dev.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. /*
  2. * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3. * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4. * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/slab.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/if_arp.h>
  24. #include <linux/can.h>
  25. #include <linux/can/dev.h>
  26. #include <linux/can/netlink.h>
  27. #include <net/rtnetlink.h>
  28. #define MOD_DESC "CAN device driver interface"
  29. MODULE_DESCRIPTION(MOD_DESC);
  30. MODULE_LICENSE("GPL v2");
  31. MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  32. #ifdef CONFIG_CAN_CALC_BITTIMING
  33. #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  34. /*
  35. * Bit-timing calculation derived from:
  36. *
  37. * Code based on LinCAN sources and H8S2638 project
  38. * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  39. * Copyright 2005 Stanislav Marek
  40. * email: pisa@cmp.felk.cvut.cz
  41. *
  42. * Calculates proper bit-timing parameters for a specified bit-rate
  43. * and sample-point, which can then be used to set the bit-timing
  44. * registers of the CAN controller. You can find more information
  45. * in the header file linux/can/netlink.h.
  46. */
  47. static int can_update_spt(const struct can_bittiming_const *btc,
  48. int sampl_pt, int tseg, int *tseg1, int *tseg2)
  49. {
  50. *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  51. if (*tseg2 < btc->tseg2_min)
  52. *tseg2 = btc->tseg2_min;
  53. if (*tseg2 > btc->tseg2_max)
  54. *tseg2 = btc->tseg2_max;
  55. *tseg1 = tseg - *tseg2;
  56. if (*tseg1 > btc->tseg1_max) {
  57. *tseg1 = btc->tseg1_max;
  58. *tseg2 = tseg - *tseg1;
  59. }
  60. return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
  61. }
  62. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
  63. {
  64. struct can_priv *priv = netdev_priv(dev);
  65. const struct can_bittiming_const *btc = priv->bittiming_const;
  66. long rate, best_rate = 0;
  67. long best_error = 1000000000, error = 0;
  68. int best_tseg = 0, best_brp = 0, brp = 0;
  69. int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
  70. int spt_error = 1000, spt = 0, sampl_pt;
  71. u64 v64;
  72. if (!priv->bittiming_const)
  73. return -ENOTSUPP;
  74. /* Use CIA recommended sample points */
  75. if (bt->sample_point) {
  76. sampl_pt = bt->sample_point;
  77. } else {
  78. if (bt->bitrate > 800000)
  79. sampl_pt = 750;
  80. else if (bt->bitrate > 500000)
  81. sampl_pt = 800;
  82. else
  83. sampl_pt = 875;
  84. }
  85. /* tseg even = round down, odd = round up */
  86. for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
  87. tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
  88. tsegall = 1 + tseg / 2;
  89. /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
  90. brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
  91. /* chose brp step which is possible in system */
  92. brp = (brp / btc->brp_inc) * btc->brp_inc;
  93. if ((brp < btc->brp_min) || (brp > btc->brp_max))
  94. continue;
  95. rate = priv->clock.freq / (brp * tsegall);
  96. error = bt->bitrate - rate;
  97. /* tseg brp biterror */
  98. if (error < 0)
  99. error = -error;
  100. if (error > best_error)
  101. continue;
  102. best_error = error;
  103. if (error == 0) {
  104. spt = can_update_spt(btc, sampl_pt, tseg / 2,
  105. &tseg1, &tseg2);
  106. error = sampl_pt - spt;
  107. if (error < 0)
  108. error = -error;
  109. if (error > spt_error)
  110. continue;
  111. spt_error = error;
  112. }
  113. best_tseg = tseg / 2;
  114. best_brp = brp;
  115. best_rate = rate;
  116. if (error == 0)
  117. break;
  118. }
  119. if (best_error) {
  120. /* Error in one-tenth of a percent */
  121. error = (best_error * 1000) / bt->bitrate;
  122. if (error > CAN_CALC_MAX_ERROR) {
  123. dev_err(dev->dev.parent,
  124. "bitrate error %ld.%ld%% too high\n",
  125. error / 10, error % 10);
  126. return -EDOM;
  127. } else {
  128. dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
  129. error / 10, error % 10);
  130. }
  131. }
  132. /* real sample point */
  133. bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
  134. &tseg1, &tseg2);
  135. v64 = (u64)best_brp * 1000000000UL;
  136. do_div(v64, priv->clock.freq);
  137. bt->tq = (u32)v64;
  138. bt->prop_seg = tseg1 / 2;
  139. bt->phase_seg1 = tseg1 - bt->prop_seg;
  140. bt->phase_seg2 = tseg2;
  141. bt->sjw = 1;
  142. bt->brp = best_brp;
  143. /* real bit-rate */
  144. bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
  145. return 0;
  146. }
  147. #else /* !CONFIG_CAN_CALC_BITTIMING */
  148. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
  149. {
  150. dev_err(dev->dev.parent, "bit-timing calculation not available\n");
  151. return -EINVAL;
  152. }
  153. #endif /* CONFIG_CAN_CALC_BITTIMING */
  154. /*
  155. * Checks the validity of the specified bit-timing parameters prop_seg,
  156. * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
  157. * prescaler value brp. You can find more information in the header
  158. * file linux/can/netlink.h.
  159. */
  160. static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
  161. {
  162. struct can_priv *priv = netdev_priv(dev);
  163. const struct can_bittiming_const *btc = priv->bittiming_const;
  164. int tseg1, alltseg;
  165. u64 brp64;
  166. if (!priv->bittiming_const)
  167. return -ENOTSUPP;
  168. tseg1 = bt->prop_seg + bt->phase_seg1;
  169. if (!bt->sjw)
  170. bt->sjw = 1;
  171. if (bt->sjw > btc->sjw_max ||
  172. tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
  173. bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
  174. return -ERANGE;
  175. brp64 = (u64)priv->clock.freq * (u64)bt->tq;
  176. if (btc->brp_inc > 1)
  177. do_div(brp64, btc->brp_inc);
  178. brp64 += 500000000UL - 1;
  179. do_div(brp64, 1000000000UL); /* the practicable BRP */
  180. if (btc->brp_inc > 1)
  181. brp64 *= btc->brp_inc;
  182. bt->brp = (u32)brp64;
  183. if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
  184. return -EINVAL;
  185. alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
  186. bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
  187. bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
  188. return 0;
  189. }
  190. int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
  191. {
  192. struct can_priv *priv = netdev_priv(dev);
  193. int err;
  194. /* Check if the CAN device has bit-timing parameters */
  195. if (priv->bittiming_const) {
  196. /* Non-expert mode? Check if the bitrate has been pre-defined */
  197. if (!bt->tq)
  198. /* Determine bit-timing parameters */
  199. err = can_calc_bittiming(dev, bt);
  200. else
  201. /* Check bit-timing params and calculate proper brp */
  202. err = can_fixup_bittiming(dev, bt);
  203. if (err)
  204. return err;
  205. }
  206. return 0;
  207. }
  208. /*
  209. * Local echo of CAN messages
  210. *
  211. * CAN network devices *should* support a local echo functionality
  212. * (see Documentation/networking/can.txt). To test the handling of CAN
  213. * interfaces that do not support the local echo both driver types are
  214. * implemented. In the case that the driver does not support the echo
  215. * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
  216. * to perform the echo as a fallback solution.
  217. */
  218. static void can_flush_echo_skb(struct net_device *dev)
  219. {
  220. struct can_priv *priv = netdev_priv(dev);
  221. struct net_device_stats *stats = &dev->stats;
  222. int i;
  223. for (i = 0; i < priv->echo_skb_max; i++) {
  224. if (priv->echo_skb[i]) {
  225. kfree_skb(priv->echo_skb[i]);
  226. priv->echo_skb[i] = NULL;
  227. stats->tx_dropped++;
  228. stats->tx_aborted_errors++;
  229. }
  230. }
  231. }
  232. /*
  233. * Put the skb on the stack to be looped backed locally lateron
  234. *
  235. * The function is typically called in the start_xmit function
  236. * of the device driver. The driver must protect access to
  237. * priv->echo_skb, if necessary.
  238. */
  239. void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
  240. unsigned int idx)
  241. {
  242. struct can_priv *priv = netdev_priv(dev);
  243. BUG_ON(idx >= priv->echo_skb_max);
  244. /* check flag whether this packet has to be looped back */
  245. if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
  246. kfree_skb(skb);
  247. return;
  248. }
  249. if (!priv->echo_skb[idx]) {
  250. struct sock *srcsk = skb->sk;
  251. if (atomic_read(&skb->users) != 1) {
  252. struct sk_buff *old_skb = skb;
  253. skb = skb_clone(old_skb, GFP_ATOMIC);
  254. kfree_skb(old_skb);
  255. if (!skb)
  256. return;
  257. } else
  258. skb_orphan(skb);
  259. skb->sk = srcsk;
  260. /* make settings for echo to reduce code in irq context */
  261. skb->protocol = htons(ETH_P_CAN);
  262. skb->pkt_type = PACKET_BROADCAST;
  263. skb->ip_summed = CHECKSUM_UNNECESSARY;
  264. skb->dev = dev;
  265. /* save this skb for tx interrupt echo handling */
  266. priv->echo_skb[idx] = skb;
  267. } else {
  268. /* locking problem with netif_stop_queue() ?? */
  269. dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
  270. __func__);
  271. kfree_skb(skb);
  272. }
  273. }
  274. EXPORT_SYMBOL_GPL(can_put_echo_skb);
  275. /*
  276. * Get the skb from the stack and loop it back locally
  277. *
  278. * The function is typically called when the TX done interrupt
  279. * is handled in the device driver. The driver must protect
  280. * access to priv->echo_skb, if necessary.
  281. */
  282. void can_get_echo_skb(struct net_device *dev, unsigned int idx)
  283. {
  284. struct can_priv *priv = netdev_priv(dev);
  285. BUG_ON(idx >= priv->echo_skb_max);
  286. if (priv->echo_skb[idx]) {
  287. netif_rx(priv->echo_skb[idx]);
  288. priv->echo_skb[idx] = NULL;
  289. }
  290. }
  291. EXPORT_SYMBOL_GPL(can_get_echo_skb);
  292. /*
  293. * Remove the skb from the stack and free it.
  294. *
  295. * The function is typically called when TX failed.
  296. */
  297. void can_free_echo_skb(struct net_device *dev, unsigned int idx)
  298. {
  299. struct can_priv *priv = netdev_priv(dev);
  300. BUG_ON(idx >= priv->echo_skb_max);
  301. if (priv->echo_skb[idx]) {
  302. kfree_skb(priv->echo_skb[idx]);
  303. priv->echo_skb[idx] = NULL;
  304. }
  305. }
  306. EXPORT_SYMBOL_GPL(can_free_echo_skb);
  307. /*
  308. * CAN device restart for bus-off recovery
  309. */
  310. void can_restart(unsigned long data)
  311. {
  312. struct net_device *dev = (struct net_device *)data;
  313. struct can_priv *priv = netdev_priv(dev);
  314. struct net_device_stats *stats = &dev->stats;
  315. struct sk_buff *skb;
  316. struct can_frame *cf;
  317. int err;
  318. BUG_ON(netif_carrier_ok(dev));
  319. /*
  320. * No synchronization needed because the device is bus-off and
  321. * no messages can come in or go out.
  322. */
  323. can_flush_echo_skb(dev);
  324. /* send restart message upstream */
  325. skb = alloc_can_err_skb(dev, &cf);
  326. if (skb == NULL) {
  327. err = -ENOMEM;
  328. goto restart;
  329. }
  330. cf->can_id |= CAN_ERR_RESTARTED;
  331. netif_rx(skb);
  332. stats->rx_packets++;
  333. stats->rx_bytes += cf->can_dlc;
  334. restart:
  335. dev_dbg(dev->dev.parent, "restarted\n");
  336. priv->can_stats.restarts++;
  337. /* Now restart the device */
  338. err = priv->do_set_mode(dev, CAN_MODE_START);
  339. netif_carrier_on(dev);
  340. if (err)
  341. dev_err(dev->dev.parent, "Error %d during restart", err);
  342. }
  343. int can_restart_now(struct net_device *dev)
  344. {
  345. struct can_priv *priv = netdev_priv(dev);
  346. /*
  347. * A manual restart is only permitted if automatic restart is
  348. * disabled and the device is in the bus-off state
  349. */
  350. if (priv->restart_ms)
  351. return -EINVAL;
  352. if (priv->state != CAN_STATE_BUS_OFF)
  353. return -EBUSY;
  354. /* Runs as soon as possible in the timer context */
  355. mod_timer(&priv->restart_timer, jiffies);
  356. return 0;
  357. }
  358. /*
  359. * CAN bus-off
  360. *
  361. * This functions should be called when the device goes bus-off to
  362. * tell the netif layer that no more packets can be sent or received.
  363. * If enabled, a timer is started to trigger bus-off recovery.
  364. */
  365. void can_bus_off(struct net_device *dev)
  366. {
  367. struct can_priv *priv = netdev_priv(dev);
  368. dev_dbg(dev->dev.parent, "bus-off\n");
  369. netif_carrier_off(dev);
  370. priv->can_stats.bus_off++;
  371. if (priv->restart_ms)
  372. mod_timer(&priv->restart_timer,
  373. jiffies + (priv->restart_ms * HZ) / 1000);
  374. }
  375. EXPORT_SYMBOL_GPL(can_bus_off);
  376. static void can_setup(struct net_device *dev)
  377. {
  378. dev->type = ARPHRD_CAN;
  379. dev->mtu = sizeof(struct can_frame);
  380. dev->hard_header_len = 0;
  381. dev->addr_len = 0;
  382. dev->tx_queue_len = 10;
  383. /* New-style flags. */
  384. dev->flags = IFF_NOARP;
  385. dev->features = NETIF_F_NO_CSUM;
  386. }
  387. struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
  388. {
  389. struct sk_buff *skb;
  390. skb = netdev_alloc_skb(dev, sizeof(struct can_frame));
  391. if (unlikely(!skb))
  392. return NULL;
  393. skb->protocol = htons(ETH_P_CAN);
  394. skb->pkt_type = PACKET_BROADCAST;
  395. skb->ip_summed = CHECKSUM_UNNECESSARY;
  396. *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  397. memset(*cf, 0, sizeof(struct can_frame));
  398. return skb;
  399. }
  400. EXPORT_SYMBOL_GPL(alloc_can_skb);
  401. struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
  402. {
  403. struct sk_buff *skb;
  404. skb = alloc_can_skb(dev, cf);
  405. if (unlikely(!skb))
  406. return NULL;
  407. (*cf)->can_id = CAN_ERR_FLAG;
  408. (*cf)->can_dlc = CAN_ERR_DLC;
  409. return skb;
  410. }
  411. EXPORT_SYMBOL_GPL(alloc_can_err_skb);
  412. /*
  413. * Allocate and setup space for the CAN network device
  414. */
  415. struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
  416. {
  417. struct net_device *dev;
  418. struct can_priv *priv;
  419. int size;
  420. if (echo_skb_max)
  421. size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
  422. echo_skb_max * sizeof(struct sk_buff *);
  423. else
  424. size = sizeof_priv;
  425. dev = alloc_netdev(size, "can%d", can_setup);
  426. if (!dev)
  427. return NULL;
  428. priv = netdev_priv(dev);
  429. if (echo_skb_max) {
  430. priv->echo_skb_max = echo_skb_max;
  431. priv->echo_skb = (void *)priv +
  432. ALIGN(sizeof_priv, sizeof(struct sk_buff *));
  433. }
  434. priv->state = CAN_STATE_STOPPED;
  435. init_timer(&priv->restart_timer);
  436. return dev;
  437. }
  438. EXPORT_SYMBOL_GPL(alloc_candev);
  439. /*
  440. * Free space of the CAN network device
  441. */
  442. void free_candev(struct net_device *dev)
  443. {
  444. free_netdev(dev);
  445. }
  446. EXPORT_SYMBOL_GPL(free_candev);
  447. /*
  448. * Common open function when the device gets opened.
  449. *
  450. * This function should be called in the open function of the device
  451. * driver.
  452. */
  453. int open_candev(struct net_device *dev)
  454. {
  455. struct can_priv *priv = netdev_priv(dev);
  456. if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
  457. dev_err(dev->dev.parent, "bit-timing not yet defined\n");
  458. return -EINVAL;
  459. }
  460. /* Switch carrier on if device was stopped while in bus-off state */
  461. if (!netif_carrier_ok(dev))
  462. netif_carrier_on(dev);
  463. setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
  464. return 0;
  465. }
  466. EXPORT_SYMBOL_GPL(open_candev);
  467. /*
  468. * Common close function for cleanup before the device gets closed.
  469. *
  470. * This function should be called in the close function of the device
  471. * driver.
  472. */
  473. void close_candev(struct net_device *dev)
  474. {
  475. struct can_priv *priv = netdev_priv(dev);
  476. if (del_timer_sync(&priv->restart_timer))
  477. dev_put(dev);
  478. can_flush_echo_skb(dev);
  479. }
  480. EXPORT_SYMBOL_GPL(close_candev);
  481. /*
  482. * CAN netlink interface
  483. */
  484. static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
  485. [IFLA_CAN_STATE] = { .type = NLA_U32 },
  486. [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
  487. [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
  488. [IFLA_CAN_RESTART] = { .type = NLA_U32 },
  489. [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
  490. [IFLA_CAN_BITTIMING_CONST]
  491. = { .len = sizeof(struct can_bittiming_const) },
  492. [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
  493. [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
  494. };
  495. static int can_changelink(struct net_device *dev,
  496. struct nlattr *tb[], struct nlattr *data[])
  497. {
  498. struct can_priv *priv = netdev_priv(dev);
  499. int err;
  500. /* We need synchronization with dev->stop() */
  501. ASSERT_RTNL();
  502. if (data[IFLA_CAN_CTRLMODE]) {
  503. struct can_ctrlmode *cm;
  504. /* Do not allow changing controller mode while running */
  505. if (dev->flags & IFF_UP)
  506. return -EBUSY;
  507. cm = nla_data(data[IFLA_CAN_CTRLMODE]);
  508. if (cm->flags & ~priv->ctrlmode_supported)
  509. return -EOPNOTSUPP;
  510. priv->ctrlmode &= ~cm->mask;
  511. priv->ctrlmode |= cm->flags;
  512. }
  513. if (data[IFLA_CAN_BITTIMING]) {
  514. struct can_bittiming bt;
  515. /* Do not allow changing bittiming while running */
  516. if (dev->flags & IFF_UP)
  517. return -EBUSY;
  518. memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
  519. if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
  520. return -EINVAL;
  521. err = can_get_bittiming(dev, &bt);
  522. if (err)
  523. return err;
  524. memcpy(&priv->bittiming, &bt, sizeof(bt));
  525. if (priv->do_set_bittiming) {
  526. /* Finally, set the bit-timing registers */
  527. err = priv->do_set_bittiming(dev);
  528. if (err)
  529. return err;
  530. }
  531. }
  532. if (data[IFLA_CAN_RESTART_MS]) {
  533. /* Do not allow changing restart delay while running */
  534. if (dev->flags & IFF_UP)
  535. return -EBUSY;
  536. priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
  537. }
  538. if (data[IFLA_CAN_RESTART]) {
  539. /* Do not allow a restart while not running */
  540. if (!(dev->flags & IFF_UP))
  541. return -EINVAL;
  542. err = can_restart_now(dev);
  543. if (err)
  544. return err;
  545. }
  546. return 0;
  547. }
  548. static size_t can_get_size(const struct net_device *dev)
  549. {
  550. struct can_priv *priv = netdev_priv(dev);
  551. size_t size;
  552. size = nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
  553. size += sizeof(struct can_ctrlmode); /* IFLA_CAN_CTRLMODE */
  554. size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
  555. size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
  556. size += sizeof(struct can_clock); /* IFLA_CAN_CLOCK */
  557. if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
  558. size += sizeof(struct can_berr_counter);
  559. if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
  560. size += sizeof(struct can_bittiming_const);
  561. return size;
  562. }
  563. static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
  564. {
  565. struct can_priv *priv = netdev_priv(dev);
  566. struct can_ctrlmode cm = {.flags = priv->ctrlmode};
  567. struct can_berr_counter bec;
  568. enum can_state state = priv->state;
  569. if (priv->do_get_state)
  570. priv->do_get_state(dev, &state);
  571. NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
  572. NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
  573. NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
  574. NLA_PUT(skb, IFLA_CAN_BITTIMING,
  575. sizeof(priv->bittiming), &priv->bittiming);
  576. NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
  577. if (priv->do_get_berr_counter && !priv->do_get_berr_counter(dev, &bec))
  578. NLA_PUT(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec);
  579. if (priv->bittiming_const)
  580. NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
  581. sizeof(*priv->bittiming_const), priv->bittiming_const);
  582. return 0;
  583. nla_put_failure:
  584. return -EMSGSIZE;
  585. }
  586. static size_t can_get_xstats_size(const struct net_device *dev)
  587. {
  588. return sizeof(struct can_device_stats);
  589. }
  590. static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
  591. {
  592. struct can_priv *priv = netdev_priv(dev);
  593. NLA_PUT(skb, IFLA_INFO_XSTATS,
  594. sizeof(priv->can_stats), &priv->can_stats);
  595. return 0;
  596. nla_put_failure:
  597. return -EMSGSIZE;
  598. }
  599. static int can_newlink(struct net *src_net, struct net_device *dev,
  600. struct nlattr *tb[], struct nlattr *data[])
  601. {
  602. return -EOPNOTSUPP;
  603. }
  604. static struct rtnl_link_ops can_link_ops __read_mostly = {
  605. .kind = "can",
  606. .maxtype = IFLA_CAN_MAX,
  607. .policy = can_policy,
  608. .setup = can_setup,
  609. .newlink = can_newlink,
  610. .changelink = can_changelink,
  611. .get_size = can_get_size,
  612. .fill_info = can_fill_info,
  613. .get_xstats_size = can_get_xstats_size,
  614. .fill_xstats = can_fill_xstats,
  615. };
  616. /*
  617. * Register the CAN network device
  618. */
  619. int register_candev(struct net_device *dev)
  620. {
  621. dev->rtnl_link_ops = &can_link_ops;
  622. return register_netdev(dev);
  623. }
  624. EXPORT_SYMBOL_GPL(register_candev);
  625. /*
  626. * Unregister the CAN network device
  627. */
  628. void unregister_candev(struct net_device *dev)
  629. {
  630. unregister_netdev(dev);
  631. }
  632. EXPORT_SYMBOL_GPL(unregister_candev);
  633. static __init int can_dev_init(void)
  634. {
  635. int err;
  636. err = rtnl_link_register(&can_link_ops);
  637. if (!err)
  638. printk(KERN_INFO MOD_DESC "\n");
  639. return err;
  640. }
  641. module_init(can_dev_init);
  642. static __exit void can_dev_exit(void)
  643. {
  644. rtnl_link_unregister(&can_link_ops);
  645. }
  646. module_exit(can_dev_exit);
  647. MODULE_ALIAS_RTNL_LINK("can");