sh_mmcif.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205
  1. /*
  2. * MMCIF eMMC driver.
  3. *
  4. * Copyright (C) 2010 Renesas Solutions Corp.
  5. * Yusuke Goda <yusuke.goda.sx@renesas.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License.
  10. *
  11. *
  12. * TODO
  13. * 1. DMA
  14. * 2. Power management
  15. * 3. Handle MMC errors better
  16. *
  17. */
  18. #include <linux/clk.h>
  19. #include <linux/completion.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/mmc/card.h>
  24. #include <linux/mmc/core.h>
  25. #include <linux/mmc/host.h>
  26. #include <linux/mmc/mmc.h>
  27. #include <linux/mmc/sdio.h>
  28. #include <linux/mmc/sh_mmcif.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/spinlock.h>
  33. #define DRIVER_NAME "sh_mmcif"
  34. #define DRIVER_VERSION "2010-04-28"
  35. /* CE_CMD_SET */
  36. #define CMD_MASK 0x3f000000
  37. #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
  38. #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  39. #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
  40. #define CMD_SET_RBSY (1 << 21) /* R1b */
  41. #define CMD_SET_CCSEN (1 << 20)
  42. #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
  43. #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
  44. #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
  45. #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
  46. #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
  47. #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
  48. #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
  49. #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
  50. #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
  51. #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  52. #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
  53. #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
  54. #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
  55. #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
  56. #define CMD_SET_CCSH (1 << 5)
  57. #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
  58. #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
  59. #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
  60. /* CE_CMD_CTRL */
  61. #define CMD_CTRL_BREAK (1 << 0)
  62. /* CE_BLOCK_SET */
  63. #define BLOCK_SIZE_MASK 0x0000ffff
  64. /* CE_INT */
  65. #define INT_CCSDE (1 << 29)
  66. #define INT_CMD12DRE (1 << 26)
  67. #define INT_CMD12RBE (1 << 25)
  68. #define INT_CMD12CRE (1 << 24)
  69. #define INT_DTRANE (1 << 23)
  70. #define INT_BUFRE (1 << 22)
  71. #define INT_BUFWEN (1 << 21)
  72. #define INT_BUFREN (1 << 20)
  73. #define INT_CCSRCV (1 << 19)
  74. #define INT_RBSYE (1 << 17)
  75. #define INT_CRSPE (1 << 16)
  76. #define INT_CMDVIO (1 << 15)
  77. #define INT_BUFVIO (1 << 14)
  78. #define INT_WDATERR (1 << 11)
  79. #define INT_RDATERR (1 << 10)
  80. #define INT_RIDXERR (1 << 9)
  81. #define INT_RSPERR (1 << 8)
  82. #define INT_CCSTO (1 << 5)
  83. #define INT_CRCSTO (1 << 4)
  84. #define INT_WDATTO (1 << 3)
  85. #define INT_RDATTO (1 << 2)
  86. #define INT_RBSYTO (1 << 1)
  87. #define INT_RSPTO (1 << 0)
  88. #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
  89. INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
  90. INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
  91. INT_RDATTO | INT_RBSYTO | INT_RSPTO)
  92. /* CE_INT_MASK */
  93. #define MASK_ALL 0x00000000
  94. #define MASK_MCCSDE (1 << 29)
  95. #define MASK_MCMD12DRE (1 << 26)
  96. #define MASK_MCMD12RBE (1 << 25)
  97. #define MASK_MCMD12CRE (1 << 24)
  98. #define MASK_MDTRANE (1 << 23)
  99. #define MASK_MBUFRE (1 << 22)
  100. #define MASK_MBUFWEN (1 << 21)
  101. #define MASK_MBUFREN (1 << 20)
  102. #define MASK_MCCSRCV (1 << 19)
  103. #define MASK_MRBSYE (1 << 17)
  104. #define MASK_MCRSPE (1 << 16)
  105. #define MASK_MCMDVIO (1 << 15)
  106. #define MASK_MBUFVIO (1 << 14)
  107. #define MASK_MWDATERR (1 << 11)
  108. #define MASK_MRDATERR (1 << 10)
  109. #define MASK_MRIDXERR (1 << 9)
  110. #define MASK_MRSPERR (1 << 8)
  111. #define MASK_MCCSTO (1 << 5)
  112. #define MASK_MCRCSTO (1 << 4)
  113. #define MASK_MWDATTO (1 << 3)
  114. #define MASK_MRDATTO (1 << 2)
  115. #define MASK_MRBSYTO (1 << 1)
  116. #define MASK_MRSPTO (1 << 0)
  117. /* CE_HOST_STS1 */
  118. #define STS1_CMDSEQ (1 << 31)
  119. /* CE_HOST_STS2 */
  120. #define STS2_CRCSTE (1 << 31)
  121. #define STS2_CRC16E (1 << 30)
  122. #define STS2_AC12CRCE (1 << 29)
  123. #define STS2_RSPCRC7E (1 << 28)
  124. #define STS2_CRCSTEBE (1 << 27)
  125. #define STS2_RDATEBE (1 << 26)
  126. #define STS2_AC12REBE (1 << 25)
  127. #define STS2_RSPEBE (1 << 24)
  128. #define STS2_AC12IDXE (1 << 23)
  129. #define STS2_RSPIDXE (1 << 22)
  130. #define STS2_CCSTO (1 << 15)
  131. #define STS2_RDATTO (1 << 14)
  132. #define STS2_DATBSYTO (1 << 13)
  133. #define STS2_CRCSTTO (1 << 12)
  134. #define STS2_AC12BSYTO (1 << 11)
  135. #define STS2_RSPBSYTO (1 << 10)
  136. #define STS2_AC12RSPTO (1 << 9)
  137. #define STS2_RSPTO (1 << 8)
  138. #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
  139. STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
  140. #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
  141. STS2_DATBSYTO | STS2_CRCSTTO | \
  142. STS2_AC12BSYTO | STS2_RSPBSYTO | \
  143. STS2_AC12RSPTO | STS2_RSPTO)
  144. #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
  145. #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
  146. #define CLKDEV_INIT 400000 /* 400 KHz */
  147. enum mmcif_state {
  148. STATE_IDLE,
  149. STATE_REQUEST,
  150. STATE_IOS,
  151. };
  152. struct sh_mmcif_host {
  153. struct mmc_host *mmc;
  154. struct mmc_data *data;
  155. struct platform_device *pd;
  156. struct clk *hclk;
  157. unsigned int clk;
  158. int bus_width;
  159. bool sd_error;
  160. long timeout;
  161. void __iomem *addr;
  162. struct completion intr_wait;
  163. enum mmcif_state state;
  164. spinlock_t lock;
  165. bool power;
  166. /* DMA support */
  167. struct dma_chan *chan_rx;
  168. struct dma_chan *chan_tx;
  169. struct completion dma_complete;
  170. bool dma_active;
  171. };
  172. static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
  173. unsigned int reg, u32 val)
  174. {
  175. writel(val | readl(host->addr + reg), host->addr + reg);
  176. }
  177. static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
  178. unsigned int reg, u32 val)
  179. {
  180. writel(~val & readl(host->addr + reg), host->addr + reg);
  181. }
  182. static void mmcif_dma_complete(void *arg)
  183. {
  184. struct sh_mmcif_host *host = arg;
  185. dev_dbg(&host->pd->dev, "Command completed\n");
  186. if (WARN(!host->data, "%s: NULL data in DMA completion!\n",
  187. dev_name(&host->pd->dev)))
  188. return;
  189. if (host->data->flags & MMC_DATA_READ)
  190. dma_unmap_sg(host->chan_rx->device->dev,
  191. host->data->sg, host->data->sg_len,
  192. DMA_FROM_DEVICE);
  193. else
  194. dma_unmap_sg(host->chan_tx->device->dev,
  195. host->data->sg, host->data->sg_len,
  196. DMA_TO_DEVICE);
  197. complete(&host->dma_complete);
  198. }
  199. static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
  200. {
  201. struct scatterlist *sg = host->data->sg;
  202. struct dma_async_tx_descriptor *desc = NULL;
  203. struct dma_chan *chan = host->chan_rx;
  204. dma_cookie_t cookie = -EINVAL;
  205. int ret;
  206. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  207. DMA_FROM_DEVICE);
  208. if (ret > 0) {
  209. host->dma_active = true;
  210. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  211. DMA_FROM_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  212. }
  213. if (desc) {
  214. desc->callback = mmcif_dma_complete;
  215. desc->callback_param = host;
  216. cookie = dmaengine_submit(desc);
  217. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
  218. dma_async_issue_pending(chan);
  219. }
  220. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  221. __func__, host->data->sg_len, ret, cookie);
  222. if (!desc) {
  223. /* DMA failed, fall back to PIO */
  224. if (ret >= 0)
  225. ret = -EIO;
  226. host->chan_rx = NULL;
  227. host->dma_active = false;
  228. dma_release_channel(chan);
  229. /* Free the Tx channel too */
  230. chan = host->chan_tx;
  231. if (chan) {
  232. host->chan_tx = NULL;
  233. dma_release_channel(chan);
  234. }
  235. dev_warn(&host->pd->dev,
  236. "DMA failed: %d, falling back to PIO\n", ret);
  237. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  238. }
  239. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
  240. desc, cookie, host->data->sg_len);
  241. }
  242. static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
  243. {
  244. struct scatterlist *sg = host->data->sg;
  245. struct dma_async_tx_descriptor *desc = NULL;
  246. struct dma_chan *chan = host->chan_tx;
  247. dma_cookie_t cookie = -EINVAL;
  248. int ret;
  249. ret = dma_map_sg(chan->device->dev, sg, host->data->sg_len,
  250. DMA_TO_DEVICE);
  251. if (ret > 0) {
  252. host->dma_active = true;
  253. desc = chan->device->device_prep_slave_sg(chan, sg, ret,
  254. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  255. }
  256. if (desc) {
  257. desc->callback = mmcif_dma_complete;
  258. desc->callback_param = host;
  259. cookie = dmaengine_submit(desc);
  260. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
  261. dma_async_issue_pending(chan);
  262. }
  263. dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
  264. __func__, host->data->sg_len, ret, cookie);
  265. if (!desc) {
  266. /* DMA failed, fall back to PIO */
  267. if (ret >= 0)
  268. ret = -EIO;
  269. host->chan_tx = NULL;
  270. host->dma_active = false;
  271. dma_release_channel(chan);
  272. /* Free the Rx channel too */
  273. chan = host->chan_rx;
  274. if (chan) {
  275. host->chan_rx = NULL;
  276. dma_release_channel(chan);
  277. }
  278. dev_warn(&host->pd->dev,
  279. "DMA failed: %d, falling back to PIO\n", ret);
  280. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  281. }
  282. dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
  283. desc, cookie);
  284. }
  285. static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
  286. {
  287. dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
  288. chan->private = arg;
  289. return true;
  290. }
  291. static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
  292. struct sh_mmcif_plat_data *pdata)
  293. {
  294. host->dma_active = false;
  295. /* We can only either use DMA for both Tx and Rx or not use it at all */
  296. if (pdata->dma) {
  297. dma_cap_mask_t mask;
  298. dma_cap_zero(mask);
  299. dma_cap_set(DMA_SLAVE, mask);
  300. host->chan_tx = dma_request_channel(mask, sh_mmcif_filter,
  301. &pdata->dma->chan_priv_tx);
  302. dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
  303. host->chan_tx);
  304. if (!host->chan_tx)
  305. return;
  306. host->chan_rx = dma_request_channel(mask, sh_mmcif_filter,
  307. &pdata->dma->chan_priv_rx);
  308. dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
  309. host->chan_rx);
  310. if (!host->chan_rx) {
  311. dma_release_channel(host->chan_tx);
  312. host->chan_tx = NULL;
  313. return;
  314. }
  315. init_completion(&host->dma_complete);
  316. }
  317. }
  318. static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
  319. {
  320. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  321. /* Descriptors are freed automatically */
  322. if (host->chan_tx) {
  323. struct dma_chan *chan = host->chan_tx;
  324. host->chan_tx = NULL;
  325. dma_release_channel(chan);
  326. }
  327. if (host->chan_rx) {
  328. struct dma_chan *chan = host->chan_rx;
  329. host->chan_rx = NULL;
  330. dma_release_channel(chan);
  331. }
  332. host->dma_active = false;
  333. }
  334. static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
  335. {
  336. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  337. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  338. sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
  339. if (!clk)
  340. return;
  341. if (p->sup_pclk && clk == host->clk)
  342. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
  343. else
  344. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
  345. (ilog2(__rounddown_pow_of_two(host->clk / clk)) << 16));
  346. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
  347. }
  348. static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
  349. {
  350. u32 tmp;
  351. tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
  352. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
  353. sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
  354. sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
  355. SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
  356. /* byte swap on */
  357. sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
  358. }
  359. static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
  360. {
  361. u32 state1, state2;
  362. int ret, timeout = 10000000;
  363. host->sd_error = false;
  364. state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
  365. state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
  366. dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
  367. dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
  368. if (state1 & STS1_CMDSEQ) {
  369. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
  370. sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
  371. while (1) {
  372. timeout--;
  373. if (timeout < 0) {
  374. dev_err(&host->pd->dev,
  375. "Forceed end of command sequence timeout err\n");
  376. return -EIO;
  377. }
  378. if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
  379. & STS1_CMDSEQ))
  380. break;
  381. mdelay(1);
  382. }
  383. sh_mmcif_sync_reset(host);
  384. dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
  385. return -EIO;
  386. }
  387. if (state2 & STS2_CRC_ERR) {
  388. dev_dbg(&host->pd->dev, ": Happened CRC error\n");
  389. ret = -EIO;
  390. } else if (state2 & STS2_TIMEOUT_ERR) {
  391. dev_dbg(&host->pd->dev, ": Happened Timeout error\n");
  392. ret = -ETIMEDOUT;
  393. } else {
  394. dev_dbg(&host->pd->dev, ": Happened End/Index error\n");
  395. ret = -EIO;
  396. }
  397. return ret;
  398. }
  399. static int sh_mmcif_single_read(struct sh_mmcif_host *host,
  400. struct mmc_request *mrq)
  401. {
  402. struct mmc_data *data = mrq->data;
  403. long time;
  404. u32 blocksize, i, *p = sg_virt(data->sg);
  405. /* buf read enable */
  406. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  407. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  408. host->timeout);
  409. if (time <= 0 || host->sd_error)
  410. return sh_mmcif_error_manage(host);
  411. blocksize = (BLOCK_SIZE_MASK &
  412. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  413. for (i = 0; i < blocksize / 4; i++)
  414. *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
  415. /* buffer read end */
  416. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  417. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  418. host->timeout);
  419. if (time <= 0 || host->sd_error)
  420. return sh_mmcif_error_manage(host);
  421. return 0;
  422. }
  423. static int sh_mmcif_multi_read(struct sh_mmcif_host *host,
  424. struct mmc_request *mrq)
  425. {
  426. struct mmc_data *data = mrq->data;
  427. long time;
  428. u32 blocksize, i, j, sec, *p;
  429. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  430. MMCIF_CE_BLOCK_SET);
  431. for (j = 0; j < data->sg_len; j++) {
  432. p = sg_virt(data->sg);
  433. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  434. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  435. /* buf read enable */
  436. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  437. host->timeout);
  438. if (time <= 0 || host->sd_error)
  439. return sh_mmcif_error_manage(host);
  440. for (i = 0; i < blocksize / 4; i++)
  441. *p++ = sh_mmcif_readl(host->addr,
  442. MMCIF_CE_DATA);
  443. }
  444. if (j < data->sg_len - 1)
  445. data->sg++;
  446. }
  447. return 0;
  448. }
  449. static int sh_mmcif_single_write(struct sh_mmcif_host *host,
  450. struct mmc_request *mrq)
  451. {
  452. struct mmc_data *data = mrq->data;
  453. long time;
  454. u32 blocksize, i, *p = sg_virt(data->sg);
  455. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  456. /* buf write enable */
  457. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  458. host->timeout);
  459. if (time <= 0 || host->sd_error)
  460. return sh_mmcif_error_manage(host);
  461. blocksize = (BLOCK_SIZE_MASK &
  462. sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET)) + 3;
  463. for (i = 0; i < blocksize / 4; i++)
  464. sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
  465. /* buffer write end */
  466. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  467. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  468. host->timeout);
  469. if (time <= 0 || host->sd_error)
  470. return sh_mmcif_error_manage(host);
  471. return 0;
  472. }
  473. static int sh_mmcif_multi_write(struct sh_mmcif_host *host,
  474. struct mmc_request *mrq)
  475. {
  476. struct mmc_data *data = mrq->data;
  477. long time;
  478. u32 i, sec, j, blocksize, *p;
  479. blocksize = BLOCK_SIZE_MASK & sh_mmcif_readl(host->addr,
  480. MMCIF_CE_BLOCK_SET);
  481. for (j = 0; j < data->sg_len; j++) {
  482. p = sg_virt(data->sg);
  483. for (sec = 0; sec < data->sg->length / blocksize; sec++) {
  484. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  485. /* buf write enable*/
  486. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  487. host->timeout);
  488. if (time <= 0 || host->sd_error)
  489. return sh_mmcif_error_manage(host);
  490. for (i = 0; i < blocksize / 4; i++)
  491. sh_mmcif_writel(host->addr,
  492. MMCIF_CE_DATA, *p++);
  493. }
  494. if (j < data->sg_len - 1)
  495. data->sg++;
  496. }
  497. return 0;
  498. }
  499. static void sh_mmcif_get_response(struct sh_mmcif_host *host,
  500. struct mmc_command *cmd)
  501. {
  502. if (cmd->flags & MMC_RSP_136) {
  503. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
  504. cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
  505. cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
  506. cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  507. } else
  508. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
  509. }
  510. static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
  511. struct mmc_command *cmd)
  512. {
  513. cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
  514. }
  515. static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
  516. struct mmc_request *mrq, struct mmc_command *cmd, u32 opc)
  517. {
  518. u32 tmp = 0;
  519. /* Response Type check */
  520. switch (mmc_resp_type(cmd)) {
  521. case MMC_RSP_NONE:
  522. tmp |= CMD_SET_RTYP_NO;
  523. break;
  524. case MMC_RSP_R1:
  525. case MMC_RSP_R1B:
  526. case MMC_RSP_R3:
  527. tmp |= CMD_SET_RTYP_6B;
  528. break;
  529. case MMC_RSP_R2:
  530. tmp |= CMD_SET_RTYP_17B;
  531. break;
  532. default:
  533. dev_err(&host->pd->dev, "Unsupported response type.\n");
  534. break;
  535. }
  536. switch (opc) {
  537. /* RBSY */
  538. case MMC_SWITCH:
  539. case MMC_STOP_TRANSMISSION:
  540. case MMC_SET_WRITE_PROT:
  541. case MMC_CLR_WRITE_PROT:
  542. case MMC_ERASE:
  543. case MMC_GEN_CMD:
  544. tmp |= CMD_SET_RBSY;
  545. break;
  546. }
  547. /* WDAT / DATW */
  548. if (host->data) {
  549. tmp |= CMD_SET_WDAT;
  550. switch (host->bus_width) {
  551. case MMC_BUS_WIDTH_1:
  552. tmp |= CMD_SET_DATW_1;
  553. break;
  554. case MMC_BUS_WIDTH_4:
  555. tmp |= CMD_SET_DATW_4;
  556. break;
  557. case MMC_BUS_WIDTH_8:
  558. tmp |= CMD_SET_DATW_8;
  559. break;
  560. default:
  561. dev_err(&host->pd->dev, "Unsupported bus width.\n");
  562. break;
  563. }
  564. }
  565. /* DWEN */
  566. if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
  567. tmp |= CMD_SET_DWEN;
  568. /* CMLTE/CMD12EN */
  569. if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
  570. tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
  571. sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
  572. mrq->data->blocks << 16);
  573. }
  574. /* RIDXC[1:0] check bits */
  575. if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
  576. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  577. tmp |= CMD_SET_RIDXC_BITS;
  578. /* RCRC7C[1:0] check bits */
  579. if (opc == MMC_SEND_OP_COND)
  580. tmp |= CMD_SET_CRC7C_BITS;
  581. /* RCRC7C[1:0] internal CRC7 */
  582. if (opc == MMC_ALL_SEND_CID ||
  583. opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
  584. tmp |= CMD_SET_CRC7C_INTERNAL;
  585. return opc = ((opc << 24) | tmp);
  586. }
  587. static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
  588. struct mmc_request *mrq, u32 opc)
  589. {
  590. int ret;
  591. switch (opc) {
  592. case MMC_READ_MULTIPLE_BLOCK:
  593. ret = sh_mmcif_multi_read(host, mrq);
  594. break;
  595. case MMC_WRITE_MULTIPLE_BLOCK:
  596. ret = sh_mmcif_multi_write(host, mrq);
  597. break;
  598. case MMC_WRITE_BLOCK:
  599. ret = sh_mmcif_single_write(host, mrq);
  600. break;
  601. case MMC_READ_SINGLE_BLOCK:
  602. case MMC_SEND_EXT_CSD:
  603. ret = sh_mmcif_single_read(host, mrq);
  604. break;
  605. default:
  606. dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
  607. ret = -EINVAL;
  608. break;
  609. }
  610. return ret;
  611. }
  612. static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
  613. struct mmc_request *mrq, struct mmc_command *cmd)
  614. {
  615. long time;
  616. int ret = 0, mask = 0;
  617. u32 opc = cmd->opcode;
  618. switch (opc) {
  619. /* respons busy check */
  620. case MMC_SWITCH:
  621. case MMC_STOP_TRANSMISSION:
  622. case MMC_SET_WRITE_PROT:
  623. case MMC_CLR_WRITE_PROT:
  624. case MMC_ERASE:
  625. case MMC_GEN_CMD:
  626. mask = MASK_MRBSYE;
  627. break;
  628. default:
  629. mask = MASK_MCRSPE;
  630. break;
  631. }
  632. mask |= MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR |
  633. MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR |
  634. MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO |
  635. MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO;
  636. if (host->data) {
  637. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
  638. sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
  639. mrq->data->blksz);
  640. }
  641. opc = sh_mmcif_set_cmd(host, mrq, cmd, opc);
  642. sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
  643. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
  644. /* set arg */
  645. sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
  646. /* set cmd */
  647. sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
  648. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  649. host->timeout);
  650. if (time <= 0) {
  651. cmd->error = sh_mmcif_error_manage(host);
  652. return;
  653. }
  654. if (host->sd_error) {
  655. switch (cmd->opcode) {
  656. case MMC_ALL_SEND_CID:
  657. case MMC_SELECT_CARD:
  658. case MMC_APP_CMD:
  659. cmd->error = -ETIMEDOUT;
  660. break;
  661. default:
  662. dev_dbg(&host->pd->dev, "Cmd(d'%d) err\n",
  663. cmd->opcode);
  664. cmd->error = sh_mmcif_error_manage(host);
  665. break;
  666. }
  667. host->sd_error = false;
  668. return;
  669. }
  670. if (!(cmd->flags & MMC_RSP_PRESENT)) {
  671. cmd->error = 0;
  672. return;
  673. }
  674. sh_mmcif_get_response(host, cmd);
  675. if (host->data) {
  676. if (!host->dma_active) {
  677. ret = sh_mmcif_data_trans(host, mrq, cmd->opcode);
  678. } else {
  679. long time =
  680. wait_for_completion_interruptible_timeout(&host->dma_complete,
  681. host->timeout);
  682. if (!time)
  683. ret = -ETIMEDOUT;
  684. else if (time < 0)
  685. ret = time;
  686. sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
  687. BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
  688. host->dma_active = false;
  689. }
  690. if (ret < 0)
  691. mrq->data->bytes_xfered = 0;
  692. else
  693. mrq->data->bytes_xfered =
  694. mrq->data->blocks * mrq->data->blksz;
  695. }
  696. cmd->error = ret;
  697. }
  698. static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
  699. struct mmc_request *mrq, struct mmc_command *cmd)
  700. {
  701. long time;
  702. if (mrq->cmd->opcode == MMC_READ_MULTIPLE_BLOCK)
  703. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  704. else if (mrq->cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK)
  705. sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  706. else {
  707. dev_err(&host->pd->dev, "unsupported stop cmd\n");
  708. cmd->error = sh_mmcif_error_manage(host);
  709. return;
  710. }
  711. time = wait_for_completion_interruptible_timeout(&host->intr_wait,
  712. host->timeout);
  713. if (time <= 0 || host->sd_error) {
  714. cmd->error = sh_mmcif_error_manage(host);
  715. return;
  716. }
  717. sh_mmcif_get_cmd12response(host, cmd);
  718. cmd->error = 0;
  719. }
  720. static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
  721. {
  722. struct sh_mmcif_host *host = mmc_priv(mmc);
  723. unsigned long flags;
  724. spin_lock_irqsave(&host->lock, flags);
  725. if (host->state != STATE_IDLE) {
  726. spin_unlock_irqrestore(&host->lock, flags);
  727. mrq->cmd->error = -EAGAIN;
  728. mmc_request_done(mmc, mrq);
  729. return;
  730. }
  731. host->state = STATE_REQUEST;
  732. spin_unlock_irqrestore(&host->lock, flags);
  733. switch (mrq->cmd->opcode) {
  734. /* MMCIF does not support SD/SDIO command */
  735. case SD_IO_SEND_OP_COND:
  736. case MMC_APP_CMD:
  737. host->state = STATE_IDLE;
  738. mrq->cmd->error = -ETIMEDOUT;
  739. mmc_request_done(mmc, mrq);
  740. return;
  741. case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
  742. if (!mrq->data) {
  743. /* send_if_cond cmd (not support) */
  744. host->state = STATE_IDLE;
  745. mrq->cmd->error = -ETIMEDOUT;
  746. mmc_request_done(mmc, mrq);
  747. return;
  748. }
  749. break;
  750. default:
  751. break;
  752. }
  753. host->data = mrq->data;
  754. if (mrq->data) {
  755. if (mrq->data->flags & MMC_DATA_READ) {
  756. if (host->chan_rx)
  757. sh_mmcif_start_dma_rx(host);
  758. } else {
  759. if (host->chan_tx)
  760. sh_mmcif_start_dma_tx(host);
  761. }
  762. }
  763. sh_mmcif_start_cmd(host, mrq, mrq->cmd);
  764. host->data = NULL;
  765. if (!mrq->cmd->error && mrq->stop)
  766. sh_mmcif_stop_cmd(host, mrq, mrq->stop);
  767. host->state = STATE_IDLE;
  768. mmc_request_done(mmc, mrq);
  769. }
  770. static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  771. {
  772. struct sh_mmcif_host *host = mmc_priv(mmc);
  773. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  774. unsigned long flags;
  775. spin_lock_irqsave(&host->lock, flags);
  776. if (host->state != STATE_IDLE) {
  777. spin_unlock_irqrestore(&host->lock, flags);
  778. return;
  779. }
  780. host->state = STATE_IOS;
  781. spin_unlock_irqrestore(&host->lock, flags);
  782. if (ios->power_mode == MMC_POWER_UP) {
  783. if (p->set_pwr)
  784. p->set_pwr(host->pd, ios->power_mode);
  785. if (!host->power) {
  786. /* See if we also get DMA */
  787. sh_mmcif_request_dma(host, host->pd->dev.platform_data);
  788. pm_runtime_get_sync(&host->pd->dev);
  789. host->power = true;
  790. }
  791. } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
  792. /* clock stop */
  793. sh_mmcif_clock_control(host, 0);
  794. if (ios->power_mode == MMC_POWER_OFF) {
  795. if (host->power) {
  796. pm_runtime_put(&host->pd->dev);
  797. sh_mmcif_release_dma(host);
  798. host->power = false;
  799. }
  800. if (p->down_pwr)
  801. p->down_pwr(host->pd);
  802. }
  803. host->state = STATE_IDLE;
  804. return;
  805. }
  806. if (ios->clock)
  807. sh_mmcif_clock_control(host, ios->clock);
  808. host->bus_width = ios->bus_width;
  809. host->state = STATE_IDLE;
  810. }
  811. static int sh_mmcif_get_cd(struct mmc_host *mmc)
  812. {
  813. struct sh_mmcif_host *host = mmc_priv(mmc);
  814. struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
  815. if (!p->get_cd)
  816. return -ENOSYS;
  817. else
  818. return p->get_cd(host->pd);
  819. }
  820. static struct mmc_host_ops sh_mmcif_ops = {
  821. .request = sh_mmcif_request,
  822. .set_ios = sh_mmcif_set_ios,
  823. .get_cd = sh_mmcif_get_cd,
  824. };
  825. static void sh_mmcif_detect(struct mmc_host *mmc)
  826. {
  827. mmc_detect_change(mmc, 0);
  828. }
  829. static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
  830. {
  831. struct sh_mmcif_host *host = dev_id;
  832. u32 state;
  833. int err = 0;
  834. state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
  835. if (state & INT_RBSYE) {
  836. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  837. ~(INT_RBSYE | INT_CRSPE));
  838. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
  839. } else if (state & INT_CRSPE) {
  840. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
  841. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
  842. } else if (state & INT_BUFREN) {
  843. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
  844. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
  845. } else if (state & INT_BUFWEN) {
  846. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
  847. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
  848. } else if (state & INT_CMD12DRE) {
  849. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  850. ~(INT_CMD12DRE | INT_CMD12RBE |
  851. INT_CMD12CRE | INT_BUFRE));
  852. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
  853. } else if (state & INT_BUFRE) {
  854. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
  855. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
  856. } else if (state & INT_DTRANE) {
  857. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
  858. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
  859. } else if (state & INT_CMD12RBE) {
  860. sh_mmcif_writel(host->addr, MMCIF_CE_INT,
  861. ~(INT_CMD12RBE | INT_CMD12CRE));
  862. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
  863. } else if (state & INT_ERR_STS) {
  864. /* err interrupts */
  865. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  866. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  867. err = 1;
  868. } else {
  869. dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
  870. sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
  871. sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
  872. err = 1;
  873. }
  874. if (err) {
  875. host->sd_error = true;
  876. dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
  877. }
  878. if (state & ~(INT_CMD12RBE | INT_CMD12CRE))
  879. complete(&host->intr_wait);
  880. else
  881. dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
  882. return IRQ_HANDLED;
  883. }
  884. static int __devinit sh_mmcif_probe(struct platform_device *pdev)
  885. {
  886. int ret = 0, irq[2];
  887. struct mmc_host *mmc;
  888. struct sh_mmcif_host *host;
  889. struct sh_mmcif_plat_data *pd;
  890. struct resource *res;
  891. void __iomem *reg;
  892. char clk_name[8];
  893. irq[0] = platform_get_irq(pdev, 0);
  894. irq[1] = platform_get_irq(pdev, 1);
  895. if (irq[0] < 0 || irq[1] < 0) {
  896. dev_err(&pdev->dev, "Get irq error\n");
  897. return -ENXIO;
  898. }
  899. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  900. if (!res) {
  901. dev_err(&pdev->dev, "platform_get_resource error.\n");
  902. return -ENXIO;
  903. }
  904. reg = ioremap(res->start, resource_size(res));
  905. if (!reg) {
  906. dev_err(&pdev->dev, "ioremap error.\n");
  907. return -ENOMEM;
  908. }
  909. pd = pdev->dev.platform_data;
  910. if (!pd) {
  911. dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
  912. ret = -ENXIO;
  913. goto clean_up;
  914. }
  915. mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
  916. if (!mmc) {
  917. ret = -ENOMEM;
  918. goto clean_up;
  919. }
  920. host = mmc_priv(mmc);
  921. host->mmc = mmc;
  922. host->addr = reg;
  923. host->timeout = 1000;
  924. snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
  925. host->hclk = clk_get(&pdev->dev, clk_name);
  926. if (IS_ERR(host->hclk)) {
  927. dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
  928. ret = PTR_ERR(host->hclk);
  929. goto clean_up1;
  930. }
  931. clk_enable(host->hclk);
  932. host->clk = clk_get_rate(host->hclk);
  933. host->pd = pdev;
  934. init_completion(&host->intr_wait);
  935. spin_lock_init(&host->lock);
  936. mmc->ops = &sh_mmcif_ops;
  937. mmc->f_max = host->clk;
  938. /* close to 400KHz */
  939. if (mmc->f_max < 51200000)
  940. mmc->f_min = mmc->f_max / 128;
  941. else if (mmc->f_max < 102400000)
  942. mmc->f_min = mmc->f_max / 256;
  943. else
  944. mmc->f_min = mmc->f_max / 512;
  945. if (pd->ocr)
  946. mmc->ocr_avail = pd->ocr;
  947. mmc->caps = MMC_CAP_MMC_HIGHSPEED;
  948. if (pd->caps)
  949. mmc->caps |= pd->caps;
  950. mmc->max_segs = 32;
  951. mmc->max_blk_size = 512;
  952. mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
  953. mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
  954. mmc->max_seg_size = mmc->max_req_size;
  955. sh_mmcif_sync_reset(host);
  956. platform_set_drvdata(pdev, host);
  957. pm_runtime_enable(&pdev->dev);
  958. host->power = false;
  959. ret = pm_runtime_resume(&pdev->dev);
  960. if (ret < 0)
  961. goto clean_up2;
  962. mmc_add_host(mmc);
  963. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  964. ret = request_irq(irq[0], sh_mmcif_intr, 0, "sh_mmc:error", host);
  965. if (ret) {
  966. dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
  967. goto clean_up3;
  968. }
  969. ret = request_irq(irq[1], sh_mmcif_intr, 0, "sh_mmc:int", host);
  970. if (ret) {
  971. free_irq(irq[0], host);
  972. dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
  973. goto clean_up3;
  974. }
  975. sh_mmcif_detect(host->mmc);
  976. dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
  977. dev_dbg(&pdev->dev, "chip ver H'%04x\n",
  978. sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
  979. return ret;
  980. clean_up3:
  981. mmc_remove_host(mmc);
  982. pm_runtime_suspend(&pdev->dev);
  983. clean_up2:
  984. pm_runtime_disable(&pdev->dev);
  985. clk_disable(host->hclk);
  986. clean_up1:
  987. mmc_free_host(mmc);
  988. clean_up:
  989. if (reg)
  990. iounmap(reg);
  991. return ret;
  992. }
  993. static int __devexit sh_mmcif_remove(struct platform_device *pdev)
  994. {
  995. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  996. int irq[2];
  997. pm_runtime_get_sync(&pdev->dev);
  998. mmc_remove_host(host->mmc);
  999. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1000. if (host->addr)
  1001. iounmap(host->addr);
  1002. irq[0] = platform_get_irq(pdev, 0);
  1003. irq[1] = platform_get_irq(pdev, 1);
  1004. free_irq(irq[0], host);
  1005. free_irq(irq[1], host);
  1006. platform_set_drvdata(pdev, NULL);
  1007. clk_disable(host->hclk);
  1008. mmc_free_host(host->mmc);
  1009. pm_runtime_put_sync(&pdev->dev);
  1010. pm_runtime_disable(&pdev->dev);
  1011. return 0;
  1012. }
  1013. #ifdef CONFIG_PM
  1014. static int sh_mmcif_suspend(struct device *dev)
  1015. {
  1016. struct platform_device *pdev = to_platform_device(dev);
  1017. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1018. int ret = mmc_suspend_host(host->mmc);
  1019. if (!ret) {
  1020. sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
  1021. clk_disable(host->hclk);
  1022. }
  1023. return ret;
  1024. }
  1025. static int sh_mmcif_resume(struct device *dev)
  1026. {
  1027. struct platform_device *pdev = to_platform_device(dev);
  1028. struct sh_mmcif_host *host = platform_get_drvdata(pdev);
  1029. clk_enable(host->hclk);
  1030. return mmc_resume_host(host->mmc);
  1031. }
  1032. #else
  1033. #define sh_mmcif_suspend NULL
  1034. #define sh_mmcif_resume NULL
  1035. #endif /* CONFIG_PM */
  1036. static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
  1037. .suspend = sh_mmcif_suspend,
  1038. .resume = sh_mmcif_resume,
  1039. };
  1040. static struct platform_driver sh_mmcif_driver = {
  1041. .probe = sh_mmcif_probe,
  1042. .remove = sh_mmcif_remove,
  1043. .driver = {
  1044. .name = DRIVER_NAME,
  1045. .pm = &sh_mmcif_dev_pm_ops,
  1046. },
  1047. };
  1048. static int __init sh_mmcif_init(void)
  1049. {
  1050. return platform_driver_register(&sh_mmcif_driver);
  1051. }
  1052. static void __exit sh_mmcif_exit(void)
  1053. {
  1054. platform_driver_unregister(&sh_mmcif_driver);
  1055. }
  1056. module_init(sh_mmcif_init);
  1057. module_exit(sh_mmcif_exit);
  1058. MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
  1059. MODULE_LICENSE("GPL");
  1060. MODULE_ALIAS("platform:" DRIVER_NAME);
  1061. MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");