driver_chipcommon_pmu.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609
  1. /*
  2. * Sonics Silicon Backplane
  3. * Broadcom ChipCommon Power Management Unit driver
  4. *
  5. * Copyright 2009, Michael Buesch <mb@bu3sch.de>
  6. * Copyright 2007, Broadcom Corporation
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include <linux/ssb/ssb.h>
  11. #include <linux/ssb/ssb_regs.h>
  12. #include <linux/ssb/ssb_driver_chipcommon.h>
  13. #include <linux/delay.h>
  14. #include "ssb_private.h"
  15. static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
  16. {
  17. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
  18. return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
  19. }
  20. static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
  21. u32 offset, u32 value)
  22. {
  23. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
  24. chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
  25. }
  26. static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
  27. u32 offset, u32 mask, u32 set)
  28. {
  29. u32 value;
  30. chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
  31. chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
  32. chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
  33. value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
  34. value &= mask;
  35. value |= set;
  36. chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
  37. chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
  38. }
  39. struct pmu0_plltab_entry {
  40. u16 freq; /* Crystal frequency in kHz.*/
  41. u8 xf; /* Crystal frequency value for PMU control */
  42. u8 wb_int;
  43. u32 wb_frac;
  44. };
  45. static const struct pmu0_plltab_entry pmu0_plltab[] = {
  46. { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
  47. { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
  48. { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
  49. { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
  50. { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
  51. { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
  52. { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
  53. { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
  54. { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
  55. { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
  56. { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
  57. { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
  58. { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
  59. { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
  60. };
  61. #define SSB_PMU0_DEFAULT_XTALFREQ 20000
  62. static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
  63. {
  64. const struct pmu0_plltab_entry *e;
  65. unsigned int i;
  66. for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
  67. e = &pmu0_plltab[i];
  68. if (e->freq == crystalfreq)
  69. return e;
  70. }
  71. return NULL;
  72. }
  73. /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
  74. static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
  75. u32 crystalfreq)
  76. {
  77. struct ssb_bus *bus = cc->dev->bus;
  78. const struct pmu0_plltab_entry *e = NULL;
  79. u32 pmuctl, tmp, pllctl;
  80. unsigned int i;
  81. if ((bus->chip_id == 0x5354) && !crystalfreq) {
  82. /* The 5354 crystal freq is 25MHz */
  83. crystalfreq = 25000;
  84. }
  85. if (crystalfreq)
  86. e = pmu0_plltab_find_entry(crystalfreq);
  87. if (!e)
  88. e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
  89. BUG_ON(!e);
  90. crystalfreq = e->freq;
  91. cc->pmu.crystalfreq = e->freq;
  92. /* Check if the PLL already is programmed to this frequency. */
  93. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  94. if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
  95. /* We're already there... */
  96. return;
  97. }
  98. ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
  99. (crystalfreq / 1000), (crystalfreq % 1000));
  100. /* First turn the PLL off. */
  101. switch (bus->chip_id) {
  102. case 0x4328:
  103. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  104. ~(1 << SSB_PMURES_4328_BB_PLL_PU));
  105. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  106. ~(1 << SSB_PMURES_4328_BB_PLL_PU));
  107. break;
  108. case 0x5354:
  109. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  110. ~(1 << SSB_PMURES_5354_BB_PLL_PU));
  111. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  112. ~(1 << SSB_PMURES_5354_BB_PLL_PU));
  113. break;
  114. default:
  115. SSB_WARN_ON(1);
  116. }
  117. for (i = 1500; i; i--) {
  118. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  119. if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
  120. break;
  121. udelay(10);
  122. }
  123. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  124. if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
  125. ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
  126. /* Set PDIV in PLL control 0. */
  127. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
  128. if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
  129. pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
  130. else
  131. pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
  132. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
  133. /* Set WILD in PLL control 1. */
  134. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
  135. pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
  136. pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
  137. pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
  138. pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
  139. if (e->wb_frac == 0)
  140. pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
  141. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
  142. /* Set WILD in PLL control 2. */
  143. pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
  144. pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
  145. pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
  146. ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
  147. /* Set the crystalfrequency and the divisor. */
  148. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  149. pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
  150. pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
  151. & SSB_CHIPCO_PMU_CTL_ILP_DIV;
  152. pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
  153. pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
  154. chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
  155. }
  156. struct pmu1_plltab_entry {
  157. u16 freq; /* Crystal frequency in kHz.*/
  158. u8 xf; /* Crystal frequency value for PMU control */
  159. u8 ndiv_int;
  160. u32 ndiv_frac;
  161. u8 p1div;
  162. u8 p2div;
  163. };
  164. static const struct pmu1_plltab_entry pmu1_plltab[] = {
  165. { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
  166. { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
  167. { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
  168. { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
  169. { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
  170. { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
  171. { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
  172. { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
  173. { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
  174. { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
  175. { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
  176. { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
  177. { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
  178. { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
  179. { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
  180. };
  181. #define SSB_PMU1_DEFAULT_XTALFREQ 15360
  182. static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
  183. {
  184. const struct pmu1_plltab_entry *e;
  185. unsigned int i;
  186. for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
  187. e = &pmu1_plltab[i];
  188. if (e->freq == crystalfreq)
  189. return e;
  190. }
  191. return NULL;
  192. }
  193. /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
  194. static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
  195. u32 crystalfreq)
  196. {
  197. struct ssb_bus *bus = cc->dev->bus;
  198. const struct pmu1_plltab_entry *e = NULL;
  199. u32 buffer_strength = 0;
  200. u32 tmp, pllctl, pmuctl;
  201. unsigned int i;
  202. if (bus->chip_id == 0x4312) {
  203. /* We do not touch the BCM4312 PLL and assume
  204. * the default crystal settings work out-of-the-box. */
  205. cc->pmu.crystalfreq = 20000;
  206. return;
  207. }
  208. if (crystalfreq)
  209. e = pmu1_plltab_find_entry(crystalfreq);
  210. if (!e)
  211. e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
  212. BUG_ON(!e);
  213. crystalfreq = e->freq;
  214. cc->pmu.crystalfreq = e->freq;
  215. /* Check if the PLL already is programmed to this frequency. */
  216. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  217. if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
  218. /* We're already there... */
  219. return;
  220. }
  221. ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
  222. (crystalfreq / 1000), (crystalfreq % 1000));
  223. /* First turn the PLL off. */
  224. switch (bus->chip_id) {
  225. case 0x4325:
  226. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
  227. ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
  228. (1 << SSB_PMURES_4325_HT_AVAIL)));
  229. chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
  230. ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
  231. (1 << SSB_PMURES_4325_HT_AVAIL)));
  232. /* Adjust the BBPLL to 2 on all channels later. */
  233. buffer_strength = 0x222222;
  234. break;
  235. default:
  236. SSB_WARN_ON(1);
  237. }
  238. for (i = 1500; i; i--) {
  239. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  240. if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
  241. break;
  242. udelay(10);
  243. }
  244. tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
  245. if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
  246. ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
  247. /* Set p1div and p2div. */
  248. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
  249. pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
  250. pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
  251. pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
  252. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
  253. /* Set ndiv int and ndiv mode */
  254. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
  255. pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
  256. pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
  257. pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
  258. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
  259. /* Set ndiv frac */
  260. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
  261. pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
  262. pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
  263. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
  264. /* Change the drive strength, if required. */
  265. if (buffer_strength) {
  266. pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
  267. pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
  268. pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
  269. ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
  270. }
  271. /* Tune the crystalfreq and the divisor. */
  272. pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
  273. pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
  274. pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
  275. & SSB_CHIPCO_PMU_CTL_ILP_DIV;
  276. pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
  277. chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
  278. }
  279. static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
  280. {
  281. struct ssb_bus *bus = cc->dev->bus;
  282. u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
  283. if (bus->bustype == SSB_BUSTYPE_SSB) {
  284. /* TODO: The user may override the crystal frequency. */
  285. }
  286. switch (bus->chip_id) {
  287. case 0x4312:
  288. case 0x4325:
  289. ssb_pmu1_pllinit_r0(cc, crystalfreq);
  290. break;
  291. case 0x4328:
  292. case 0x5354:
  293. ssb_pmu0_pllinit_r0(cc, crystalfreq);
  294. break;
  295. case 0x4322:
  296. if (cc->pmu.rev == 2) {
  297. chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
  298. chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
  299. }
  300. break;
  301. default:
  302. ssb_printk(KERN_ERR PFX
  303. "ERROR: PLL init unknown for device %04X\n",
  304. bus->chip_id);
  305. }
  306. }
  307. struct pmu_res_updown_tab_entry {
  308. u8 resource; /* The resource number */
  309. u16 updown; /* The updown value */
  310. };
  311. enum pmu_res_depend_tab_task {
  312. PMU_RES_DEP_SET = 1,
  313. PMU_RES_DEP_ADD,
  314. PMU_RES_DEP_REMOVE,
  315. };
  316. struct pmu_res_depend_tab_entry {
  317. u8 resource; /* The resource number */
  318. u8 task; /* SET | ADD | REMOVE */
  319. u32 depend; /* The depend mask */
  320. };
  321. static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
  322. { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
  323. { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
  324. { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
  325. { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
  326. { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
  327. { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
  328. { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
  329. { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
  330. { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
  331. { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
  332. { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
  333. { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
  334. { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
  335. { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
  336. { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
  337. { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
  338. { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
  339. { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
  340. { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
  341. { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
  342. };
  343. static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
  344. {
  345. /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
  346. .resource = SSB_PMURES_4328_ILP_REQUEST,
  347. .task = PMU_RES_DEP_SET,
  348. .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
  349. (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
  350. },
  351. };
  352. static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
  353. { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
  354. };
  355. static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
  356. {
  357. /* Adjust HT-Available dependencies. */
  358. .resource = SSB_PMURES_4325_HT_AVAIL,
  359. .task = PMU_RES_DEP_ADD,
  360. .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
  361. (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
  362. (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
  363. (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
  364. },
  365. };
  366. static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
  367. {
  368. struct ssb_bus *bus = cc->dev->bus;
  369. u32 min_msk = 0, max_msk = 0;
  370. unsigned int i;
  371. const struct pmu_res_updown_tab_entry *updown_tab = NULL;
  372. unsigned int updown_tab_size;
  373. const struct pmu_res_depend_tab_entry *depend_tab = NULL;
  374. unsigned int depend_tab_size;
  375. switch (bus->chip_id) {
  376. case 0x4312:
  377. min_msk = 0xCBB;
  378. break;
  379. case 0x4322:
  380. /* We keep the default settings:
  381. * min_msk = 0xCBB
  382. * max_msk = 0x7FFFF
  383. */
  384. break;
  385. case 0x4325:
  386. /* Power OTP down later. */
  387. min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
  388. (1 << SSB_PMURES_4325_LNLDO2_PU);
  389. if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
  390. SSB_CHIPCO_CHST_4325_PMUTOP_2B)
  391. min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
  392. /* The PLL may turn on, if it decides so. */
  393. max_msk = 0xFFFFF;
  394. updown_tab = pmu_res_updown_tab_4325a0;
  395. updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
  396. depend_tab = pmu_res_depend_tab_4325a0;
  397. depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
  398. break;
  399. case 0x4328:
  400. min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
  401. (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
  402. (1 << SSB_PMURES_4328_XTAL_EN);
  403. /* The PLL may turn on, if it decides so. */
  404. max_msk = 0xFFFFF;
  405. updown_tab = pmu_res_updown_tab_4328a0;
  406. updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
  407. depend_tab = pmu_res_depend_tab_4328a0;
  408. depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
  409. break;
  410. case 0x5354:
  411. /* The PLL may turn on, if it decides so. */
  412. max_msk = 0xFFFFF;
  413. break;
  414. default:
  415. ssb_printk(KERN_ERR PFX
  416. "ERROR: PMU resource config unknown for device %04X\n",
  417. bus->chip_id);
  418. }
  419. if (updown_tab) {
  420. for (i = 0; i < updown_tab_size; i++) {
  421. chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
  422. updown_tab[i].resource);
  423. chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
  424. updown_tab[i].updown);
  425. }
  426. }
  427. if (depend_tab) {
  428. for (i = 0; i < depend_tab_size; i++) {
  429. chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
  430. depend_tab[i].resource);
  431. switch (depend_tab[i].task) {
  432. case PMU_RES_DEP_SET:
  433. chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  434. depend_tab[i].depend);
  435. break;
  436. case PMU_RES_DEP_ADD:
  437. chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  438. depend_tab[i].depend);
  439. break;
  440. case PMU_RES_DEP_REMOVE:
  441. chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
  442. ~(depend_tab[i].depend));
  443. break;
  444. default:
  445. SSB_WARN_ON(1);
  446. }
  447. }
  448. }
  449. /* Set the resource masks. */
  450. if (min_msk)
  451. chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
  452. if (max_msk)
  453. chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
  454. }
  455. /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
  456. void ssb_pmu_init(struct ssb_chipcommon *cc)
  457. {
  458. u32 pmucap;
  459. if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
  460. return;
  461. pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
  462. cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
  463. ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
  464. cc->pmu.rev, pmucap);
  465. if (cc->pmu.rev == 1)
  466. chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
  467. ~SSB_CHIPCO_PMU_CTL_NOILPONW);
  468. else
  469. chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
  470. SSB_CHIPCO_PMU_CTL_NOILPONW);
  471. ssb_pmu_pll_init(cc);
  472. ssb_pmu_resources_init(cc);
  473. }
  474. void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
  475. enum ssb_pmu_ldo_volt_id id, u32 voltage)
  476. {
  477. struct ssb_bus *bus = cc->dev->bus;
  478. u32 addr, shift, mask;
  479. switch (bus->chip_id) {
  480. case 0x4328:
  481. case 0x5354:
  482. switch (id) {
  483. case LDO_VOLT1:
  484. addr = 2;
  485. shift = 25;
  486. mask = 0xF;
  487. break;
  488. case LDO_VOLT2:
  489. addr = 3;
  490. shift = 1;
  491. mask = 0xF;
  492. break;
  493. case LDO_VOLT3:
  494. addr = 3;
  495. shift = 9;
  496. mask = 0xF;
  497. break;
  498. case LDO_PAREF:
  499. addr = 3;
  500. shift = 17;
  501. mask = 0x3F;
  502. break;
  503. default:
  504. SSB_WARN_ON(1);
  505. return;
  506. }
  507. break;
  508. case 0x4312:
  509. if (SSB_WARN_ON(id != LDO_PAREF))
  510. return;
  511. addr = 0;
  512. shift = 21;
  513. mask = 0x3F;
  514. break;
  515. default:
  516. return;
  517. }
  518. ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
  519. (voltage & mask) << shift);
  520. }
  521. void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
  522. {
  523. struct ssb_bus *bus = cc->dev->bus;
  524. int ldo;
  525. switch (bus->chip_id) {
  526. case 0x4312:
  527. ldo = SSB_PMURES_4312_PA_REF_LDO;
  528. break;
  529. case 0x4328:
  530. ldo = SSB_PMURES_4328_PA_REF_LDO;
  531. break;
  532. case 0x5354:
  533. ldo = SSB_PMURES_5354_PA_REF_LDO;
  534. break;
  535. default:
  536. return;
  537. }
  538. if (on)
  539. chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
  540. else
  541. chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
  542. chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
  543. }
  544. EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
  545. EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);