma_pools(dev);
  2850. if (retval != 0)
  2851. goto finished;
  2852. }
  2853. dev->phys_addr = resource;
  2854. dev->irq = pdev->irq;
  2855. dev->pdev = pdev;
  2856. dev->gadget.dev.parent = &pdev->dev;
  2857. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2858. /* general probing */
  2859. if (udc_probe(dev) == 0)
  2860. return 0;
  2861. finished:
  2862. if (dev)
  2863. udc_pci_remove(pdev);
  2864. return retval;
  2865. }
  2866. /* general probe */
  2867. static int udc_probe(struct udc *dev)
  2868. {
  2869. char tmp[128];
  2870. u32 reg;
  2871. int retval;
  2872. /* mark timer as not initialized */
  2873. udc_timer.data = 0;
  2874. udc_pollstall_timer.data = 0;
  2875. /* device struct setup */
  2876. dev->gadget.ops = &udc_ops;
  2877. dev_set_name(&dev->gadget.dev, "gadget");
  2878. dev->gadget.dev.release = gadget_release;
  2879. dev->gadget.name = name;
  2880. dev->gadget.is_dualspeed = 1;
  2881. /* init registers, interrupts, ... */
  2882. startup_registers(dev);
  2883. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2884. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2885. dev_info(&dev->pdev->dev,
  2886. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2887. tmp, dev->phys_addr, dev->chiprev,
  2888. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2889. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2890. if (dev->chiprev == UDC_HSA0_REV) {
  2891. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2892. retval = -ENODEV;
  2893. goto finished;
  2894. }
  2895. dev_info(&dev->pdev->dev,
  2896. "driver version: %s(for Geode5536 B1)\n", tmp);
  2897. udc = dev;
  2898. retval = device_register(&dev->gadget.dev);
  2899. if (retval) {
  2900. put_device(&dev->gadget.dev);
  2901. goto finished;
  2902. }
  2903. /* timer init */
  2904. init_timer(&udc_timer);
  2905. udc_timer.function = udc_timer_function;
  2906. udc_timer.data = 1;
  2907. /* timer pollstall init */
  2908. init_timer(&udc_pollstall_timer);
  2909. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2910. udc_pollstall_timer.data = 1;
  2911. /* set SD */
  2912. reg = readl(&dev->regs->ctl);
  2913. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2914. writel(reg, &dev->regs->ctl);
  2915. /* print dev register info */
  2916. print_regs(dev);
  2917. return 0;
  2918. finished:
  2919. return retval;
  2920. }
  2921. /* Initiates a remote wakeup */
  2922. static int udc_remote_wakeup(struct udc *dev)
  2923. {
  2924. unsigned long flags;
  2925. u32 tmp;
  2926. DBG(dev, "UDC initiates remote wakeup\n");
  2927. spin_lock_irqsave(&dev->lock, flags);
  2928. tmp = readl(&dev->regs->ctl);
  2929. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2930. writel(tmp, &dev->regs->ctl);
  2931. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2932. writel(tmp, &dev->regs->ctl);
  2933. spin_unlock_irqrestore(&dev->lock, flags);
  2934. return 0;
  2935. }
  2936. /* PCI device parameters */
  2937. static const struct pci_device_id pci_id[] = {
  2938. {
  2939. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2940. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2941. .class_mask = 0xffffffff,
  2942. },
  2943. {},
  2944. };
  2945. MODULE_DEVICE_TABLE(pci, pci_id);
  2946. /* PCI functions */
  2947. static struct pci_driver udc_pci_driver = {
  2948. .name = (char *) name,
  2949. .id_table = pci_id,
  2950. .probe = udc_pci_probe,
  2951. .remove = udc_pci_remove,
  2952. };
  2953. /* Inits driver */
  2954. static int __init init(void)
  2955. {
  2956. return pci_register_driver(&udc_pci_driver);
  2957. }
  2958. module_init(init);
  2959. /* Cleans driver */
  2960. static void __exit cleanup(void)
  2961. {
  2962. pci_unregister_driver(&udc_pci_driver);
  2963. }
  2964. module_exit(cleanup);
  2965. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2966. MODULE_AUTHOR("Thomas Dahlmann");
  2967. MODULE_LICENSE("GPL");