sh_eth.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <linux/pm_runtime.h>
  33. #include <linux/slab.h>
  34. #include <linux/ethtool.h>
  35. #include <asm/cacheflush.h>
  36. #include "sh_eth.h"
  37. #define SH_ETH_DEF_MSG_ENABLE \
  38. (NETIF_MSG_LINK | \
  39. NETIF_MSG_TIMER | \
  40. NETIF_MSG_RX_ERR| \
  41. NETIF_MSG_TX_ERR)
  42. /* There is CPU dependent code */
  43. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  44. #define SH_ETH_RESET_DEFAULT 1
  45. static void sh_eth_set_duplex(struct net_device *ndev)
  46. {
  47. struct sh_eth_private *mdp = netdev_priv(ndev);
  48. if (mdp->duplex) /* Full */
  49. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  50. else /* Half */
  51. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  52. }
  53. static void sh_eth_set_rate(struct net_device *ndev)
  54. {
  55. struct sh_eth_private *mdp = netdev_priv(ndev);
  56. switch (mdp->speed) {
  57. case 10: /* 10BASE */
  58. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  59. break;
  60. case 100:/* 100BASE */
  61. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  62. break;
  63. default:
  64. break;
  65. }
  66. }
  67. /* SH7724 */
  68. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  69. .set_duplex = sh_eth_set_duplex,
  70. .set_rate = sh_eth_set_rate,
  71. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  72. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  73. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  74. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  75. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  76. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  77. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  78. .apr = 1,
  79. .mpr = 1,
  80. .tpauser = 1,
  81. .hw_swap = 1,
  82. .rpadir = 1,
  83. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  84. };
  85. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  86. #define SH_ETH_HAS_BOTH_MODULES 1
  87. #define SH_ETH_HAS_TSU 1
  88. static void sh_eth_set_duplex(struct net_device *ndev)
  89. {
  90. struct sh_eth_private *mdp = netdev_priv(ndev);
  91. if (mdp->duplex) /* Full */
  92. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  93. else /* Half */
  94. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  95. }
  96. static void sh_eth_set_rate(struct net_device *ndev)
  97. {
  98. struct sh_eth_private *mdp = netdev_priv(ndev);
  99. switch (mdp->speed) {
  100. case 10: /* 10BASE */
  101. sh_eth_write(ndev, 0, RTRATE);
  102. break;
  103. case 100:/* 100BASE */
  104. sh_eth_write(ndev, 1, RTRATE);
  105. break;
  106. default:
  107. break;
  108. }
  109. }
  110. /* SH7757 */
  111. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  112. .set_duplex = sh_eth_set_duplex,
  113. .set_rate = sh_eth_set_rate,
  114. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  115. .rmcr_value = 0x00000001,
  116. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  117. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  118. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  119. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  120. .apr = 1,
  121. .mpr = 1,
  122. .tpauser = 1,
  123. .hw_swap = 1,
  124. .no_ade = 1,
  125. .rpadir = 1,
  126. .rpadir_value = 2 << 16,
  127. };
  128. #define SH_GIGA_ETH_BASE 0xfee00000
  129. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  130. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  131. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  132. {
  133. int i;
  134. unsigned long mahr[2], malr[2];
  135. /* save MAHR and MALR */
  136. for (i = 0; i < 2; i++) {
  137. malr[i] = readl(GIGA_MALR(i));
  138. mahr[i] = readl(GIGA_MAHR(i));
  139. }
  140. /* reset device */
  141. writel(ARSTR_ARSTR, SH_GIGA_ETH_BASE + 0x1800);
  142. mdelay(1);
  143. /* restore MAHR and MALR */
  144. for (i = 0; i < 2; i++) {
  145. writel(malr[i], GIGA_MALR(i));
  146. writel(mahr[i], GIGA_MAHR(i));
  147. }
  148. }
  149. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  150. static void sh_eth_reset(struct net_device *ndev)
  151. {
  152. struct sh_eth_private *mdp = netdev_priv(ndev);
  153. int cnt = 100;
  154. if (sh_eth_is_gether(mdp)) {
  155. sh_eth_write(ndev, 0x03, EDSR);
  156. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  157. EDMR);
  158. while (cnt > 0) {
  159. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  160. break;
  161. mdelay(1);
  162. cnt--;
  163. }
  164. if (cnt < 0)
  165. printk(KERN_ERR "Device reset fail\n");
  166. /* Table Init */
  167. sh_eth_write(ndev, 0x0, TDLAR);
  168. sh_eth_write(ndev, 0x0, TDFAR);
  169. sh_eth_write(ndev, 0x0, TDFXR);
  170. sh_eth_write(ndev, 0x0, TDFFR);
  171. sh_eth_write(ndev, 0x0, RDLAR);
  172. sh_eth_write(ndev, 0x0, RDFAR);
  173. sh_eth_write(ndev, 0x0, RDFXR);
  174. sh_eth_write(ndev, 0x0, RDFFR);
  175. } else {
  176. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  177. EDMR);
  178. mdelay(3);
  179. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  180. EDMR);
  181. }
  182. }
  183. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  184. {
  185. struct sh_eth_private *mdp = netdev_priv(ndev);
  186. if (mdp->duplex) /* Full */
  187. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  188. else /* Half */
  189. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  190. }
  191. static void sh_eth_set_rate_giga(struct net_device *ndev)
  192. {
  193. struct sh_eth_private *mdp = netdev_priv(ndev);
  194. switch (mdp->speed) {
  195. case 10: /* 10BASE */
  196. sh_eth_write(ndev, 0x00000000, GECMR);
  197. break;
  198. case 100:/* 100BASE */
  199. sh_eth_write(ndev, 0x00000010, GECMR);
  200. break;
  201. case 1000: /* 1000BASE */
  202. sh_eth_write(ndev, 0x00000020, GECMR);
  203. break;
  204. default:
  205. break;
  206. }
  207. }
  208. /* SH7757(GETHERC) */
  209. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  210. .chip_reset = sh_eth_chip_reset_giga,
  211. .set_duplex = sh_eth_set_duplex_giga,
  212. .set_rate = sh_eth_set_rate_giga,
  213. .ecsr_value = ECSR_ICD | ECSR_MPD,
  214. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  215. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  216. .tx_check = EESR_TC1 | EESR_FTC,
  217. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  218. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  219. EESR_ECI,
  220. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  221. EESR_TFE,
  222. .fdr_value = 0x0000072f,
  223. .rmcr_value = 0x00000001,
  224. .apr = 1,
  225. .mpr = 1,
  226. .tpauser = 1,
  227. .bculr = 1,
  228. .hw_swap = 1,
  229. .rpadir = 1,
  230. .rpadir_value = 2 << 16,
  231. .no_trimd = 1,
  232. .no_ade = 1,
  233. };
  234. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  235. {
  236. if (sh_eth_is_gether(mdp))
  237. return &sh_eth_my_cpu_data_giga;
  238. else
  239. return &sh_eth_my_cpu_data;
  240. }
  241. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  242. #define SH_ETH_HAS_TSU 1
  243. static void sh_eth_chip_reset(struct net_device *ndev)
  244. {
  245. struct sh_eth_private *mdp = netdev_priv(ndev);
  246. /* reset device */
  247. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  248. mdelay(1);
  249. }
  250. static void sh_eth_reset(struct net_device *ndev)
  251. {
  252. int cnt = 100;
  253. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  254. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  255. while (cnt > 0) {
  256. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  257. break;
  258. mdelay(1);
  259. cnt--;
  260. }
  261. if (cnt == 0)
  262. printk(KERN_ERR "Device reset fail\n");
  263. /* Table Init */
  264. sh_eth_write(ndev, 0x0, TDLAR);
  265. sh_eth_write(ndev, 0x0, TDFAR);
  266. sh_eth_write(ndev, 0x0, TDFXR);
  267. sh_eth_write(ndev, 0x0, TDFFR);
  268. sh_eth_write(ndev, 0x0, RDLAR);
  269. sh_eth_write(ndev, 0x0, RDFAR);
  270. sh_eth_write(ndev, 0x0, RDFXR);
  271. sh_eth_write(ndev, 0x0, RDFFR);
  272. }
  273. static void sh_eth_set_duplex(struct net_device *ndev)
  274. {
  275. struct sh_eth_private *mdp = netdev_priv(ndev);
  276. if (mdp->duplex) /* Full */
  277. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  278. else /* Half */
  279. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  280. }
  281. static void sh_eth_set_rate(struct net_device *ndev)
  282. {
  283. struct sh_eth_private *mdp = netdev_priv(ndev);
  284. switch (mdp->speed) {
  285. case 10: /* 10BASE */
  286. sh_eth_write(ndev, GECMR_10, GECMR);
  287. break;
  288. case 100:/* 100BASE */
  289. sh_eth_write(ndev, GECMR_100, GECMR);
  290. break;
  291. case 1000: /* 1000BASE */
  292. sh_eth_write(ndev, GECMR_1000, GECMR);
  293. break;
  294. default:
  295. break;
  296. }
  297. }
  298. /* sh7763 */
  299. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  300. .chip_reset = sh_eth_chip_reset,
  301. .set_duplex = sh_eth_set_duplex,
  302. .set_rate = sh_eth_set_rate,
  303. .ecsr_value = ECSR_ICD | ECSR_MPD,
  304. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  305. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  306. .tx_check = EESR_TC1 | EESR_FTC,
  307. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  308. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  309. EESR_ECI,
  310. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  311. EESR_TFE,
  312. .apr = 1,
  313. .mpr = 1,
  314. .tpauser = 1,
  315. .bculr = 1,
  316. .hw_swap = 1,
  317. .no_trimd = 1,
  318. .no_ade = 1,
  319. .tsu = 1,
  320. };
  321. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  322. #define SH_ETH_RESET_DEFAULT 1
  323. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  324. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  325. .apr = 1,
  326. .mpr = 1,
  327. .tpauser = 1,
  328. .hw_swap = 1,
  329. };
  330. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  331. #define SH_ETH_RESET_DEFAULT 1
  332. #define SH_ETH_HAS_TSU 1
  333. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  334. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  335. .tsu = 1,
  336. };
  337. #endif
  338. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  339. {
  340. if (!cd->ecsr_value)
  341. cd->ecsr_value = DEFAULT_ECSR_INIT;
  342. if (!cd->ecsipr_value)
  343. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  344. if (!cd->fcftr_value)
  345. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  346. DEFAULT_FIFO_F_D_RFD;
  347. if (!cd->fdr_value)
  348. cd->fdr_value = DEFAULT_FDR_INIT;
  349. if (!cd->rmcr_value)
  350. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  351. if (!cd->tx_check)
  352. cd->tx_check = DEFAULT_TX_CHECK;
  353. if (!cd->eesr_err_check)
  354. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  355. if (!cd->tx_error_check)
  356. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  357. }
  358. #if defined(SH_ETH_RESET_DEFAULT)
  359. /* Chip Reset */
  360. static void sh_eth_reset(struct net_device *ndev)
  361. {
  362. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  363. mdelay(3);
  364. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  365. }
  366. #endif
  367. #if defined(CONFIG_CPU_SH4)
  368. static void sh_eth_set_receive_align(struct sk_buff *skb)
  369. {
  370. int reserve;
  371. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  372. if (reserve)
  373. skb_reserve(skb, reserve);
  374. }
  375. #else
  376. static void sh_eth_set_receive_align(struct sk_buff *skb)
  377. {
  378. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  379. }
  380. #endif
  381. /* CPU <-> EDMAC endian convert */
  382. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  383. {
  384. switch (mdp->edmac_endian) {
  385. case EDMAC_LITTLE_ENDIAN:
  386. return cpu_to_le32(x);
  387. case EDMAC_BIG_ENDIAN:
  388. return cpu_to_be32(x);
  389. }
  390. return x;
  391. }
  392. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  393. {
  394. switch (mdp->edmac_endian) {
  395. case EDMAC_LITTLE_ENDIAN:
  396. return le32_to_cpu(x);
  397. case EDMAC_BIG_ENDIAN:
  398. return be32_to_cpu(x);
  399. }
  400. return x;
  401. }
  402. /*
  403. * Program the hardware MAC address from dev->dev_addr.
  404. */
  405. static void update_mac_address(struct net_device *ndev)
  406. {
  407. sh_eth_write(ndev,
  408. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  409. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  410. sh_eth_write(ndev,
  411. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  412. }
  413. /*
  414. * Get MAC address from SuperH MAC address register
  415. *
  416. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  417. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  418. * When you want use this device, you must set MAC address in bootloader.
  419. *
  420. */
  421. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  422. {
  423. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  424. memcpy(ndev->dev_addr, mac, 6);
  425. } else {
  426. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  427. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  428. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  429. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  430. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  431. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  432. }
  433. }
  434. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  435. {
  436. if (mdp->reg_offset == sh_eth_offset_gigabit)
  437. return 1;
  438. else
  439. return 0;
  440. }
  441. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  442. {
  443. if (sh_eth_is_gether(mdp))
  444. return EDTRR_TRNS_GETHER;
  445. else
  446. return EDTRR_TRNS_ETHER;
  447. }
  448. struct bb_info {
  449. void (*set_gate)(unsigned long addr);
  450. struct mdiobb_ctrl ctrl;
  451. u32 addr;
  452. u32 mmd_msk;/* MMD */
  453. u32 mdo_msk;
  454. u32 mdi_msk;
  455. u32 mdc_msk;
  456. };
  457. /* PHY bit set */
  458. static void bb_set(u32 addr, u32 msk)
  459. {
  460. writel(readl(addr) | msk, addr);
  461. }
  462. /* PHY bit clear */
  463. static void bb_clr(u32 addr, u32 msk)
  464. {
  465. writel((readl(addr) & ~msk), addr);
  466. }
  467. /* PHY bit read */
  468. static int bb_read(u32 addr, u32 msk)
  469. {
  470. return (readl(addr) & msk) != 0;
  471. }
  472. /* Data I/O pin control */
  473. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  474. {
  475. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  476. if (bitbang->set_gate)
  477. bitbang->set_gate(bitbang->addr);
  478. if (bit)
  479. bb_set(bitbang->addr, bitbang->mmd_msk);
  480. else
  481. bb_clr(bitbang->addr, bitbang->mmd_msk);
  482. }
  483. /* Set bit data*/
  484. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  485. {
  486. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  487. if (bitbang->set_gate)
  488. bitbang->set_gate(bitbang->addr);
  489. if (bit)
  490. bb_set(bitbang->addr, bitbang->mdo_msk);
  491. else
  492. bb_clr(bitbang->addr, bitbang->mdo_msk);
  493. }
  494. /* Get bit data*/
  495. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  496. {
  497. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  498. if (bitbang->set_gate)
  499. bitbang->set_gate(bitbang->addr);
  500. return bb_read(bitbang->addr, bitbang->mdi_msk);
  501. }
  502. /* MDC pin control */
  503. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  504. {
  505. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  506. if (bitbang->set_gate)
  507. bitbang->set_gate(bitbang->addr);
  508. if (bit)
  509. bb_set(bitbang->addr, bitbang->mdc_msk);
  510. else
  511. bb_clr(bitbang->addr, bitbang->mdc_msk);
  512. }
  513. /* mdio bus control struct */
  514. static struct mdiobb_ops bb_ops = {
  515. .owner = THIS_MODULE,
  516. .set_mdc = sh_mdc_ctrl,
  517. .set_mdio_dir = sh_mmd_ctrl,
  518. .set_mdio_data = sh_set_mdio,
  519. .get_mdio_data = sh_get_mdio,
  520. };
  521. /* free skb and descriptor buffer */
  522. static void sh_eth_ring_free(struct net_device *ndev)
  523. {
  524. struct sh_eth_private *mdp = netdev_priv(ndev);
  525. int i;
  526. /* Free Rx skb ringbuffer */
  527. if (mdp->rx_skbuff) {
  528. for (i = 0; i < RX_RING_SIZE; i++) {
  529. if (mdp->rx_skbuff[i])
  530. dev_kfree_skb(mdp->rx_skbuff[i]);
  531. }
  532. }
  533. kfree(mdp->rx_skbuff);
  534. /* Free Tx skb ringbuffer */
  535. if (mdp->tx_skbuff) {
  536. for (i = 0; i < TX_RING_SIZE; i++) {
  537. if (mdp->tx_skbuff[i])
  538. dev_kfree_skb(mdp->tx_skbuff[i]);
  539. }
  540. }
  541. kfree(mdp->tx_skbuff);
  542. }
  543. /* format skb and descriptor buffer */
  544. static void sh_eth_ring_format(struct net_device *ndev)
  545. {
  546. struct sh_eth_private *mdp = netdev_priv(ndev);
  547. int i;
  548. struct sk_buff *skb;
  549. struct sh_eth_rxdesc *rxdesc = NULL;
  550. struct sh_eth_txdesc *txdesc = NULL;
  551. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  552. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  553. mdp->cur_rx = mdp->cur_tx = 0;
  554. mdp->dirty_rx = mdp->dirty_tx = 0;
  555. memset(mdp->rx_ring, 0, rx_ringsize);
  556. /* build Rx ring buffer */
  557. for (i = 0; i < RX_RING_SIZE; i++) {
  558. /* skb */
  559. mdp->rx_skbuff[i] = NULL;
  560. skb = dev_alloc_skb(mdp->rx_buf_sz);
  561. mdp->rx_skbuff[i] = skb;
  562. if (skb == NULL)
  563. break;
  564. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  565. DMA_FROM_DEVICE);
  566. skb->dev = ndev; /* Mark as being used by this device. */
  567. sh_eth_set_receive_align(skb);
  568. /* RX descriptor */
  569. rxdesc = &mdp->rx_ring[i];
  570. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  571. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  572. /* The size of the buffer is 16 byte boundary. */
  573. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  574. /* Rx descriptor address set */
  575. if (i == 0) {
  576. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  577. if (sh_eth_is_gether(mdp))
  578. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  579. }
  580. }
  581. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  582. /* Mark the last entry as wrapping the ring. */
  583. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  584. memset(mdp->tx_ring, 0, tx_ringsize);
  585. /* build Tx ring buffer */
  586. for (i = 0; i < TX_RING_SIZE; i++) {
  587. mdp->tx_skbuff[i] = NULL;
  588. txdesc = &mdp->tx_ring[i];
  589. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  590. txdesc->buffer_length = 0;
  591. if (i == 0) {
  592. /* Tx descriptor address set */
  593. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  594. if (sh_eth_is_gether(mdp))
  595. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  596. }
  597. }
  598. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  599. }
  600. /* Get skb and descriptor buffer */
  601. static int sh_eth_ring_init(struct net_device *ndev)
  602. {
  603. struct sh_eth_private *mdp = netdev_priv(ndev);
  604. int rx_ringsize, tx_ringsize, ret = 0;
  605. /*
  606. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  607. * card needs room to do 8 byte alignment, +2 so we can reserve
  608. * the first 2 bytes, and +16 gets room for the status word from the
  609. * card.
  610. */
  611. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  612. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  613. if (mdp->cd->rpadir)
  614. mdp->rx_buf_sz += NET_IP_ALIGN;
  615. /* Allocate RX and TX skb rings */
  616. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  617. GFP_KERNEL);
  618. if (!mdp->rx_skbuff) {
  619. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  620. ret = -ENOMEM;
  621. return ret;
  622. }
  623. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  624. GFP_KERNEL);
  625. if (!mdp->tx_skbuff) {
  626. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  627. ret = -ENOMEM;
  628. goto skb_ring_free;
  629. }
  630. /* Allocate all Rx descriptors. */
  631. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  632. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  633. GFP_KERNEL);
  634. if (!mdp->rx_ring) {
  635. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  636. rx_ringsize);
  637. ret = -ENOMEM;
  638. goto desc_ring_free;
  639. }
  640. mdp->dirty_rx = 0;
  641. /* Allocate all Tx descriptors. */
  642. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  643. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  644. GFP_KERNEL);
  645. if (!mdp->tx_ring) {
  646. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  647. tx_ringsize);
  648. ret = -ENOMEM;
  649. goto desc_ring_free;
  650. }
  651. return ret;
  652. desc_ring_free:
  653. /* free DMA buffer */
  654. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  655. skb_ring_free:
  656. /* Free Rx and Tx skb ring buffer */
  657. sh_eth_ring_free(ndev);
  658. return ret;
  659. }
  660. static int sh_eth_dev_init(struct net_device *ndev)
  661. {
  662. int ret = 0;
  663. struct sh_eth_private *mdp = netdev_priv(ndev);
  664. u_int32_t rx_int_var, tx_int_var;
  665. u32 val;
  666. /* Soft Reset */
  667. sh_eth_reset(ndev);
  668. /* Descriptor format */
  669. sh_eth_ring_format(ndev);
  670. if (mdp->cd->rpadir)
  671. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  672. /* all sh_eth int mask */
  673. sh_eth_write(ndev, 0, EESIPR);
  674. #if defined(__LITTLE_ENDIAN__)
  675. if (mdp->cd->hw_swap)
  676. sh_eth_write(ndev, EDMR_EL, EDMR);
  677. else
  678. #endif
  679. sh_eth_write(ndev, 0, EDMR);
  680. /* FIFO size set */
  681. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  682. sh_eth_write(ndev, 0, TFTR);
  683. /* Frame recv control */
  684. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  685. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  686. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  687. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  688. if (mdp->cd->bculr)
  689. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  690. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  691. if (!mdp->cd->no_trimd)
  692. sh_eth_write(ndev, 0, TRIMD);
  693. /* Recv frame limit set register */
  694. sh_eth_write(ndev, RFLR_VALUE, RFLR);
  695. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  696. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  697. /* PAUSE Prohibition */
  698. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  699. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  700. sh_eth_write(ndev, val, ECMR);
  701. if (mdp->cd->set_rate)
  702. mdp->cd->set_rate(ndev);
  703. /* E-MAC Status Register clear */
  704. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  705. /* E-MAC Interrupt Enable register */
  706. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  707. /* Set MAC address */
  708. update_mac_address(ndev);
  709. /* mask reset */
  710. if (mdp->cd->apr)
  711. sh_eth_write(ndev, APR_AP, APR);
  712. if (mdp->cd->mpr)
  713. sh_eth_write(ndev, MPR_MP, MPR);
  714. if (mdp->cd->tpauser)
  715. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  716. /* Setting the Rx mode will start the Rx process. */
  717. sh_eth_write(ndev, EDRRR_R, EDRRR);
  718. netif_start_queue(ndev);
  719. return ret;
  720. }
  721. /* free Tx skb function */
  722. static int sh_eth_txfree(struct net_device *ndev)
  723. {
  724. struct sh_eth_private *mdp = netdev_priv(ndev);
  725. struct sh_eth_txdesc *txdesc;
  726. int freeNum = 0;
  727. int entry = 0;
  728. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  729. entry = mdp->dirty_tx % TX_RING_SIZE;
  730. txdesc = &mdp->tx_ring[entry];
  731. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  732. break;
  733. /* Free the original skb. */
  734. if (mdp->tx_skbuff[entry]) {
  735. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  736. mdp->tx_skbuff[entry] = NULL;
  737. freeNum++;
  738. }
  739. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  740. if (entry >= TX_RING_SIZE - 1)
  741. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  742. mdp->stats.tx_packets++;
  743. mdp->stats.tx_bytes += txdesc->buffer_length;
  744. }
  745. return freeNum;
  746. }
  747. /* Packet receive function */
  748. static int sh_eth_rx(struct net_device *ndev)
  749. {
  750. struct sh_eth_private *mdp = netdev_priv(ndev);
  751. struct sh_eth_rxdesc *rxdesc;
  752. int entry = mdp->cur_rx % RX_RING_SIZE;
  753. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  754. struct sk_buff *skb;
  755. u16 pkt_len = 0;
  756. u32 desc_status;
  757. rxdesc = &mdp->rx_ring[entry];
  758. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  759. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  760. pkt_len = rxdesc->frame_length;
  761. if (--boguscnt < 0)
  762. break;
  763. if (!(desc_status & RDFEND))
  764. mdp->stats.rx_length_errors++;
  765. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  766. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  767. mdp->stats.rx_errors++;
  768. if (desc_status & RD_RFS1)
  769. mdp->stats.rx_crc_errors++;
  770. if (desc_status & RD_RFS2)
  771. mdp->stats.rx_frame_errors++;
  772. if (desc_status & RD_RFS3)
  773. mdp->stats.rx_length_errors++;
  774. if (desc_status & RD_RFS4)
  775. mdp->stats.rx_length_errors++;
  776. if (desc_status & RD_RFS6)
  777. mdp->stats.rx_missed_errors++;
  778. if (desc_status & RD_RFS10)
  779. mdp->stats.rx_over_errors++;
  780. } else {
  781. if (!mdp->cd->hw_swap)
  782. sh_eth_soft_swap(
  783. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  784. pkt_len + 2);
  785. skb = mdp->rx_skbuff[entry];
  786. mdp->rx_skbuff[entry] = NULL;
  787. if (mdp->cd->rpadir)
  788. skb_reserve(skb, NET_IP_ALIGN);
  789. skb_put(skb, pkt_len);
  790. skb->protocol = eth_type_trans(skb, ndev);
  791. netif_rx(skb);
  792. mdp->stats.rx_packets++;
  793. mdp->stats.rx_bytes += pkt_len;
  794. }
  795. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  796. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  797. rxdesc = &mdp->rx_ring[entry];
  798. }
  799. /* Refill the Rx ring buffers. */
  800. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  801. entry = mdp->dirty_rx % RX_RING_SIZE;
  802. rxdesc = &mdp->rx_ring[entry];
  803. /* The size of the buffer is 16 byte boundary. */
  804. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  805. if (mdp->rx_skbuff[entry] == NULL) {
  806. skb = dev_alloc_skb(mdp->rx_buf_sz);
  807. mdp->rx_skbuff[entry] = skb;
  808. if (skb == NULL)
  809. break; /* Better luck next round. */
  810. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  811. DMA_FROM_DEVICE);
  812. skb->dev = ndev;
  813. sh_eth_set_receive_align(skb);
  814. skb_checksum_none_assert(skb);
  815. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  816. }
  817. if (entry >= RX_RING_SIZE - 1)
  818. rxdesc->status |=
  819. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  820. else
  821. rxdesc->status |=
  822. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  823. }
  824. /* Restart Rx engine if stopped. */
  825. /* If we don't need to check status, don't. -KDU */
  826. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  827. sh_eth_write(ndev, EDRRR_R, EDRRR);
  828. return 0;
  829. }
  830. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  831. {
  832. /* disable tx and rx */
  833. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  834. ~(ECMR_RE | ECMR_TE), ECMR);
  835. }
  836. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  837. {
  838. /* enable tx and rx */
  839. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  840. (ECMR_RE | ECMR_TE), ECMR);
  841. }
  842. /* error control function */
  843. static void sh_eth_error(struct net_device *ndev, int intr_status)
  844. {
  845. struct sh_eth_private *mdp = netdev_priv(ndev);
  846. u32 felic_stat;
  847. u32 link_stat;
  848. u32 mask;
  849. if (intr_status & EESR_ECI) {
  850. felic_stat = sh_eth_read(ndev, ECSR);
  851. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  852. if (felic_stat & ECSR_ICD)
  853. mdp->stats.tx_carrier_errors++;
  854. if (felic_stat & ECSR_LCHNG) {
  855. /* Link Changed */
  856. if (mdp->cd->no_psr || mdp->no_ether_link) {
  857. if (mdp->link == PHY_DOWN)
  858. link_stat = 0;
  859. else
  860. link_stat = PHY_ST_LINK;
  861. } else {
  862. link_stat = (sh_eth_read(ndev, PSR));
  863. if (mdp->ether_link_active_low)
  864. link_stat = ~link_stat;
  865. }
  866. if (!(link_stat & PHY_ST_LINK))
  867. sh_eth_rcv_snd_disable(ndev);
  868. else {
  869. /* Link Up */
  870. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  871. ~DMAC_M_ECI, EESIPR);
  872. /*clear int */
  873. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  874. ECSR);
  875. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  876. DMAC_M_ECI, EESIPR);
  877. /* enable tx and rx */
  878. sh_eth_rcv_snd_enable(ndev);
  879. }
  880. }
  881. }
  882. if (intr_status & EESR_TWB) {
  883. /* Write buck end. unused write back interrupt */
  884. if (intr_status & EESR_TABT) /* Transmit Abort int */
  885. mdp->stats.tx_aborted_errors++;
  886. if (netif_msg_tx_err(mdp))
  887. dev_err(&ndev->dev, "Transmit Abort\n");
  888. }
  889. if (intr_status & EESR_RABT) {
  890. /* Receive Abort int */
  891. if (intr_status & EESR_RFRMER) {
  892. /* Receive Frame Overflow int */
  893. mdp->stats.rx_frame_errors++;
  894. if (netif_msg_rx_err(mdp))
  895. dev_err(&ndev->dev, "Receive Abort\n");
  896. }
  897. }
  898. if (intr_status & EESR_TDE) {
  899. /* Transmit Descriptor Empty int */
  900. mdp->stats.tx_fifo_errors++;
  901. if (netif_msg_tx_err(mdp))
  902. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  903. }
  904. if (intr_status & EESR_TFE) {
  905. /* FIFO under flow */
  906. mdp->stats.tx_fifo_errors++;
  907. if (netif_msg_tx_err(mdp))
  908. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  909. }
  910. if (intr_status & EESR_RDE) {
  911. /* Receive Descriptor Empty int */
  912. mdp->stats.rx_over_errors++;
  913. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  914. sh_eth_write(ndev, EDRRR_R, EDRRR);
  915. if (netif_msg_rx_err(mdp))
  916. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  917. }
  918. if (intr_status & EESR_RFE) {
  919. /* Receive FIFO Overflow int */
  920. mdp->stats.rx_fifo_errors++;
  921. if (netif_msg_rx_err(mdp))
  922. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  923. }
  924. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  925. /* Address Error */
  926. mdp->stats.tx_fifo_errors++;
  927. if (netif_msg_tx_err(mdp))
  928. dev_err(&ndev->dev, "Address Error\n");
  929. }
  930. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  931. if (mdp->cd->no_ade)
  932. mask &= ~EESR_ADE;
  933. if (intr_status & mask) {
  934. /* Tx error */
  935. u32 edtrr = sh_eth_read(ndev, EDTRR);
  936. /* dmesg */
  937. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  938. intr_status, mdp->cur_tx);
  939. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  940. mdp->dirty_tx, (u32) ndev->state, edtrr);
  941. /* dirty buffer free */
  942. sh_eth_txfree(ndev);
  943. /* SH7712 BUG */
  944. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  945. /* tx dma start */
  946. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  947. }
  948. /* wakeup */
  949. netif_wake_queue(ndev);
  950. }
  951. }
  952. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  953. {
  954. struct net_device *ndev = netdev;
  955. struct sh_eth_private *mdp = netdev_priv(ndev);
  956. struct sh_eth_cpu_data *cd = mdp->cd;
  957. irqreturn_t ret = IRQ_NONE;
  958. u32 intr_status = 0;
  959. spin_lock(&mdp->lock);
  960. /* Get interrpt stat */
  961. intr_status = sh_eth_read(ndev, EESR);
  962. /* Clear interrupt */
  963. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  964. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  965. cd->tx_check | cd->eesr_err_check)) {
  966. sh_eth_write(ndev, intr_status, EESR);
  967. ret = IRQ_HANDLED;
  968. } else
  969. goto other_irq;
  970. if (intr_status & (EESR_FRC | /* Frame recv*/
  971. EESR_RMAF | /* Multi cast address recv*/
  972. EESR_RRF | /* Bit frame recv */
  973. EESR_RTLF | /* Long frame recv*/
  974. EESR_RTSF | /* short frame recv */
  975. EESR_PRE | /* PHY-LSI recv error */
  976. EESR_CERF)){ /* recv frame CRC error */
  977. sh_eth_rx(ndev);
  978. }
  979. /* Tx Check */
  980. if (intr_status & cd->tx_check) {
  981. sh_eth_txfree(ndev);
  982. netif_wake_queue(ndev);
  983. }
  984. if (intr_status & cd->eesr_err_check)
  985. sh_eth_error(ndev, intr_status);
  986. other_irq:
  987. spin_unlock(&mdp->lock);
  988. return ret;
  989. }
  990. static void sh_eth_timer(unsigned long data)
  991. {
  992. struct net_device *ndev = (struct net_device *)data;
  993. struct sh_eth_private *mdp = netdev_priv(ndev);
  994. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  995. }
  996. /* PHY state control function */
  997. static void sh_eth_adjust_link(struct net_device *ndev)
  998. {
  999. struct sh_eth_private *mdp = netdev_priv(ndev);
  1000. struct phy_device *phydev = mdp->phydev;
  1001. int new_state = 0;
  1002. if (phydev->link != PHY_DOWN) {
  1003. if (phydev->duplex != mdp->duplex) {
  1004. new_state = 1;
  1005. mdp->duplex = phydev->duplex;
  1006. if (mdp->cd->set_duplex)
  1007. mdp->cd->set_duplex(ndev);
  1008. }
  1009. if (phydev->speed != mdp->speed) {
  1010. new_state = 1;
  1011. mdp->speed = phydev->speed;
  1012. if (mdp->cd->set_rate)
  1013. mdp->cd->set_rate(ndev);
  1014. }
  1015. if (mdp->link == PHY_DOWN) {
  1016. sh_eth_write(ndev,
  1017. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1018. new_state = 1;
  1019. mdp->link = phydev->link;
  1020. }
  1021. } else if (mdp->link) {
  1022. new_state = 1;
  1023. mdp->link = PHY_DOWN;
  1024. mdp->speed = 0;
  1025. mdp->duplex = -1;
  1026. }
  1027. if (new_state && netif_msg_link(mdp))
  1028. phy_print_status(phydev);
  1029. }
  1030. /* PHY init function */
  1031. static int sh_eth_phy_init(struct net_device *ndev)
  1032. {
  1033. struct sh_eth_private *mdp = netdev_priv(ndev);
  1034. char phy_id[MII_BUS_ID_SIZE + 3];
  1035. struct phy_device *phydev = NULL;
  1036. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1037. mdp->mii_bus->id , mdp->phy_id);
  1038. mdp->link = PHY_DOWN;
  1039. mdp->speed = 0;
  1040. mdp->duplex = -1;
  1041. /* Try connect to PHY */
  1042. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1043. 0, mdp->phy_interface);
  1044. if (IS_ERR(phydev)) {
  1045. dev_err(&ndev->dev, "phy_connect failed\n");
  1046. return PTR_ERR(phydev);
  1047. }
  1048. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1049. phydev->addr, phydev->drv->name);
  1050. mdp->phydev = phydev;
  1051. return 0;
  1052. }
  1053. /* PHY control start function */
  1054. static int sh_eth_phy_start(struct net_device *ndev)
  1055. {
  1056. struct sh_eth_private *mdp = netdev_priv(ndev);
  1057. int ret;
  1058. ret = sh_eth_phy_init(ndev);
  1059. if (ret)
  1060. return ret;
  1061. /* reset phy - this also wakes it from PDOWN */
  1062. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1063. phy_start(mdp->phydev);
  1064. return 0;
  1065. }
  1066. static int sh_eth_get_settings(struct net_device *ndev,
  1067. struct ethtool_cmd *ecmd)
  1068. {
  1069. struct sh_eth_private *mdp = netdev_priv(ndev);
  1070. unsigned long flags;
  1071. int ret;
  1072. spin_lock_irqsave(&mdp->lock, flags);
  1073. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1074. spin_unlock_irqrestore(&mdp->lock, flags);
  1075. return ret;
  1076. }
  1077. static int sh_eth_set_settings(struct net_device *ndev,
  1078. struct ethtool_cmd *ecmd)
  1079. {
  1080. struct sh_eth_private *mdp = netdev_priv(ndev);
  1081. unsigned long flags;
  1082. int ret;
  1083. spin_lock_irqsave(&mdp->lock, flags);
  1084. /* disable tx and rx */
  1085. sh_eth_rcv_snd_disable(ndev);
  1086. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1087. if (ret)
  1088. goto error_exit;
  1089. if (ecmd->duplex == DUPLEX_FULL)
  1090. mdp->duplex = 1;
  1091. else
  1092. mdp->duplex = 0;
  1093. if (mdp->cd->set_duplex)
  1094. mdp->cd->set_duplex(ndev);
  1095. error_exit:
  1096. mdelay(1);
  1097. /* enable tx and rx */
  1098. sh_eth_rcv_snd_enable(ndev);
  1099. spin_unlock_irqrestore(&mdp->lock, flags);
  1100. return ret;
  1101. }
  1102. static int sh_eth_nway_reset(struct net_device *ndev)
  1103. {
  1104. struct sh_eth_private *mdp = netdev_priv(ndev);
  1105. unsigned long flags;
  1106. int ret;
  1107. spin_lock_irqsave(&mdp->lock, flags);
  1108. ret = phy_start_aneg(mdp->phydev);
  1109. spin_unlock_irqrestore(&mdp->lock, flags);
  1110. return ret;
  1111. }
  1112. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1113. {
  1114. struct sh_eth_private *mdp = netdev_priv(ndev);
  1115. return mdp->msg_enable;
  1116. }
  1117. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1118. {
  1119. struct sh_eth_private *mdp = netdev_priv(ndev);
  1120. mdp->msg_enable = value;
  1121. }
  1122. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1123. "rx_current", "tx_current",
  1124. "rx_dirty", "tx_dirty",
  1125. };
  1126. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1127. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1128. {
  1129. switch (sset) {
  1130. case ETH_SS_STATS:
  1131. return SH_ETH_STATS_LEN;
  1132. default:
  1133. return -EOPNOTSUPP;
  1134. }
  1135. }
  1136. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1137. struct ethtool_stats *stats, u64 *data)
  1138. {
  1139. struct sh_eth_private *mdp = netdev_priv(ndev);
  1140. int i = 0;
  1141. /* device-specific stats */
  1142. data[i++] = mdp->cur_rx;
  1143. data[i++] = mdp->cur_tx;
  1144. data[i++] = mdp->dirty_rx;
  1145. data[i++] = mdp->dirty_tx;
  1146. }
  1147. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1148. {
  1149. switch (stringset) {
  1150. case ETH_SS_STATS:
  1151. memcpy(data, *sh_eth_gstrings_stats,
  1152. sizeof(sh_eth_gstrings_stats));
  1153. break;
  1154. }
  1155. }
  1156. static struct ethtool_ops sh_eth_ethtool_ops = {
  1157. .get_settings = sh_eth_get_settings,
  1158. .set_settings = sh_eth_set_settings,
  1159. .nway_reset = sh_eth_nway_reset,
  1160. .get_msglevel = sh_eth_get_msglevel,
  1161. .set_msglevel = sh_eth_set_msglevel,
  1162. .get_link = ethtool_op_get_link,
  1163. .get_strings = sh_eth_get_strings,
  1164. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1165. .get_sset_count = sh_eth_get_sset_count,
  1166. };
  1167. /* network device open function */
  1168. static int sh_eth_open(struct net_device *ndev)
  1169. {
  1170. int ret = 0;
  1171. struct sh_eth_private *mdp = netdev_priv(ndev);
  1172. pm_runtime_get_sync(&mdp->pdev->dev);
  1173. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1174. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1175. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1176. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1177. IRQF_SHARED,
  1178. #else
  1179. 0,
  1180. #endif
  1181. ndev->name, ndev);
  1182. if (ret) {
  1183. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1184. return ret;
  1185. }
  1186. /* Descriptor set */
  1187. ret = sh_eth_ring_init(ndev);
  1188. if (ret)
  1189. goto out_free_irq;
  1190. /* device init */
  1191. ret = sh_eth_dev_init(ndev);
  1192. if (ret)
  1193. goto out_free_irq;
  1194. /* PHY control start*/
  1195. ret = sh_eth_phy_start(ndev);
  1196. if (ret)
  1197. goto out_free_irq;
  1198. /* Set the timer to check for link beat. */
  1199. init_timer(&mdp->timer);
  1200. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1201. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1202. return ret;
  1203. out_free_irq:
  1204. free_irq(ndev->irq, ndev);
  1205. pm_runtime_put_sync(&mdp->pdev->dev);
  1206. return ret;
  1207. }
  1208. /* Timeout function */
  1209. static void sh_eth_tx_timeout(struct net_device *ndev)
  1210. {
  1211. struct sh_eth_private *mdp = netdev_priv(ndev);
  1212. struct sh_eth_rxdesc *rxdesc;
  1213. int i;
  1214. netif_stop_queue(ndev);
  1215. if (netif_msg_timer(mdp))
  1216. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1217. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1218. /* tx_errors count up */
  1219. mdp->stats.tx_errors++;
  1220. /* timer off */
  1221. del_timer_sync(&mdp->timer);
  1222. /* Free all the skbuffs in the Rx queue. */
  1223. for (i = 0; i < RX_RING_SIZE; i++) {
  1224. rxdesc = &mdp->rx_ring[i];
  1225. rxdesc->status = 0;
  1226. rxdesc->addr = 0xBADF00D0;
  1227. if (mdp->rx_skbuff[i])
  1228. dev_kfree_skb(mdp->rx_skbuff[i]);
  1229. mdp->rx_skbuff[i] = NULL;
  1230. }
  1231. for (i = 0; i < TX_RING_SIZE; i++) {
  1232. if (mdp->tx_skbuff[i])
  1233. dev_kfree_skb(mdp->tx_skbuff[i]);
  1234. mdp->tx_skbuff[i] = NULL;
  1235. }
  1236. /* device init */
  1237. sh_eth_dev_init(ndev);
  1238. /* timer on */
  1239. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1240. add_timer(&mdp->timer);
  1241. }
  1242. /* Packet transmit function */
  1243. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1244. {
  1245. struct sh_eth_private *mdp = netdev_priv(ndev);
  1246. struct sh_eth_txdesc *txdesc;
  1247. u32 entry;
  1248. unsigned long flags;
  1249. spin_lock_irqsave(&mdp->lock, flags);
  1250. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1251. if (!sh_eth_txfree(ndev)) {
  1252. if (netif_msg_tx_queued(mdp))
  1253. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1254. netif_stop_queue(ndev);
  1255. spin_unlock_irqrestore(&mdp->lock, flags);
  1256. return NETDEV_TX_BUSY;
  1257. }
  1258. }
  1259. spin_unlock_irqrestore(&mdp->lock, flags);
  1260. entry = mdp->cur_tx % TX_RING_SIZE;
  1261. mdp->tx_skbuff[entry] = skb;
  1262. txdesc = &mdp->tx_ring[entry];
  1263. txdesc->addr = virt_to_phys(skb->data);
  1264. /* soft swap. */
  1265. if (!mdp->cd->hw_swap)
  1266. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1267. skb->len + 2);
  1268. /* write back */
  1269. __flush_purge_region(skb->data, skb->len);
  1270. if (skb->len < ETHERSMALL)
  1271. txdesc->buffer_length = ETHERSMALL;
  1272. else
  1273. txdesc->buffer_length = skb->len;
  1274. if (entry >= TX_RING_SIZE - 1)
  1275. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1276. else
  1277. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1278. mdp->cur_tx++;
  1279. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1280. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1281. return NETDEV_TX_OK;
  1282. }
  1283. /* device close function */
  1284. static int sh_eth_close(struct net_device *ndev)
  1285. {
  1286. struct sh_eth_private *mdp = netdev_priv(ndev);
  1287. int ringsize;
  1288. netif_stop_queue(ndev);
  1289. /* Disable interrupts by clearing the interrupt mask. */
  1290. sh_eth_write(ndev, 0x0000, EESIPR);
  1291. /* Stop the chip's Tx and Rx processes. */
  1292. sh_eth_write(ndev, 0, EDTRR);
  1293. sh_eth_write(ndev, 0, EDRRR);
  1294. /* PHY Disconnect */
  1295. if (mdp->phydev) {
  1296. phy_stop(mdp->phydev);
  1297. phy_disconnect(mdp->phydev);
  1298. }
  1299. free_irq(ndev->irq, ndev);
  1300. del_timer_sync(&mdp->timer);
  1301. /* Free all the skbuffs in the Rx queue. */
  1302. sh_eth_ring_free(ndev);
  1303. /* free DMA buffer */
  1304. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1305. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1306. /* free DMA buffer */
  1307. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1308. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1309. pm_runtime_put_sync(&mdp->pdev->dev);
  1310. return 0;
  1311. }
  1312. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1313. {
  1314. struct sh_eth_private *mdp = netdev_priv(ndev);
  1315. pm_runtime_get_sync(&mdp->pdev->dev);
  1316. mdp->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1317. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1318. mdp->stats.collisions += sh_eth_read(ndev, CDCR);
  1319. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1320. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1321. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1322. if (sh_eth_is_gether(mdp)) {
  1323. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1324. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1325. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1326. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1327. } else {
  1328. mdp->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1329. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1330. }
  1331. pm_runtime_put_sync(&mdp->pdev->dev);
  1332. return &mdp->stats;
  1333. }
  1334. /* ioctl to device funciotn*/
  1335. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1336. int cmd)
  1337. {
  1338. struct sh_eth_private *mdp = netdev_priv(ndev);
  1339. struct phy_device *phydev = mdp->phydev;
  1340. if (!netif_running(ndev))
  1341. return -EINVAL;
  1342. if (!phydev)
  1343. return -ENODEV;
  1344. return phy_mii_ioctl(phydev, rq, cmd);
  1345. }
  1346. #if defined(SH_ETH_HAS_TSU)
  1347. /* Multicast reception directions set */
  1348. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1349. {
  1350. if (ndev->flags & IFF_PROMISC) {
  1351. /* Set promiscuous. */
  1352. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_MCT) |
  1353. ECMR_PRM, ECMR);
  1354. } else {
  1355. /* Normal, unicast/broadcast-only mode. */
  1356. sh_eth_write(ndev, (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) |
  1357. ECMR_MCT, ECMR);
  1358. }
  1359. }
  1360. #endif /* SH_ETH_HAS_TSU */
  1361. /* SuperH's TSU register init function */
  1362. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1363. {
  1364. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1365. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1366. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1367. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1368. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1369. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1370. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1371. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1372. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1373. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1374. if (sh_eth_is_gether(mdp)) {
  1375. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1376. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1377. } else {
  1378. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1379. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1380. }
  1381. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1382. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1383. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1384. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1385. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1386. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1387. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1388. }
  1389. /* MDIO bus release function */
  1390. static int sh_mdio_release(struct net_device *ndev)
  1391. {
  1392. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1393. /* unregister mdio bus */
  1394. mdiobus_unregister(bus);
  1395. /* remove mdio bus info from net_device */
  1396. dev_set_drvdata(&ndev->dev, NULL);
  1397. /* free interrupts memory */
  1398. kfree(bus->irq);
  1399. /* free bitbang info */
  1400. free_mdio_bitbang(bus);
  1401. return 0;
  1402. }
  1403. /* MDIO bus init function */
  1404. static int sh_mdio_init(struct net_device *ndev, int id,
  1405. struct sh_eth_plat_data *pd)
  1406. {
  1407. int ret, i;
  1408. struct bb_info *bitbang;
  1409. struct sh_eth_private *mdp = netdev_priv(ndev);
  1410. /* create bit control struct for PHY */
  1411. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1412. if (!bitbang) {
  1413. ret = -ENOMEM;
  1414. goto out;
  1415. }
  1416. /* bitbang init */
  1417. bitbang->addr = ndev->base_addr + mdp->reg_offset[PIR];
  1418. bitbang->set_gate = pd->set_mdio_gate;
  1419. bitbang->mdi_msk = 0x08;
  1420. bitbang->mdo_msk = 0x04;
  1421. bitbang->mmd_msk = 0x02;/* MMD */
  1422. bitbang->mdc_msk = 0x01;
  1423. bitbang->ctrl.ops = &bb_ops;
  1424. /* MII controller setting */
  1425. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1426. if (!mdp->mii_bus) {
  1427. ret = -ENOMEM;
  1428. goto out_free_bitbang;
  1429. }
  1430. /* Hook up MII support for ethtool */
  1431. mdp->mii_bus->name = "sh_mii";
  1432. mdp->mii_bus->parent = &ndev->dev;
  1433. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1434. /* PHY IRQ */
  1435. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1436. if (!mdp->mii_bus->irq) {
  1437. ret = -ENOMEM;
  1438. goto out_free_bus;
  1439. }
  1440. for (i = 0; i < PHY_MAX_ADDR; i++)
  1441. mdp->mii_bus->irq[i] = PHY_POLL;
  1442. /* regist mdio bus */
  1443. ret = mdiobus_register(mdp->mii_bus);
  1444. if (ret)
  1445. goto out_free_irq;
  1446. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1447. return 0;
  1448. out_free_irq:
  1449. kfree(mdp->mii_bus->irq);
  1450. out_free_bus:
  1451. free_mdio_bitbang(mdp->mii_bus);
  1452. out_free_bitbang:
  1453. kfree(bitbang);
  1454. out:
  1455. return ret;
  1456. }
  1457. static const u16 *sh_eth_get_register_offset(int register_type)
  1458. {
  1459. const u16 *reg_offset = NULL;
  1460. switch (register_type) {
  1461. case SH_ETH_REG_GIGABIT:
  1462. reg_offset = sh_eth_offset_gigabit;
  1463. break;
  1464. case SH_ETH_REG_FAST_SH4:
  1465. reg_offset = sh_eth_offset_fast_sh4;
  1466. break;
  1467. case SH_ETH_REG_FAST_SH3_SH2:
  1468. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1469. break;
  1470. default:
  1471. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1472. break;
  1473. }
  1474. return reg_offset;
  1475. }
  1476. static const struct net_device_ops sh_eth_netdev_ops = {
  1477. .ndo_open = sh_eth_open,
  1478. .ndo_stop = sh_eth_close,
  1479. .ndo_start_xmit = sh_eth_start_xmit,
  1480. .ndo_get_stats = sh_eth_get_stats,
  1481. #if defined(SH_ETH_HAS_TSU)
  1482. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1483. #endif
  1484. .ndo_tx_timeout = sh_eth_tx_timeout,
  1485. .ndo_do_ioctl = sh_eth_do_ioctl,
  1486. .ndo_validate_addr = eth_validate_addr,
  1487. .ndo_set_mac_address = eth_mac_addr,
  1488. .ndo_change_mtu = eth_change_mtu,
  1489. };
  1490. static int sh_eth_drv_probe(struct platform_device *pdev)
  1491. {
  1492. int ret, devno = 0;
  1493. struct resource *res;
  1494. struct net_device *ndev = NULL;
  1495. struct sh_eth_private *mdp;
  1496. struct sh_eth_plat_data *pd;
  1497. /* get base addr */
  1498. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1499. if (unlikely(res == NULL)) {
  1500. dev_err(&pdev->dev, "invalid resource\n");
  1501. ret = -EINVAL;
  1502. goto out;
  1503. }
  1504. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1505. if (!ndev) {
  1506. dev_err(&pdev->dev, "Could not allocate device.\n");
  1507. ret = -ENOMEM;
  1508. goto out;
  1509. }
  1510. /* The sh Ether-specific entries in the device structure. */
  1511. ndev->base_addr = res->start;
  1512. devno = pdev->id;
  1513. if (devno < 0)
  1514. devno = 0;
  1515. ndev->dma = -1;
  1516. ret = platform_get_irq(pdev, 0);
  1517. if (ret < 0) {
  1518. ret = -ENODEV;
  1519. goto out_release;
  1520. }
  1521. ndev->irq = ret;
  1522. SET_NETDEV_DEV(ndev, &pdev->dev);
  1523. /* Fill in the fields of the device structure with ethernet values. */
  1524. ether_setup(ndev);
  1525. mdp = netdev_priv(ndev);
  1526. spin_lock_init(&mdp->lock);
  1527. mdp->pdev = pdev;
  1528. pm_runtime_enable(&pdev->dev);
  1529. pm_runtime_resume(&pdev->dev);
  1530. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1531. /* get PHY ID */
  1532. mdp->phy_id = pd->phy;
  1533. mdp->phy_interface = pd->phy_interface;
  1534. /* EDMAC endian */
  1535. mdp->edmac_endian = pd->edmac_endian;
  1536. mdp->no_ether_link = pd->no_ether_link;
  1537. mdp->ether_link_active_low = pd->ether_link_active_low;
  1538. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1539. /* set cpu data */
  1540. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1541. mdp->cd = sh_eth_get_cpu_data(mdp);
  1542. #else
  1543. mdp->cd = &sh_eth_my_cpu_data;
  1544. #endif
  1545. sh_eth_set_default_cpu_data(mdp->cd);
  1546. /* set function */
  1547. ndev->netdev_ops = &sh_eth_netdev_ops;
  1548. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1549. ndev->watchdog_timeo = TX_TIMEOUT;
  1550. /* debug message level */
  1551. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1552. mdp->post_rx = POST_RX >> (devno << 1);
  1553. mdp->post_fw = POST_FW >> (devno << 1);
  1554. /* read and set MAC address */
  1555. read_mac_address(ndev, pd->mac_addr);
  1556. /* First device only init */
  1557. if (!devno) {
  1558. if (mdp->cd->tsu) {
  1559. struct resource *rtsu;
  1560. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1561. if (!rtsu) {
  1562. dev_err(&pdev->dev, "Not found TSU resource\n");
  1563. goto out_release;
  1564. }
  1565. mdp->tsu_addr = ioremap(rtsu->start,
  1566. resource_size(rtsu));
  1567. }
  1568. if (mdp->cd->chip_reset)
  1569. mdp->cd->chip_reset(ndev);
  1570. if (mdp->cd->tsu) {
  1571. /* TSU init (Init only)*/
  1572. sh_eth_tsu_init(mdp);
  1573. }
  1574. }
  1575. /* network device register */
  1576. ret = register_netdev(ndev);
  1577. if (ret)
  1578. goto out_release;
  1579. /* mdio bus init */
  1580. ret = sh_mdio_init(ndev, pdev->id, pd);
  1581. if (ret)
  1582. goto out_unregister;
  1583. /* print device information */
  1584. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1585. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1586. platform_set_drvdata(pdev, ndev);
  1587. return ret;
  1588. out_unregister:
  1589. unregister_netdev(ndev);
  1590. out_release:
  1591. /* net_dev free */
  1592. if (mdp->tsu_addr)
  1593. iounmap(mdp->tsu_addr);
  1594. if (ndev)
  1595. free_netdev(ndev);
  1596. out:
  1597. return ret;
  1598. }
  1599. static int sh_eth_drv_remove(struct platform_device *pdev)
  1600. {
  1601. struct net_device *ndev = platform_get_drvdata(pdev);
  1602. struct sh_eth_private *mdp = netdev_priv(ndev);
  1603. iounmap(mdp->tsu_addr);
  1604. sh_mdio_release(ndev);
  1605. unregister_netdev(ndev);
  1606. pm_runtime_disable(&pdev->dev);
  1607. free_netdev(ndev);
  1608. platform_set_drvdata(pdev, NULL);
  1609. return 0;
  1610. }
  1611. static int sh_eth_runtime_nop(struct device *dev)
  1612. {
  1613. /*
  1614. * Runtime PM callback shared between ->runtime_suspend()
  1615. * and ->runtime_resume(). Simply returns success.
  1616. *
  1617. * This driver re-initializes all registers after
  1618. * pm_runtime_get_sync() anyway so there is no need
  1619. * to save and restore registers here.
  1620. */
  1621. return 0;
  1622. }
  1623. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1624. .runtime_suspend = sh_eth_runtime_nop,
  1625. .runtime_resume = sh_eth_runtime_nop,
  1626. };
  1627. static struct platform_driver sh_eth_driver = {
  1628. .probe = sh_eth_drv_probe,
  1629. .remove = sh_eth_drv_remove,
  1630. .driver = {
  1631. .name = CARDNAME,
  1632. .pm = &sh_eth_dev_pm_ops,
  1633. },
  1634. };
  1635. static int __init sh_eth_init(void)
  1636. {
  1637. return platform_driver_register(&sh_eth_driver);
  1638. }
  1639. static void __exit sh_eth_cleanup(void)
  1640. {
  1641. platform_driver_unregister(&sh_eth_driver);
  1642. }
  1643. module_init(sh_eth_init);
  1644. module_exit(sh_eth_cleanup);
  1645. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1646. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1647. MODULE_LICENSE("GPL v2");