pxa168_eth.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. /*
  2. * PXA168 ethernet driver.
  3. * Most of the code is derived from mv643xx ethernet driver.
  4. *
  5. * Copyright (C) 2010 Marvell International Ltd.
  6. * Sachin Sanap <ssanap@marvell.com>
  7. * Zhangfei Gao <zgao6@marvell.com>
  8. * Philip Rakity <prakity@marvell.com>
  9. * Mark Brown <markb@marvell.com>
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version 2
  14. * of the License, or (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  24. */
  25. #include <linux/init.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/in.h>
  28. #include <linux/ip.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/bitops.h>
  33. #include <linux/delay.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/module.h>
  37. #include <linux/kernel.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/clk.h>
  40. #include <linux/phy.h>
  41. #include <linux/io.h>
  42. #include <linux/types.h>
  43. #include <asm/pgtable.h>
  44. #include <asm/system.h>
  45. #include <asm/cacheflush.h>
  46. #include <linux/pxa168_eth.h>
  47. #define DRIVER_NAME "pxa168-eth"
  48. #define DRIVER_VERSION "0.3"
  49. /*
  50. * Registers
  51. */
  52. #define PHY_ADDRESS 0x0000
  53. #define SMI 0x0010
  54. #define PORT_CONFIG 0x0400
  55. #define PORT_CONFIG_EXT 0x0408
  56. #define PORT_COMMAND 0x0410
  57. #define PORT_STATUS 0x0418
  58. #define HTPR 0x0428
  59. #define SDMA_CONFIG 0x0440
  60. #define SDMA_CMD 0x0448
  61. #define INT_CAUSE 0x0450
  62. #define INT_W_CLEAR 0x0454
  63. #define INT_MASK 0x0458
  64. #define ETH_F_RX_DESC_0 0x0480
  65. #define ETH_C_RX_DESC_0 0x04A0
  66. #define ETH_C_TX_DESC_1 0x04E4
  67. /* smi register */
  68. #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
  69. #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
  70. #define SMI_OP_W (0 << 26) /* Write operation */
  71. #define SMI_OP_R (1 << 26) /* Read operation */
  72. #define PHY_WAIT_ITERATIONS 10
  73. #define PXA168_ETH_PHY_ADDR_DEFAULT 0
  74. /* RX & TX descriptor command */
  75. #define BUF_OWNED_BY_DMA (1 << 31)
  76. /* RX descriptor status */
  77. #define RX_EN_INT (1 << 23)
  78. #define RX_FIRST_DESC (1 << 17)
  79. #define RX_LAST_DESC (1 << 16)
  80. #define RX_ERROR (1 << 15)
  81. /* TX descriptor command */
  82. #define TX_EN_INT (1 << 23)
  83. #define TX_GEN_CRC (1 << 22)
  84. #define TX_ZERO_PADDING (1 << 18)
  85. #define TX_FIRST_DESC (1 << 17)
  86. #define TX_LAST_DESC (1 << 16)
  87. #define TX_ERROR (1 << 15)
  88. /* SDMA_CMD */
  89. #define SDMA_CMD_AT (1 << 31)
  90. #define SDMA_CMD_TXDL (1 << 24)
  91. #define SDMA_CMD_TXDH (1 << 23)
  92. #define SDMA_CMD_AR (1 << 15)
  93. #define SDMA_CMD_ERD (1 << 7)
  94. /* Bit definitions of the Port Config Reg */
  95. #define PCR_HS (1 << 12)
  96. #define PCR_EN (1 << 7)
  97. #define PCR_PM (1 << 0)
  98. /* Bit definitions of the Port Config Extend Reg */
  99. #define PCXR_2BSM (1 << 28)
  100. #define PCXR_DSCP_EN (1 << 21)
  101. #define PCXR_MFL_1518 (0 << 14)
  102. #define PCXR_MFL_1536 (1 << 14)
  103. #define PCXR_MFL_2048 (2 << 14)
  104. #define PCXR_MFL_64K (3 << 14)
  105. #define PCXR_FLP (1 << 11)
  106. #define PCXR_PRIO_TX_OFF 3
  107. #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
  108. /* Bit definitions of the SDMA Config Reg */
  109. #define SDCR_BSZ_OFF 12
  110. #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
  111. #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
  112. #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
  113. #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
  114. #define SDCR_BLMR (1 << 6)
  115. #define SDCR_BLMT (1 << 7)
  116. #define SDCR_RIFB (1 << 9)
  117. #define SDCR_RC_OFF 2
  118. #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
  119. /*
  120. * Bit definitions of the Interrupt Cause Reg
  121. * and Interrupt MASK Reg is the same
  122. */
  123. #define ICR_RXBUF (1 << 0)
  124. #define ICR_TXBUF_H (1 << 2)
  125. #define ICR_TXBUF_L (1 << 3)
  126. #define ICR_TXEND_H (1 << 6)
  127. #define ICR_TXEND_L (1 << 7)
  128. #define ICR_RXERR (1 << 8)
  129. #define ICR_TXERR_H (1 << 10)
  130. #define ICR_TXERR_L (1 << 11)
  131. #define ICR_TX_UDR (1 << 13)
  132. #define ICR_MII_CH (1 << 28)
  133. #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
  134. ICR_TXERR_H | ICR_TXERR_L |\
  135. ICR_TXEND_H | ICR_TXEND_L |\
  136. ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
  137. #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
  138. #define NUM_RX_DESCS 64
  139. #define NUM_TX_DESCS 64
  140. #define HASH_ADD 0
  141. #define HASH_DELETE 1
  142. #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
  143. #define HOP_NUMBER 12
  144. /* Bit definitions for Port status */
  145. #define PORT_SPEED_100 (1 << 0)
  146. #define FULL_DUPLEX (1 << 1)
  147. #define FLOW_CONTROL_ENABLED (1 << 2)
  148. #define LINK_UP (1 << 3)
  149. /* Bit definitions for work to be done */
  150. #define WORK_LINK (1 << 0)
  151. #define WORK_TX_DONE (1 << 1)
  152. /*
  153. * Misc definitions.
  154. */
  155. #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
  156. struct rx_desc {
  157. u32 cmd_sts; /* Descriptor command status */
  158. u16 byte_cnt; /* Descriptor buffer byte count */
  159. u16 buf_size; /* Buffer size */
  160. u32 buf_ptr; /* Descriptor buffer pointer */
  161. u32 next_desc_ptr; /* Next descriptor pointer */
  162. };
  163. struct tx_desc {
  164. u32 cmd_sts; /* Command/status field */
  165. u16 reserved;
  166. u16 byte_cnt; /* buffer byte count */
  167. u32 buf_ptr; /* pointer to buffer for this descriptor */
  168. u32 next_desc_ptr; /* Pointer to next descriptor */
  169. };
  170. struct pxa168_eth_private {
  171. int port_num; /* User Ethernet port number */
  172. int rx_resource_err; /* Rx ring resource error flag */
  173. /* Next available and first returning Rx resource */
  174. int rx_curr_desc_q, rx_used_desc_q;
  175. /* Next available and first returning Tx resource */
  176. int tx_curr_desc_q, tx_used_desc_q;
  177. struct rx_desc *p_rx_desc_area;
  178. dma_addr_t rx_desc_dma;
  179. int rx_desc_area_size;
  180. struct sk_buff **rx_skb;
  181. struct tx_desc *p_tx_desc_area;
  182. dma_addr_t tx_desc_dma;
  183. int tx_desc_area_size;
  184. struct sk_buff **tx_skb;
  185. struct work_struct tx_timeout_task;
  186. struct net_device *dev;
  187. struct napi_struct napi;
  188. u8 work_todo;
  189. int skb_size;
  190. struct net_device_stats stats;
  191. /* Size of Tx Ring per queue */
  192. int tx_ring_size;
  193. /* Number of tx descriptors in use */
  194. int tx_desc_count;
  195. /* Size of Rx Ring per queue */
  196. int rx_ring_size;
  197. /* Number of rx descriptors in use */
  198. int rx_desc_count;
  199. /*
  200. * Used in case RX Ring is empty, which can occur when
  201. * system does not have resources (skb's)
  202. */
  203. struct timer_list timeout;
  204. struct mii_bus *smi_bus;
  205. struct phy_device *phy;
  206. /* clock */
  207. struct clk *clk;
  208. struct pxa168_eth_platform_data *pd;
  209. /*
  210. * Ethernet controller base address.
  211. */
  212. void __iomem *base;
  213. /* Pointer to the hardware address filter table */
  214. void *htpr;
  215. dma_addr_t htpr_dma;
  216. };
  217. struct addr_table_entry {
  218. __le32 lo;
  219. __le32 hi;
  220. };
  221. /* Bit fields of a Hash Table Entry */
  222. enum hash_table_entry {
  223. HASH_ENTRY_VALID = 1,
  224. SKIP = 2,
  225. HASH_ENTRY_RECEIVE_DISCARD = 4,
  226. HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
  227. };
  228. static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
  229. static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
  230. static int pxa168_init_hw(struct pxa168_eth_private *pep);
  231. static void eth_port_reset(struct net_device *dev);
  232. static void eth_port_start(struct net_device *dev);
  233. static int pxa168_eth_open(struct net_device *dev);
  234. static int pxa168_eth_stop(struct net_device *dev);
  235. static int ethernet_phy_setup(struct net_device *dev);
  236. static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
  237. {
  238. return readl(pep->base + offset);
  239. }
  240. static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
  241. {
  242. writel(data, pep->base + offset);
  243. }
  244. static void abort_dma(struct pxa168_eth_private *pep)
  245. {
  246. int delay;
  247. int max_retries = 40;
  248. do {
  249. wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
  250. udelay(100);
  251. delay = 10;
  252. while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
  253. && delay-- > 0) {
  254. udelay(10);
  255. }
  256. } while (max_retries-- > 0 && delay <= 0);
  257. if (max_retries <= 0)
  258. printk(KERN_ERR "%s : DMA Stuck\n", __func__);
  259. }
  260. static int ethernet_phy_get(struct pxa168_eth_private *pep)
  261. {
  262. unsigned int reg_data;
  263. reg_data = rdl(pep, PHY_ADDRESS);
  264. return (reg_data >> (5 * pep->port_num)) & 0x1f;
  265. }
  266. static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
  267. {
  268. u32 reg_data;
  269. int addr_shift = 5 * pep->port_num;
  270. reg_data = rdl(pep, PHY_ADDRESS);
  271. reg_data &= ~(0x1f << addr_shift);
  272. reg_data |= (phy_addr & 0x1f) << addr_shift;
  273. wrl(pep, PHY_ADDRESS, reg_data);
  274. }
  275. static void ethernet_phy_reset(struct pxa168_eth_private *pep)
  276. {
  277. int data;
  278. data = phy_read(pep->phy, MII_BMCR);
  279. if (data < 0)
  280. return;
  281. data |= BMCR_RESET;
  282. if (phy_write(pep->phy, MII_BMCR, data) < 0)
  283. return;
  284. do {
  285. data = phy_read(pep->phy, MII_BMCR);
  286. } while (data >= 0 && data & BMCR_RESET);
  287. }
  288. static void rxq_refill(struct net_device *dev)
  289. {
  290. struct pxa168_eth_private *pep = netdev_priv(dev);
  291. struct sk_buff *skb;
  292. struct rx_desc *p_used_rx_desc;
  293. int used_rx_desc;
  294. while (pep->rx_desc_count < pep->rx_ring_size) {
  295. int size;
  296. skb = dev_alloc_skb(pep->skb_size);
  297. if (!skb)
  298. break;
  299. if (SKB_DMA_REALIGN)
  300. skb_reserve(skb, SKB_DMA_REALIGN);
  301. pep->rx_desc_count++;
  302. /* Get 'used' Rx descriptor */
  303. used_rx_desc = pep->rx_used_desc_q;
  304. p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
  305. size = skb->end - skb->data;
  306. p_used_rx_desc->buf_ptr = dma_map_single(NULL,
  307. skb->data,
  308. size,
  309. DMA_FROM_DEVICE);
  310. p_used_rx_desc->buf_size = size;
  311. pep->rx_skb[used_rx_desc] = skb;
  312. /* Return the descriptor to DMA ownership */
  313. wmb();
  314. p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
  315. wmb();
  316. /* Move the used descriptor pointer to the next descriptor */
  317. pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
  318. /* Any Rx return cancels the Rx resource error status */
  319. pep->rx_resource_err = 0;
  320. skb_reserve(skb, ETH_HW_IP_ALIGN);
  321. }
  322. /*
  323. * If RX ring is empty of SKB, set a timer to try allocating
  324. * again at a later time.
  325. */
  326. if (pep->rx_desc_count == 0) {
  327. pep->timeout.expires = jiffies + (HZ / 10);
  328. add_timer(&pep->timeout);
  329. }
  330. }
  331. static inline void rxq_refill_timer_wrapper(unsigned long data)
  332. {
  333. struct pxa168_eth_private *pep = (void *)data;
  334. napi_schedule(&pep->napi);
  335. }
  336. static inline u8 flip_8_bits(u8 x)
  337. {
  338. return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
  339. | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
  340. | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
  341. | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
  342. }
  343. static void nibble_swap_every_byte(unsigned char *mac_addr)
  344. {
  345. int i;
  346. for (i = 0; i < ETH_ALEN; i++) {
  347. mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
  348. ((mac_addr[i] & 0xf0) >> 4);
  349. }
  350. }
  351. static void inverse_every_nibble(unsigned char *mac_addr)
  352. {
  353. int i;
  354. for (i = 0; i < ETH_ALEN; i++)
  355. mac_addr[i] = flip_8_bits(mac_addr[i]);
  356. }
  357. /*
  358. * ----------------------------------------------------------------------------
  359. * This function will calculate the hash function of the address.
  360. * Inputs
  361. * mac_addr_orig - MAC address.
  362. * Outputs
  363. * return the calculated entry.
  364. */
  365. static u32 hash_function(unsigned char *mac_addr_orig)
  366. {
  367. u32 hash_result;
  368. u32 addr0;
  369. u32 addr1;
  370. u32 addr2;
  371. u32 addr3;
  372. unsigned char mac_addr[ETH_ALEN];
  373. /* Make a copy of MAC address since we are going to performe bit
  374. * operations on it
  375. */
  376. memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
  377. nibble_swap_every_byte(mac_addr);
  378. inverse_every_nibble(mac_addr);
  379. addr0 = (mac_addr[5] >> 2) & 0x3f;
  380. addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
  381. addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
  382. addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
  383. hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
  384. hash_result = hash_result & 0x07ff;
  385. return hash_result;
  386. }
  387. /*
  388. * ----------------------------------------------------------------------------
  389. * This function will add/del an entry to the address table.
  390. * Inputs
  391. * pep - ETHERNET .
  392. * mac_addr - MAC address.
  393. * skip - if 1, skip this address.Used in case of deleting an entry which is a
  394. * part of chain in the hash table.We can't just delete the entry since
  395. * that will break the chain.We need to defragment the tables time to
  396. * time.
  397. * rd - 0 Discard packet upon match.
  398. * - 1 Receive packet upon match.
  399. * Outputs
  400. * address table entry is added/deleted.
  401. * 0 if success.
  402. * -ENOSPC if table full
  403. */
  404. static int add_del_hash_entry(struct pxa168_eth_private *pep,
  405. unsigned char *mac_addr,
  406. u32 rd, u32 skip, int del)
  407. {
  408. struct addr_table_entry *entry, *start;
  409. u32 new_high;
  410. u32 new_low;
  411. u32 i;
  412. new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
  413. | (((mac_addr[1] >> 0) & 0xf) << 11)
  414. | (((mac_addr[0] >> 4) & 0xf) << 7)
  415. | (((mac_addr[0] >> 0) & 0xf) << 3)
  416. | (((mac_addr[3] >> 4) & 0x1) << 31)
  417. | (((mac_addr[3] >> 0) & 0xf) << 27)
  418. | (((mac_addr[2] >> 4) & 0xf) << 23)
  419. | (((mac_addr[2] >> 0) & 0xf) << 19)
  420. | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
  421. | HASH_ENTRY_VALID;
  422. new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
  423. | (((mac_addr[5] >> 0) & 0xf) << 11)
  424. | (((mac_addr[4] >> 4) & 0xf) << 7)
  425. | (((mac_addr[4] >> 0) & 0xf) << 3)
  426. | (((mac_addr[3] >> 5) & 0x7) << 0);
  427. /*
  428. * Pick the appropriate table, start scanning for free/reusable
  429. * entries at the index obtained by hashing the specified MAC address
  430. */
  431. start = (struct addr_table_entry *)(pep->htpr);
  432. entry = start + hash_function(mac_addr);
  433. for (i = 0; i < HOP_NUMBER; i++) {
  434. if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
  435. break;
  436. } else {
  437. /* if same address put in same position */
  438. if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
  439. (new_low & 0xfffffff8)) &&
  440. (le32_to_cpu(entry->hi) == new_high)) {
  441. break;
  442. }
  443. }
  444. if (entry == start + 0x7ff)
  445. entry = start;
  446. else
  447. entry++;
  448. }
  449. if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
  450. (le32_to_cpu(entry->hi) != new_high) && del)
  451. return 0;
  452. if (i == HOP_NUMBER) {
  453. if (!del) {
  454. printk(KERN_INFO "%s: table section is full, need to "
  455. "move to 16kB implementation?\n",
  456. __FILE__);
  457. return -ENOSPC;
  458. } else
  459. return 0;
  460. }
  461. /*
  462. * Update the selected entry
  463. */
  464. if (del) {
  465. entry->hi = 0;
  466. entry->lo = 0;
  467. } else {
  468. entry->hi = cpu_to_le32(new_high);
  469. entry->lo = cpu_to_le32(new_low);
  470. }
  471. return 0;
  472. }
  473. /*
  474. * ----------------------------------------------------------------------------
  475. * Create an addressTable entry from MAC address info
  476. * found in the specifed net_device struct
  477. *
  478. * Input : pointer to ethernet interface network device structure
  479. * Output : N/A
  480. */
  481. static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
  482. unsigned char *oaddr,
  483. unsigned char *addr)
  484. {
  485. /* Delete old entry */
  486. if (oaddr)
  487. add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
  488. /* Add new entry */
  489. add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
  490. }
  491. static int init_hash_table(struct pxa168_eth_private *pep)
  492. {
  493. /*
  494. * Hardware expects CPU to build a hash table based on a predefined
  495. * hash function and populate it based on hardware address. The
  496. * location of the hash table is identified by 32-bit pointer stored
  497. * in HTPR internal register. Two possible sizes exists for the hash
  498. * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
  499. * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
  500. * 1/2kB.
  501. */
  502. /* TODO: Add support for 8kB hash table and alternative hash
  503. * function.Driver can dynamically switch to them if the 1/2kB hash
  504. * table is full.
  505. */
  506. if (pep->htpr == NULL) {
  507. pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
  508. HASH_ADDR_TABLE_SIZE,
  509. &pep->htpr_dma, GFP_KERNEL);
  510. if (pep->htpr == NULL)
  511. return -ENOMEM;
  512. }
  513. memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
  514. wrl(pep, HTPR, pep->htpr_dma);
  515. return 0;
  516. }
  517. static void pxa168_eth_set_rx_mode(struct net_device *dev)
  518. {
  519. struct pxa168_eth_private *pep = netdev_priv(dev);
  520. struct netdev_hw_addr *ha;
  521. u32 val;
  522. val = rdl(pep, PORT_CONFIG);
  523. if (dev->flags & IFF_PROMISC)
  524. val |= PCR_PM;
  525. else
  526. val &= ~PCR_PM;
  527. wrl(pep, PORT_CONFIG, val);
  528. /*
  529. * Remove the old list of MAC address and add dev->addr
  530. * and multicast address.
  531. */
  532. memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
  533. update_hash_table_mac_address(pep, NULL, dev->dev_addr);
  534. netdev_for_each_mc_addr(ha, dev)
  535. update_hash_table_mac_address(pep, NULL, ha->addr);
  536. }
  537. static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
  538. {
  539. struct sockaddr *sa = addr;
  540. struct pxa168_eth_private *pep = netdev_priv(dev);
  541. unsigned char oldMac[ETH_ALEN];
  542. if (!is_valid_ether_addr(sa->sa_data))
  543. return -EINVAL;
  544. memcpy(oldMac, dev->dev_addr, ETH_ALEN);
  545. memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
  546. netif_addr_lock_bh(dev);
  547. update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
  548. netif_addr_unlock_bh(dev);
  549. return 0;
  550. }
  551. static void eth_port_start(struct net_device *dev)
  552. {
  553. unsigned int val = 0;
  554. struct pxa168_eth_private *pep = netdev_priv(dev);
  555. int tx_curr_desc, rx_curr_desc;
  556. /* Perform PHY reset, if there is a PHY. */
  557. if (pep->phy != NULL) {
  558. struct ethtool_cmd cmd;
  559. pxa168_get_settings(pep->dev, &cmd);
  560. ethernet_phy_reset(pep);
  561. pxa168_set_settings(pep->dev, &cmd);
  562. }
  563. /* Assignment of Tx CTRP of given queue */
  564. tx_curr_desc = pep->tx_curr_desc_q;
  565. wrl(pep, ETH_C_TX_DESC_1,
  566. (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
  567. /* Assignment of Rx CRDP of given queue */
  568. rx_curr_desc = pep->rx_curr_desc_q;
  569. wrl(pep, ETH_C_RX_DESC_0,
  570. (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
  571. wrl(pep, ETH_F_RX_DESC_0,
  572. (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
  573. /* Clear all interrupts */
  574. wrl(pep, INT_CAUSE, 0);
  575. /* Enable all interrupts for receive, transmit and error. */
  576. wrl(pep, INT_MASK, ALL_INTS);
  577. val = rdl(pep, PORT_CONFIG);
  578. val |= PCR_EN;
  579. wrl(pep, PORT_CONFIG, val);
  580. /* Start RX DMA engine */
  581. val = rdl(pep, SDMA_CMD);
  582. val |= SDMA_CMD_ERD;
  583. wrl(pep, SDMA_CMD, val);
  584. }
  585. static void eth_port_reset(struct net_device *dev)
  586. {
  587. struct pxa168_eth_private *pep = netdev_priv(dev);
  588. unsigned int val = 0;
  589. /* Stop all interrupts for receive, transmit and error. */
  590. wrl(pep, INT_MASK, 0);
  591. /* Clear all interrupts */
  592. wrl(pep, INT_CAUSE, 0);
  593. /* Stop RX DMA */
  594. val = rdl(pep, SDMA_CMD);
  595. val &= ~SDMA_CMD_ERD; /* abort dma command */
  596. /* Abort any transmit and receive operations and put DMA
  597. * in idle state.
  598. */
  599. abort_dma(pep);
  600. /* Disable port */
  601. val = rdl(pep, PORT_CONFIG);
  602. val &= ~PCR_EN;
  603. wrl(pep, PORT_CONFIG, val);
  604. }
  605. /*
  606. * txq_reclaim - Free the tx desc data for completed descriptors
  607. * If force is non-zero, frees uncompleted descriptors as well
  608. */
  609. static int txq_reclaim(struct net_device *dev, int force)
  610. {
  611. struct pxa168_eth_private *pep = netdev_priv(dev);
  612. struct tx_desc *desc;
  613. u32 cmd_sts;
  614. struct sk_buff *skb;
  615. int tx_index;
  616. dma_addr_t addr;
  617. int count;
  618. int released = 0;
  619. netif_tx_lock(dev);
  620. pep->work_todo &= ~WORK_TX_DONE;
  621. while (pep->tx_desc_count > 0) {
  622. tx_index = pep->tx_used_desc_q;
  623. desc = &pep->p_tx_desc_area[tx_index];
  624. cmd_sts = desc->cmd_sts;
  625. if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
  626. if (released > 0) {
  627. goto txq_reclaim_end;
  628. } else {
  629. released = -1;
  630. goto txq_reclaim_end;
  631. }
  632. }
  633. pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
  634. pep->tx_desc_count--;
  635. addr = desc->buf_ptr;
  636. count = desc->byte_cnt;
  637. skb = pep->tx_skb[tx_index];
  638. if (skb)
  639. pep->tx_skb[tx_index] = NULL;
  640. if (cmd_sts & TX_ERROR) {
  641. if (net_ratelimit())
  642. printk(KERN_ERR "%s: Error in TX\n", dev->name);
  643. dev->stats.tx_errors++;
  644. }
  645. dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
  646. if (skb)
  647. dev_kfree_skb_irq(skb);
  648. released++;
  649. }
  650. txq_reclaim_end:
  651. netif_tx_unlock(dev);
  652. return released;
  653. }
  654. static void pxa168_eth_tx_timeout(struct net_device *dev)
  655. {
  656. struct pxa168_eth_private *pep = netdev_priv(dev);
  657. printk(KERN_INFO "%s: TX timeout desc_count %d\n",
  658. dev->name, pep->tx_desc_count);
  659. schedule_work(&pep->tx_timeout_task);
  660. }
  661. static void pxa168_eth_tx_timeout_task(struct work_struct *work)
  662. {
  663. struct pxa168_eth_private *pep = container_of(work,
  664. struct pxa168_eth_private,
  665. tx_timeout_task);
  666. struct net_device *dev = pep->dev;
  667. pxa168_eth_stop(dev);
  668. pxa168_eth_open(dev);
  669. }
  670. static int rxq_process(struct net_device *dev, int budget)
  671. {
  672. struct pxa168_eth_private *pep = netdev_priv(dev);
  673. struct net_device_stats *stats = &dev->stats;
  674. unsigned int received_packets = 0;
  675. struct sk_buff *skb;
  676. while (budget-- > 0) {
  677. int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
  678. struct rx_desc *rx_desc;
  679. unsigned int cmd_sts;
  680. /* Do not process Rx ring in case of Rx ring resource error */
  681. if (pep->rx_resource_err)
  682. break;
  683. rx_curr_desc = pep->rx_curr_desc_q;
  684. rx_used_desc = pep->rx_used_desc_q;
  685. rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
  686. cmd_sts = rx_desc->cmd_sts;
  687. rmb();
  688. if (cmd_sts & (BUF_OWNED_BY_DMA))
  689. break;
  690. skb = pep->rx_skb[rx_curr_desc];
  691. pep->rx_skb[rx_curr_desc] = NULL;
  692. rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
  693. pep->rx_curr_desc_q = rx_next_curr_desc;
  694. /* Rx descriptors exhausted. */
  695. /* Set the Rx ring resource error flag */
  696. if (rx_next_curr_desc == rx_used_desc)
  697. pep->rx_resource_err = 1;
  698. pep->rx_desc_count--;
  699. dma_unmap_single(NULL, rx_desc->buf_ptr,
  700. rx_desc->buf_size,
  701. DMA_FROM_DEVICE);
  702. received_packets++;
  703. /*
  704. * Update statistics.
  705. * Note byte count includes 4 byte CRC count
  706. */
  707. stats->rx_packets++;
  708. stats->rx_bytes += rx_desc->byte_cnt;
  709. /*
  710. * In case received a packet without first / last bits on OR
  711. * the error summary bit is on, the packets needs to be droped.
  712. */
  713. if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
  714. (RX_FIRST_DESC | RX_LAST_DESC))
  715. || (cmd_sts & RX_ERROR)) {
  716. stats->rx_dropped++;
  717. if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
  718. (RX_FIRST_DESC | RX_LAST_DESC)) {
  719. if (net_ratelimit())
  720. printk(KERN_ERR
  721. "%s: Rx pkt on multiple desc\n",
  722. dev->name);
  723. }
  724. if (cmd_sts & RX_ERROR)
  725. stats->rx_errors++;
  726. dev_kfree_skb_irq(skb);
  727. } else {
  728. /*
  729. * The -4 is for the CRC in the trailer of the
  730. * received packet
  731. */
  732. skb_put(skb, rx_desc->byte_cnt - 4);
  733. skb->protocol = eth_type_trans(skb, dev);
  734. netif_receive_skb(skb);
  735. }
  736. }
  737. /* Fill RX ring with skb's */
  738. rxq_refill(dev);
  739. return received_packets;
  740. }
  741. static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
  742. struct net_device *dev)
  743. {
  744. u32 icr;
  745. int ret = 0;
  746. icr = rdl(pep, INT_CAUSE);
  747. if (icr == 0)
  748. return IRQ_NONE;
  749. wrl(pep, INT_CAUSE, ~icr);
  750. if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
  751. pep->work_todo |= WORK_TX_DONE;
  752. ret = 1;
  753. }
  754. if (icr & ICR_RXBUF)
  755. ret = 1;
  756. if (icr & ICR_MII_CH) {
  757. pep->work_todo |= WORK_LINK;
  758. ret = 1;
  759. }
  760. return ret;
  761. }
  762. static void handle_link_event(struct pxa168_eth_private *pep)
  763. {
  764. struct net_device *dev = pep->dev;
  765. u32 port_status;
  766. int speed;
  767. int duplex;
  768. int fc;
  769. port_status = rdl(pep, PORT_STATUS);
  770. if (!(port_status & LINK_UP)) {
  771. if (netif_carrier_ok(dev)) {
  772. printk(KERN_INFO "%s: link down\n", dev->name);
  773. netif_carrier_off(dev);
  774. txq_reclaim(dev, 1);
  775. }
  776. return;
  777. }
  778. if (port_status & PORT_SPEED_100)
  779. speed = 100;
  780. else
  781. speed = 10;
  782. duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
  783. fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
  784. printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
  785. "flow control %sabled\n", dev->name,
  786. speed, duplex ? "full" : "half", fc ? "en" : "dis");
  787. if (!netif_carrier_ok(dev))
  788. netif_carrier_on(dev);
  789. }
  790. static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
  791. {
  792. struct net_device *dev = (struct net_device *)dev_id;
  793. struct pxa168_eth_private *pep = netdev_priv(dev);
  794. if (unlikely(!pxa168_eth_collect_events(pep, dev)))
  795. return IRQ_NONE;
  796. /* Disable interrupts */
  797. wrl(pep, INT_MASK, 0);
  798. napi_schedule(&pep->napi);
  799. return IRQ_HANDLED;
  800. }
  801. static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
  802. {
  803. int skb_size;
  804. /*
  805. * Reserve 2+14 bytes for an ethernet header (the hardware
  806. * automatically prepends 2 bytes of dummy data to each
  807. * received packet), 16 bytes for up to four VLAN tags, and
  808. * 4 bytes for the trailing FCS -- 36 bytes total.
  809. */
  810. skb_size = pep->dev->mtu + 36;
  811. /*
  812. * Make sure that the skb size is a multiple of 8 bytes, as
  813. * the lower three bits of the receive descriptor's buffer
  814. * size field are ignored by the hardware.
  815. */
  816. pep->skb_size = (skb_size + 7) & ~7;
  817. /*
  818. * If NET_SKB_PAD is smaller than a cache line,
  819. * netdev_alloc_skb() will cause skb->data to be misaligned
  820. * to a cache line boundary. If this is the case, include
  821. * some extra space to allow re-aligning the data area.
  822. */
  823. pep->skb_size += SKB_DMA_REALIGN;
  824. }
  825. static int set_port_config_ext(struct pxa168_eth_private *pep)
  826. {
  827. int skb_size;
  828. pxa168_eth_recalc_skb_size(pep);
  829. if (pep->skb_size <= 1518)
  830. skb_size = PCXR_MFL_1518;
  831. else if (pep->skb_size <= 1536)
  832. skb_size = PCXR_MFL_1536;
  833. else if (pep->skb_size <= 2048)
  834. skb_size = PCXR_MFL_2048;
  835. else
  836. skb_size = PCXR_MFL_64K;
  837. /* Extended Port Configuration */
  838. wrl(pep,
  839. PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
  840. PCXR_DSCP_EN | /* Enable DSCP in IP */
  841. skb_size | PCXR_FLP | /* do not force link pass */
  842. PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
  843. return 0;
  844. }
  845. static int pxa168_init_hw(struct pxa168_eth_private *pep)
  846. {
  847. int err = 0;
  848. /* Disable interrupts */
  849. wrl(pep, INT_MASK, 0);
  850. wrl(pep, INT_CAUSE, 0);
  851. /* Write to ICR to clear interrupts. */
  852. wrl(pep, INT_W_CLEAR, 0);
  853. /* Abort any transmit and receive operations and put DMA
  854. * in idle state.
  855. */
  856. abort_dma(pep);
  857. /* Initialize address hash table */
  858. err = init_hash_table(pep);
  859. if (err)
  860. return err;
  861. /* SDMA configuration */
  862. wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
  863. SDCR_RIFB | /* Rx interrupt on frame */
  864. SDCR_BLMT | /* Little endian transmit */
  865. SDCR_BLMR | /* Little endian receive */
  866. SDCR_RC_MAX_RETRANS); /* Max retransmit count */
  867. /* Port Configuration */
  868. wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
  869. set_port_config_ext(pep);
  870. return err;
  871. }
  872. static int rxq_init(struct net_device *dev)
  873. {
  874. struct pxa168_eth_private *pep = netdev_priv(dev);
  875. struct rx_desc *p_rx_desc;
  876. int size = 0, i = 0;
  877. int rx_desc_num = pep->rx_ring_size;
  878. /* Allocate RX skb rings */
  879. pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
  880. GFP_KERNEL);
  881. if (!pep->rx_skb) {
  882. printk(KERN_ERR "%s: Cannot alloc RX skb ring\n", dev->name);
  883. return -ENOMEM;
  884. }
  885. /* Allocate RX ring */
  886. pep->rx_desc_count = 0;
  887. size = pep->rx_ring_size * sizeof(struct rx_desc);
  888. pep->rx_desc_area_size = size;
  889. pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
  890. &pep->rx_desc_dma, GFP_KERNEL);
  891. if (!pep->p_rx_desc_area) {
  892. printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
  893. dev->name, size);
  894. goto out;
  895. }
  896. memset((void *)pep->p_rx_desc_area, 0, size);
  897. /* initialize the next_desc_ptr links in the Rx descriptors ring */
  898. p_rx_desc = (struct rx_desc *)pep->p_rx_desc_area;
  899. for (i = 0; i < rx_desc_num; i++) {
  900. p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
  901. ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
  902. }
  903. /* Save Rx desc pointer to driver struct. */
  904. pep->rx_curr_desc_q = 0;
  905. pep->rx_used_desc_q = 0;
  906. pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
  907. return 0;
  908. out:
  909. kfree(pep->rx_skb);
  910. return -ENOMEM;
  911. }
  912. static void rxq_deinit(struct net_device *dev)
  913. {
  914. struct pxa168_eth_private *pep = netdev_priv(dev);
  915. int curr;
  916. /* Free preallocated skb's on RX rings */
  917. for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
  918. if (pep->rx_skb[curr]) {
  919. dev_kfree_skb(pep->rx_skb[curr]);
  920. pep->rx_desc_count--;
  921. }
  922. }
  923. if (pep->rx_desc_count)
  924. printk(KERN_ERR
  925. "Error in freeing Rx Ring. %d skb's still\n",
  926. pep->rx_desc_count);
  927. /* Free RX ring */
  928. if (pep->p_rx_desc_area)
  929. dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
  930. pep->p_rx_desc_area, pep->rx_desc_dma);
  931. kfree(pep->rx_skb);
  932. }
  933. static int txq_init(struct net_device *dev)
  934. {
  935. struct pxa168_eth_private *pep = netdev_priv(dev);
  936. struct tx_desc *p_tx_desc;
  937. int size = 0, i = 0;
  938. int tx_desc_num = pep->tx_ring_size;
  939. pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
  940. GFP_KERNEL);
  941. if (!pep->tx_skb) {
  942. printk(KERN_ERR "%s: Cannot alloc TX skb ring\n", dev->name);
  943. return -ENOMEM;
  944. }
  945. /* Allocate TX ring */
  946. pep->tx_desc_count = 0;
  947. size = pep->tx_ring_size * sizeof(struct tx_desc);
  948. pep->tx_desc_area_size = size;
  949. pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
  950. &pep->tx_desc_dma, GFP_KERNEL);
  951. if (!pep->p_tx_desc_area) {
  952. printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
  953. dev->name, size);
  954. goto out;
  955. }
  956. memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
  957. /* Initialize the next_desc_ptr links in the Tx descriptors ring */
  958. p_tx_desc = (struct tx_desc *)pep->p_tx_desc_area;
  959. for (i = 0; i < tx_desc_num; i++) {
  960. p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
  961. ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
  962. }
  963. pep->tx_curr_desc_q = 0;
  964. pep->tx_used_desc_q = 0;
  965. pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
  966. return 0;
  967. out:
  968. kfree(pep->tx_skb);
  969. return -ENOMEM;
  970. }
  971. static void txq_deinit(struct net_device *dev)
  972. {
  973. struct pxa168_eth_private *pep = netdev_priv(dev);
  974. /* Free outstanding skb's on TX ring */
  975. txq_reclaim(dev, 1);
  976. BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
  977. /* Free TX ring */
  978. if (pep->p_tx_desc_area)
  979. dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
  980. pep->p_tx_desc_area, pep->tx_desc_dma);
  981. kfree(pep->tx_skb);
  982. }
  983. static int pxa168_eth_open(struct net_device *dev)
  984. {
  985. struct pxa168_eth_private *pep = netdev_priv(dev);
  986. int err;
  987. err = request_irq(dev->irq, pxa168_eth_int_handler,
  988. IRQF_DISABLED, dev->name, dev);
  989. if (err) {
  990. dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
  991. return -EAGAIN;
  992. }
  993. pep->rx_resource_err = 0;
  994. err = rxq_init(dev);
  995. if (err != 0)
  996. goto out_free_irq;
  997. err = txq_init(dev);
  998. if (err != 0)
  999. goto out_free_rx_skb;
  1000. pep->rx_used_desc_q = 0;
  1001. pep->rx_curr_desc_q = 0;
  1002. /* Fill RX ring with skb's */
  1003. rxq_refill(dev);
  1004. pep->rx_used_desc_q = 0;
  1005. pep->rx_curr_desc_q = 0;
  1006. netif_carrier_off(dev);
  1007. eth_port_start(dev);
  1008. napi_enable(&pep->napi);
  1009. return 0;
  1010. out_free_rx_skb:
  1011. rxq_deinit(dev);
  1012. out_free_irq:
  1013. free_irq(dev->irq, dev);
  1014. return err;
  1015. }
  1016. static int pxa168_eth_stop(struct net_device *dev)
  1017. {
  1018. struct pxa168_eth_private *pep = netdev_priv(dev);
  1019. eth_port_reset(dev);
  1020. /* Disable interrupts */
  1021. wrl(pep, INT_MASK, 0);
  1022. wrl(pep, INT_CAUSE, 0);
  1023. /* Write to ICR to clear interrupts. */
  1024. wrl(pep, INT_W_CLEAR, 0);
  1025. napi_disable(&pep->napi);
  1026. del_timer_sync(&pep->timeout);
  1027. netif_carrier_off(dev);
  1028. free_irq(dev->irq, dev);
  1029. rxq_deinit(dev);
  1030. txq_deinit(dev);
  1031. return 0;
  1032. }
  1033. static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
  1034. {
  1035. int retval;
  1036. struct pxa168_eth_private *pep = netdev_priv(dev);
  1037. if ((mtu > 9500) || (mtu < 68))
  1038. return -EINVAL;
  1039. dev->mtu = mtu;
  1040. retval = set_port_config_ext(pep);
  1041. if (!netif_running(dev))
  1042. return 0;
  1043. /*
  1044. * Stop and then re-open the interface. This will allocate RX
  1045. * skbs of the new MTU.
  1046. * There is a possible danger that the open will not succeed,
  1047. * due to memory being full.
  1048. */
  1049. pxa168_eth_stop(dev);
  1050. if (pxa168_eth_open(dev)) {
  1051. dev_printk(KERN_ERR, &dev->dev,
  1052. "fatal error on re-opening device after "
  1053. "MTU change\n");
  1054. }
  1055. return 0;
  1056. }
  1057. static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
  1058. {
  1059. int tx_desc_curr;
  1060. tx_desc_curr = pep->tx_curr_desc_q;
  1061. pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
  1062. BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
  1063. pep->tx_desc_count++;
  1064. return tx_desc_curr;
  1065. }
  1066. static int pxa168_rx_poll(struct napi_struct *napi, int budget)
  1067. {
  1068. struct pxa168_eth_private *pep =
  1069. container_of(napi, struct pxa168_eth_private, napi);
  1070. struct net_device *dev = pep->dev;
  1071. int work_done = 0;
  1072. if (unlikely(pep->work_todo & WORK_LINK)) {
  1073. pep->work_todo &= ~(WORK_LINK);
  1074. handle_link_event(pep);
  1075. }
  1076. /*
  1077. * We call txq_reclaim every time since in NAPI interupts are disabled
  1078. * and due to this we miss the TX_DONE interrupt,which is not updated in
  1079. * interrupt status register.
  1080. */
  1081. txq_reclaim(dev, 0);
  1082. if (netif_queue_stopped(dev)
  1083. && pep->tx_ring_size - pep->tx_desc_count > 1) {
  1084. netif_wake_queue(dev);
  1085. }
  1086. work_done = rxq_process(dev, budget);
  1087. if (work_done < budget) {
  1088. napi_complete(napi);
  1089. wrl(pep, INT_MASK, ALL_INTS);
  1090. }
  1091. return work_done;
  1092. }
  1093. static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1094. {
  1095. struct pxa168_eth_private *pep = netdev_priv(dev);
  1096. struct net_device_stats *stats = &dev->stats;
  1097. struct tx_desc *desc;
  1098. int tx_index;
  1099. int length;
  1100. tx_index = eth_alloc_tx_desc_index(pep);
  1101. desc = &pep->p_tx_desc_area[tx_index];
  1102. length = skb->len;
  1103. pep->tx_skb[tx_index] = skb;
  1104. desc->byte_cnt = length;
  1105. desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
  1106. wmb();
  1107. desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
  1108. TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
  1109. wmb();
  1110. wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
  1111. stats->tx_bytes += length;
  1112. stats->tx_packets++;
  1113. dev->trans_start = jiffies;
  1114. if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
  1115. /* We handled the current skb, but now we are out of space.*/
  1116. netif_stop_queue(dev);
  1117. }
  1118. return NETDEV_TX_OK;
  1119. }
  1120. static int smi_wait_ready(struct pxa168_eth_private *pep)
  1121. {
  1122. int i = 0;
  1123. /* wait for the SMI register to become available */
  1124. for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
  1125. if (i == PHY_WAIT_ITERATIONS)
  1126. return -ETIMEDOUT;
  1127. msleep(10);
  1128. }
  1129. return 0;
  1130. }
  1131. static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
  1132. {
  1133. struct pxa168_eth_private *pep = bus->priv;
  1134. int i = 0;
  1135. int val;
  1136. if (smi_wait_ready(pep)) {
  1137. printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
  1138. return -ETIMEDOUT;
  1139. }
  1140. wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
  1141. /* now wait for the data to be valid */
  1142. for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
  1143. if (i == PHY_WAIT_ITERATIONS) {
  1144. printk(KERN_WARNING
  1145. "pxa168_eth: SMI bus read not valid\n");
  1146. return -ENODEV;
  1147. }
  1148. msleep(10);
  1149. }
  1150. return val & 0xffff;
  1151. }
  1152. static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
  1153. u16 value)
  1154. {
  1155. struct pxa168_eth_private *pep = bus->priv;
  1156. if (smi_wait_ready(pep)) {
  1157. printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
  1158. return -ETIMEDOUT;
  1159. }
  1160. wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
  1161. SMI_OP_W | (value & 0xffff));
  1162. if (smi_wait_ready(pep)) {
  1163. printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
  1164. return -ETIMEDOUT;
  1165. }
  1166. return 0;
  1167. }
  1168. static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
  1169. int cmd)
  1170. {
  1171. struct pxa168_eth_private *pep = netdev_priv(dev);
  1172. if (pep->phy != NULL)
  1173. return phy_mii_ioctl(pep->phy, ifr, cmd);
  1174. return -EOPNOTSUPP;
  1175. }
  1176. static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
  1177. {
  1178. struct mii_bus *bus = pep->smi_bus;
  1179. struct phy_device *phydev;
  1180. int start;
  1181. int num;
  1182. int i;
  1183. if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
  1184. /* Scan entire range */
  1185. start = ethernet_phy_get(pep);
  1186. num = 32;
  1187. } else {
  1188. /* Use phy addr specific to platform */
  1189. start = phy_addr & 0x1f;
  1190. num = 1;
  1191. }
  1192. phydev = NULL;
  1193. for (i = 0; i < num; i++) {
  1194. int addr = (start + i) & 0x1f;
  1195. if (bus->phy_map[addr] == NULL)
  1196. mdiobus_scan(bus, addr);
  1197. if (phydev == NULL) {
  1198. phydev = bus->phy_map[addr];
  1199. if (phydev != NULL)
  1200. ethernet_phy_set_addr(pep, addr);
  1201. }
  1202. }
  1203. return phydev;
  1204. }
  1205. static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
  1206. {
  1207. struct phy_device *phy = pep->phy;
  1208. ethernet_phy_reset(pep);
  1209. phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
  1210. if (speed == 0) {
  1211. phy->autoneg = AUTONEG_ENABLE;
  1212. phy->speed = 0;
  1213. phy->duplex = 0;
  1214. phy->supported &= PHY_BASIC_FEATURES;
  1215. phy->advertising = phy->supported | ADVERTISED_Autoneg;
  1216. } else {
  1217. phy->autoneg = AUTONEG_DISABLE;
  1218. phy->advertising = 0;
  1219. phy->speed = speed;
  1220. phy->duplex = duplex;
  1221. }
  1222. phy_start_aneg(phy);
  1223. }
  1224. static int ethernet_phy_setup(struct net_device *dev)
  1225. {
  1226. struct pxa168_eth_private *pep = netdev_priv(dev);
  1227. if (pep->pd->init)
  1228. pep->pd->init();
  1229. pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
  1230. if (pep->phy != NULL)
  1231. phy_init(pep, pep->pd->speed, pep->pd->duplex);
  1232. update_hash_table_mac_address(pep, NULL, dev->dev_addr);
  1233. return 0;
  1234. }
  1235. static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1236. {
  1237. struct pxa168_eth_private *pep = netdev_priv(dev);
  1238. int err;
  1239. err = phy_read_status(pep->phy);
  1240. if (err == 0)
  1241. err = phy_ethtool_gset(pep->phy, cmd);
  1242. return err;
  1243. }
  1244. static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  1245. {
  1246. struct pxa168_eth_private *pep = netdev_priv(dev);
  1247. return phy_ethtool_sset(pep->phy, cmd);
  1248. }
  1249. static void pxa168_get_drvinfo(struct net_device *dev,
  1250. struct ethtool_drvinfo *info)
  1251. {
  1252. strncpy(info->driver, DRIVER_NAME, 32);
  1253. strncpy(info->version, DRIVER_VERSION, 32);
  1254. strncpy(info->fw_version, "N/A", 32);
  1255. strncpy(info->bus_info, "N/A", 32);
  1256. }
  1257. static const struct ethtool_ops pxa168_ethtool_ops = {
  1258. .get_settings = pxa168_get_settings,
  1259. .set_settings = pxa168_set_settings,
  1260. .get_drvinfo = pxa168_get_drvinfo,
  1261. .get_link = ethtool_op_get_link,
  1262. };
  1263. static const struct net_device_ops pxa168_eth_netdev_ops = {
  1264. .ndo_open = pxa168_eth_open,
  1265. .ndo_stop = pxa168_eth_stop,
  1266. .ndo_start_xmit = pxa168_eth_start_xmit,
  1267. .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
  1268. .ndo_set_mac_address = pxa168_eth_set_mac_address,
  1269. .ndo_validate_addr = eth_validate_addr,
  1270. .ndo_do_ioctl = pxa168_eth_do_ioctl,
  1271. .ndo_change_mtu = pxa168_eth_change_mtu,
  1272. .ndo_tx_timeout = pxa168_eth_tx_timeout,
  1273. };
  1274. static int pxa168_eth_probe(struct platform_device *pdev)
  1275. {
  1276. struct pxa168_eth_private *pep = NULL;
  1277. struct net_device *dev = NULL;
  1278. struct resource *res;
  1279. struct clk *clk;
  1280. int err;
  1281. printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
  1282. clk = clk_get(&pdev->dev, "MFUCLK");
  1283. if (IS_ERR(clk)) {
  1284. printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
  1285. DRIVER_NAME);
  1286. return -ENODEV;
  1287. }
  1288. clk_enable(clk);
  1289. dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
  1290. if (!dev) {
  1291. err = -ENOMEM;
  1292. goto err_clk;
  1293. }
  1294. platform_set_drvdata(pdev, dev);
  1295. pep = netdev_priv(dev);
  1296. pep->dev = dev;
  1297. pep->clk = clk;
  1298. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1299. if (res == NULL) {
  1300. err = -ENODEV;
  1301. goto err_netdev;
  1302. }
  1303. pep->base = ioremap(res->start, res->end - res->start + 1);
  1304. if (pep->base == NULL) {
  1305. err = -ENOMEM;
  1306. goto err_netdev;
  1307. }
  1308. res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1309. BUG_ON(!res);
  1310. dev->irq = res->start;
  1311. dev->netdev_ops = &pxa168_eth_netdev_ops;
  1312. dev->watchdog_timeo = 2 * HZ;
  1313. dev->base_addr = 0;
  1314. SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
  1315. INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
  1316. printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
  1317. random_ether_addr(dev->dev_addr);
  1318. pep->pd = pdev->dev.platform_data;
  1319. pep->rx_ring_size = NUM_RX_DESCS;
  1320. if (pep->pd->rx_queue_size)
  1321. pep->rx_ring_size = pep->pd->rx_queue_size;
  1322. pep->tx_ring_size = NUM_TX_DESCS;
  1323. if (pep->pd->tx_queue_size)
  1324. pep->tx_ring_size = pep->pd->tx_queue_size;
  1325. pep->port_num = pep->pd->port_number;
  1326. /* Hardware supports only 3 ports */
  1327. BUG_ON(pep->port_num > 2);
  1328. netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
  1329. memset(&pep->timeout, 0, sizeof(struct timer_list));
  1330. init_timer(&pep->timeout);
  1331. pep->timeout.function = rxq_refill_timer_wrapper;
  1332. pep->timeout.data = (unsigned long)pep;
  1333. pep->smi_bus = mdiobus_alloc();
  1334. if (pep->smi_bus == NULL) {
  1335. err = -ENOMEM;
  1336. goto err_base;
  1337. }
  1338. pep->smi_bus->priv = pep;
  1339. pep->smi_bus->name = "pxa168_eth smi";
  1340. pep->smi_bus->read = pxa168_smi_read;
  1341. pep->smi_bus->write = pxa168_smi_write;
  1342. snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%d", pdev->id);
  1343. pep->smi_bus->parent = &pdev->dev;
  1344. pep->smi_bus->phy_mask = 0xffffffff;
  1345. err = mdiobus_register(pep->smi_bus);
  1346. if (err)
  1347. goto err_free_mdio;
  1348. pxa168_init_hw(pep);
  1349. err = ethernet_phy_setup(dev);
  1350. if (err)
  1351. goto err_mdiobus;
  1352. SET_NETDEV_DEV(dev, &pdev->dev);
  1353. err = register_netdev(dev);
  1354. if (err)
  1355. goto err_mdiobus;
  1356. return 0;
  1357. err_mdiobus:
  1358. mdiobus_unregister(pep->smi_bus);
  1359. err_free_mdio:
  1360. mdiobus_free(pep->smi_bus);
  1361. err_base:
  1362. iounmap(pep->base);
  1363. err_netdev:
  1364. free_netdev(dev);
  1365. err_clk:
  1366. clk_disable(clk);
  1367. clk_put(clk);
  1368. return err;
  1369. }
  1370. static int pxa168_eth_remove(struct platform_device *pdev)
  1371. {
  1372. struct net_device *dev = platform_get_drvdata(pdev);
  1373. struct pxa168_eth_private *pep = netdev_priv(dev);
  1374. if (pep->htpr) {
  1375. dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
  1376. pep->htpr, pep->htpr_dma);
  1377. pep->htpr = NULL;
  1378. }
  1379. if (pep->clk) {
  1380. clk_disable(pep->clk);
  1381. clk_put(pep->clk);
  1382. pep->clk = NULL;
  1383. }
  1384. if (pep->phy != NULL)
  1385. phy_detach(pep->phy);
  1386. iounmap(pep->base);
  1387. pep->base = NULL;
  1388. mdiobus_unregister(pep->smi_bus);
  1389. mdiobus_free(pep->smi_bus);
  1390. unregister_netdev(dev);
  1391. cancel_work_sync(&pep->tx_timeout_task);
  1392. free_netdev(dev);
  1393. platform_set_drvdata(pdev, NULL);
  1394. return 0;
  1395. }
  1396. static void pxa168_eth_shutdown(struct platform_device *pdev)
  1397. {
  1398. struct net_device *dev = platform_get_drvdata(pdev);
  1399. eth_port_reset(dev);
  1400. }
  1401. #ifdef CONFIG_PM
  1402. static int pxa168_eth_resume(struct platform_device *pdev)
  1403. {
  1404. return -ENOSYS;
  1405. }
  1406. static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
  1407. {
  1408. return -ENOSYS;
  1409. }
  1410. #else
  1411. #define pxa168_eth_resume NULL
  1412. #define pxa168_eth_suspend NULL
  1413. #endif
  1414. static struct platform_driver pxa168_eth_driver = {
  1415. .probe = pxa168_eth_probe,
  1416. .remove = pxa168_eth_remove,
  1417. .shutdown = pxa168_eth_shutdown,
  1418. .resume = pxa168_eth_resume,
  1419. .suspend = pxa168_eth_suspend,
  1420. .driver = {
  1421. .name = DRIVER_NAME,
  1422. },
  1423. };
  1424. static int __init pxa168_init_module(void)
  1425. {
  1426. return platform_driver_register(&pxa168_eth_driver);
  1427. }
  1428. static void __exit pxa168_cleanup_module(void)
  1429. {
  1430. platform_driver_unregister(&pxa168_eth_driver);
  1431. }
  1432. module_init(pxa168_init_module);
  1433. module_exit(pxa168_cleanup_module);
  1434. MODULE_LICENSE("GPL");
  1435. MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
  1436. MODULE_ALIAS("platform:pxa168_eth");