123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263 |
- /*P:700
- * The pagetable code, on the other hand, still shows the scars of
- * previous encounters. It's functional, and as neat as it can be in the
- * circumstances, but be wary, for these things are subtle and break easily.
- * The Guest provides a virtual to physical mapping, but we can neither trust
- * it nor use it: we verify and convert it here then point the CPU to the
- * converted Guest pages when running the Guest.
- :*/
- /* Copyright (C) Rusty Russell IBM Corporation 2006.
- * GPL v2 and any later version */
- #include <linux/mm.h>
- #include <linux/gfp.h>
- #include <linux/types.h>
- #include <linux/spinlock.h>
- #include <linux/random.h>
- #include <linux/percpu.h>
- #include <asm/tlbflush.h>
- #include <asm/uaccess.h>
- #include <asm/bootparam.h>
- #include "lg.h"
- /*M:008
- * We hold reference to pages, which prevents them from being swapped.
- * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
- * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
- * could probably consider launching Guests as non-root.
- :*/
- /*H:300
- * The Page Table Code
- *
- * We use two-level page tables for the Guest, or three-level with PAE. If
- * you're not entirely comfortable with virtual addresses, physical addresses
- * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
- * Table Handling" (with diagrams!).
- *
- * The Guest keeps page tables, but we maintain the actual ones here: these are
- * called "shadow" page tables. Which is a very Guest-centric name: these are
- * the real page tables the CPU uses, although we keep them up to date to
- * reflect the Guest's. (See what I mean about weird naming? Since when do
- * shadows reflect anything?)
- *
- * Anyway, this is the most complicated part of the Host code. There are seven
- * parts to this:
- * (i) Looking up a page table entry when the Guest faults,
- * (ii) Making sure the Guest stack is mapped,
- * (iii) Setting up a page table entry when the Guest tells us one has changed,
- * (iv) Switching page tables,
- * (v) Flushing (throwing away) page tables,
- * (vi) Mapping the Switcher when the Guest is about to run,
- * (vii) Setting up the page tables initially.
- :*/
- /*
- * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
- * or 512 PTE entries with PAE (2MB).
- */
- #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
- /*
- * For PAE we need the PMD index as well. We use the last 2MB, so we
- * will need the last pmd entry of the last pmd page.
- */
- #ifdef CONFIG_X86_PAE
- #define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
- #define RESERVE_MEM 2U
- #define CHECK_GPGD_MASK _PAGE_PRESENT
- #else
- #define RESERVE_MEM 4U
- #define CHECK_GPGD_MASK _PAGE_TABLE
- #endif
- /*
- * We actually need a separate PTE page for each CPU. Remember that after the
- * Switcher code itself comes two pages for each CPU, and we don't want this
- * CPU's guest to see the pages of any other CPU.
- */
- static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
- #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
- /*H:320
- * The page table code is curly enough to need helper functions to keep it
- * clear and clean. The kernel itself provides many of them; one advantage
- * of insisting that the Guest and Host use the same CONFIG_PAE setting.
- *
- * There are two functions which return pointers to the shadow (aka "real")
- * page tables.
- *
- * spgd_addr() takes the virtual address and returns a pointer to the top-level
- * page directory entry (PGD) for that address. Since we keep track of several
- * page tables, the "i" argument tells us which one we're interested in (it's
- * usually the current one).
- */
- static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
- {
- unsigned int index = pgd_index(vaddr);
- #ifndef CONFIG_X86_PAE
- /* We kill any Guest trying to touch the Switcher addresses. */
- if (index >= SWITCHER_PGD_INDEX) {
- kill_guest(cpu, "attempt to access switcher pages");
- index = 0;
- }
- #endif
- /* Return a pointer index'th pgd entry for the i'th page table. */
- return &cpu->lg->pgdirs[i].pgdir[index];
- }
- #ifdef CONFIG_X86_PAE
- /*
- * This routine then takes the PGD entry given above, which contains the
- * address of the PMD page. It then returns a pointer to the PMD entry for the
- * given address.
- */
- static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
- {
- unsigned int index = pmd_index(vaddr);
- pmd_t *page;
- /* We kill any Guest trying to touch the Switcher addresses. */
- if (pgd_index(vaddr) == SWITCHER_PGD_INDEX &&
- index >= SWITCHER_PMD_INDEX) {
- kill_guest(cpu, "attempt to access switcher pages");
- index = 0;
- }
- /* You should never call this if the PGD entry wasn't valid */
- BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
- page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
- return &page[index];
- }
- #endif
- /*
- * This routine then takes the page directory entry returned above, which
- * contains the address of the page table entry (PTE) page. It then returns a
- * pointer to the PTE entry for the given address.
- */
- static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
- {
- #ifdef CONFIG_X86_PAE
- pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
- pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
- /* You should never call this if the PMD entry wasn't valid */
- BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
- #else
- pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
- /* You should never call this if the PGD entry wasn't valid */
- BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
- #endif
- return &page[pte_index(vaddr)];
- }
- /*
- * These functions are just like the above two, except they access the Guest
- * page tables. Hence they return a Guest address.
- */
- static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
- {
- unsigned int index = vaddr >> (PGDIR_SHIFT);
- return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
- }
- #ifdef CONFIG_X86_PAE
- /* Follow the PGD to the PMD. */
- static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
- {
- unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
- BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
- return gpage + pmd_index(vaddr) * sizeof(pmd_t);
- }
- /* Follow the PMD to the PTE. */
- static unsigned long gpte_addr(struct lg_cpu *cpu,
- pmd_t gpmd, unsigned long vaddr)
- {
- unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
- BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
- return gpage + pte_index(vaddr) * sizeof(pte_t);
- }
- #else
- /* Follow the PGD to the PTE (no mid-level for !PAE). */
- static unsigned long gpte_addr(struct lg_cpu *cpu,
- pgd_t gpgd, unsigned long vaddr)
- {
- unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
- BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
- return gpage + pte_index(vaddr) * sizeof(pte_t);
- }
- #endif
- /*:*/
- /*M:014
- * get_pfn is slow: we could probably try to grab batches of pages here as
- * an optimization (ie. pre-faulting).
- :*/
- /*H:350
- * This routine takes a page number given by the Guest and converts it to
- * an actual, physical page number. It can fail for several reasons: the
- * virtual address might not be mapped by the Launcher, the write flag is set
- * and the page is read-only, or the write flag was set and the page was
- * shared so had to be copied, but we ran out of memory.
- *
- * This holds a reference to the page, so release_pte() is careful to put that
- * back.
- */
- static unsigned long get_pfn(unsigned long virtpfn, int write)
- {
- struct page *page;
- /* gup me one page at this address please! */
- if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
- return page_to_pfn(page);
- /* This value indicates failure. */
- return -1UL;
- }
- /*H:340
- * Converting a Guest page table entry to a shadow (ie. real) page table
- * entry can be a little tricky. The flags are (almost) the same, but the
- * Guest PTE contains a virtual page number: the CPU needs the real page
- * number.
- */
- static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
- {
- unsigned long pfn, base, flags;
- /*
- * The Guest sets the global flag, because it thinks that it is using
- * PGE. We only told it to use PGE so it would tell us whether it was
- * flushing a kernel mapping or a userspace mapping. We don't actually
- * use the global bit, so throw it away.
- */
- flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
- /* The Guest's pages are offset inside the Launcher. */
- base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
- /*
- * We need a temporary "unsigned long" variable to hold the answer from
- * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
- * fit in spte.pfn. get_pfn() finds the real physical number of the
- * page, given the virtual number.
- */
- pfn = get_pfn(base + pte_pfn(gpte), write);
- if (pfn == -1UL) {
- kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
- /*
- * When we destroy the Guest, we'll go through the shadow page
- * tables and release_pte() them. Make sure we don't think
- * this one is valid!
- */
- flags = 0;
- }
- /* Now we assemble our shadow PTE from the page number and flags. */
- return pfn_pte(pfn, __pgprot(flags));
- }
- /*H:460 And to complete the chain, release_pte() looks like this: */
- static void release_pte(pte_t pte)
- {
- /*
- * Remember that get_user_pages_fast() took a reference to the page, in
- * get_pfn()? We have to put it back now.
- */
- if (pte_flags(pte) & _PAGE_PRESENT)
- put_page(pte_page(pte));
- }
- /*:*/
- static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
- {
- if ((pte_flags(gpte) & _PAGE_PSE) ||
- pte_pfn(gpte) >= cpu->lg->pfn_limit)
- kill_guest(cpu, "bad page table entry");
- }
- static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
- {
- if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
- (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
- kill_guest(cpu, "bad page directory entry");
- }
- #ifdef CONFIG_X86_PAE
- static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
- {
- if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
- (pmd_pfn(gpmd) >= cpu->lg->pfn_limit))
- kill_guest(cpu, "bad page middle directory entry");
- }
- #endif
- /*H:330
- * (i) Looking up a page table entry when the Guest faults.
- *
- * We saw this call in run_guest(): when we see a page fault in the Guest, we
- * come here. That's because we only set up the shadow page tables lazily as
- * they're needed, so we get page faults all the time and quietly fix them up
- * and return to the Guest without it knowing.
- *
- * If we fixed up the fault (ie. we mapped the address), this routine returns
- * true. Otherwise, it was a real fault and we need to tell the Guest.
- */
- bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
- {
- pgd_t gpgd;
- pgd_t *spgd;
- unsigned long gpte_ptr;
- pte_t gpte;
- pte_t *spte;
- /* Mid level for PAE. */
- #ifdef CONFIG_X86_PAE
- pmd_t *spmd;
- pmd_t gpmd;
- #endif
- /* First step: get the top-level Guest page table entry. */
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
- return false;
- /* Now look at the matching shadow entry. */
- spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
- if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
- /* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /*
- * This is not really the Guest's fault, but killing it is
- * simple for this corner case.
- */
- if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pte page");
- return false;
- }
- /* We check that the Guest pgd is OK. */
- check_gpgd(cpu, gpgd);
- /*
- * And we copy the flags to the shadow PGD entry. The page
- * number in the shadow PGD is the page we just allocated.
- */
- set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
- }
- #ifdef CONFIG_X86_PAE
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- /* Middle level not present? We can't map it in. */
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- return false;
- /* Now look at the matching shadow entry. */
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
- /* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /*
- * This is not really the Guest's fault, but killing it is
- * simple for this corner case.
- */
- if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pte page");
- return false;
- }
- /* We check that the Guest pmd is OK. */
- check_gpmd(cpu, gpmd);
- /*
- * And we copy the flags to the shadow PMD entry. The page
- * number in the shadow PMD is the page we just allocated.
- */
- set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
- }
- /*
- * OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later.
- */
- gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
- #else
- /*
- * OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later.
- */
- gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
- #endif
- /* Read the actual PTE value. */
- gpte = lgread(cpu, gpte_ptr, pte_t);
- /* If this page isn't in the Guest page tables, we can't page it in. */
- if (!(pte_flags(gpte) & _PAGE_PRESENT))
- return false;
- /*
- * Check they're not trying to write to a page the Guest wants
- * read-only (bit 2 of errcode == write).
- */
- if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
- return false;
- /* User access to a kernel-only page? (bit 3 == user access) */
- if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
- return false;
- /*
- * Check that the Guest PTE flags are OK, and the page number is below
- * the pfn_limit (ie. not mapping the Launcher binary).
- */
- check_gpte(cpu, gpte);
- /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
- gpte = pte_mkyoung(gpte);
- if (errcode & 2)
- gpte = pte_mkdirty(gpte);
- /* Get the pointer to the shadow PTE entry we're going to set. */
- spte = spte_addr(cpu, *spgd, vaddr);
- /*
- * If there was a valid shadow PTE entry here before, we release it.
- * This can happen with a write to a previously read-only entry.
- */
- release_pte(*spte);
- /*
- * If this is a write, we insist that the Guest page is writable (the
- * final arg to gpte_to_spte()).
- */
- if (pte_dirty(gpte))
- *spte = gpte_to_spte(cpu, gpte, 1);
- else
- /*
- * If this is a read, don't set the "writable" bit in the page
- * table entry, even if the Guest says it's writable. That way
- * we will come back here when a write does actually occur, so
- * we can update the Guest's _PAGE_DIRTY flag.
- */
- set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
- /*
- * Finally, we write the Guest PTE entry back: we've set the
- * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
- */
- lgwrite(cpu, gpte_ptr, pte_t, gpte);
- /*
- * The fault is fixed, the page table is populated, the mapping
- * manipulated, the result returned and the code complete. A small
- * delay and a trace of alliteration are the only indications the Guest
- * has that a page fault occurred at all.
- */
- return true;
- }
- /*H:360
- * (ii) Making sure the Guest stack is mapped.
- *
- * Remember that direct traps into the Guest need a mapped Guest kernel stack.
- * pin_stack_pages() calls us here: we could simply call demand_page(), but as
- * we've seen that logic is quite long, and usually the stack pages are already
- * mapped, so it's overkill.
- *
- * This is a quick version which answers the question: is this virtual address
- * mapped by the shadow page tables, and is it writable?
- */
- static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
- {
- pgd_t *spgd;
- unsigned long flags;
- #ifdef CONFIG_X86_PAE
- pmd_t *spmd;
- #endif
- /* Look at the current top level entry: is it present? */
- spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
- if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
- return false;
- #ifdef CONFIG_X86_PAE
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (!(pmd_flags(*spmd) & _PAGE_PRESENT))
- return false;
- #endif
- /*
- * Check the flags on the pte entry itself: it must be present and
- * writable.
- */
- flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
- return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
- }
- /*
- * So, when pin_stack_pages() asks us to pin a page, we check if it's already
- * in the page tables, and if not, we call demand_page() with error code 2
- * (meaning "write").
- */
- void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
- {
- if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
- kill_guest(cpu, "bad stack page %#lx", vaddr);
- }
- /*:*/
- #ifdef CONFIG_X86_PAE
- static void release_pmd(pmd_t *spmd)
- {
- /* If the entry's not present, there's nothing to release. */
- if (pmd_flags(*spmd) & _PAGE_PRESENT) {
- unsigned int i;
- pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
- /* For each entry in the page, we might need to release it. */
- for (i = 0; i < PTRS_PER_PTE; i++)
- release_pte(ptepage[i]);
- /* Now we can free the page of PTEs */
- free_page((long)ptepage);
- /* And zero out the PMD entry so we never release it twice. */
- set_pmd(spmd, __pmd(0));
- }
- }
- static void release_pgd(pgd_t *spgd)
- {
- /* If the entry's not present, there's nothing to release. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- unsigned int i;
- pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- for (i = 0; i < PTRS_PER_PMD; i++)
- release_pmd(&pmdpage[i]);
- /* Now we can free the page of PMDs */
- free_page((long)pmdpage);
- /* And zero out the PGD entry so we never release it twice. */
- set_pgd(spgd, __pgd(0));
- }
- }
- #else /* !CONFIG_X86_PAE */
- /*H:450
- * If we chase down the release_pgd() code, the non-PAE version looks like
- * this. The PAE version is almost identical, but instead of calling
- * release_pte it calls release_pmd(), which looks much like this.
- */
- static void release_pgd(pgd_t *spgd)
- {
- /* If the entry's not present, there's nothing to release. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- unsigned int i;
- /*
- * Converting the pfn to find the actual PTE page is easy: turn
- * the page number into a physical address, then convert to a
- * virtual address (easy for kernel pages like this one).
- */
- pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- /* For each entry in the page, we might need to release it. */
- for (i = 0; i < PTRS_PER_PTE; i++)
- release_pte(ptepage[i]);
- /* Now we can free the page of PTEs */
- free_page((long)ptepage);
- /* And zero out the PGD entry so we never release it twice. */
- *spgd = __pgd(0);
- }
- }
- #endif
- /*H:445
- * We saw flush_user_mappings() twice: once from the flush_user_mappings()
- * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
- * It simply releases every PTE page from 0 up to the Guest's kernel address.
- */
- static void flush_user_mappings(struct lguest *lg, int idx)
- {
- unsigned int i;
- /* Release every pgd entry up to the kernel's address. */
- for (i = 0; i < pgd_index(lg->kernel_address); i++)
- release_pgd(lg->pgdirs[idx].pgdir + i);
- }
- /*H:440
- * (v) Flushing (throwing away) page tables,
- *
- * The Guest has a hypercall to throw away the page tables: it's used when a
- * large number of mappings have been changed.
- */
- void guest_pagetable_flush_user(struct lg_cpu *cpu)
- {
- /* Drop the userspace part of the current page table. */
- flush_user_mappings(cpu->lg, cpu->cpu_pgd);
- }
- /*:*/
- /* We walk down the guest page tables to get a guest-physical address */
- unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
- {
- pgd_t gpgd;
- pte_t gpte;
- #ifdef CONFIG_X86_PAE
- pmd_t gpmd;
- #endif
- /* First step: get the top-level Guest page table entry. */
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT)) {
- kill_guest(cpu, "Bad address %#lx", vaddr);
- return -1UL;
- }
- #ifdef CONFIG_X86_PAE
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- kill_guest(cpu, "Bad address %#lx", vaddr);
- gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
- #else
- gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
- #endif
- if (!(pte_flags(gpte) & _PAGE_PRESENT))
- kill_guest(cpu, "Bad address %#lx", vaddr);
- return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
- }
- /*
- * We keep several page tables. This is a simple routine to find the page
- * table (if any) corresponding to this top-level address the Guest has given
- * us.
- */
- static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
- {
- unsigned int i;
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
- break;
- return i;
- }
- /*H:435
- * And this is us, creating the new page directory. If we really do
- * allocate a new one (and so the kernel parts are not there), we set
- * blank_pgdir.
- */
- static unsigned int new_pgdir(struct lg_cpu *cpu,
- unsigned long gpgdir,
- int *blank_pgdir)
- {
- unsigned int next;
- #ifdef CONFIG_X86_PAE
- pmd_t *pmd_table;
- #endif
- /*
- * We pick one entry at random to throw out. Choosing the Least
- * Recently Used might be better, but this is easy.
- */
- next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
- /* If it's never been allocated at all before, try now. */
- if (!cpu->lg->pgdirs[next].pgdir) {
- cpu->lg->pgdirs[next].pgdir =
- (pgd_t *)get_zeroed_page(GFP_KERNEL);
- /* If the allocation fails, just keep using the one we have */
- if (!cpu->lg->pgdirs[next].pgdir)
- next = cpu->cpu_pgd;
- else {
- #ifdef CONFIG_X86_PAE
- /*
- * In PAE mode, allocate a pmd page and populate the
- * last pgd entry.
- */
- pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
- if (!pmd_table) {
- free_page((long)cpu->lg->pgdirs[next].pgdir);
- set_pgd(cpu->lg->pgdirs[next].pgdir, __pgd(0));
- next = cpu->cpu_pgd;
- } else {
- set_pgd(cpu->lg->pgdirs[next].pgdir +
- SWITCHER_PGD_INDEX,
- __pgd(__pa(pmd_table) | _PAGE_PRESENT));
- /*
- * This is a blank page, so there are no kernel
- * mappings: caller must map the stack!
- */
- *blank_pgdir = 1;
- }
- #else
- *blank_pgdir = 1;
- #endif
- }
- }
- /* Record which Guest toplevel this shadows. */
- cpu->lg->pgdirs[next].gpgdir = gpgdir;
- /* Release all the non-kernel mappings. */
- flush_user_mappings(cpu->lg, next);
- return next;
- }
- /*H:430
- * (iv) Switching page tables
- *
- * Now we've seen all the page table setting and manipulation, let's see
- * what happens when the Guest changes page tables (ie. changes the top-level
- * pgdir). This occurs on almost every context switch.
- */
- void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
- {
- int newpgdir, repin = 0;
- /* Look to see if we have this one already. */
- newpgdir = find_pgdir(cpu->lg, pgtable);
- /*
- * If not, we allocate or mug an existing one: if it's a fresh one,
- * repin gets set to 1.
- */
- if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
- newpgdir = new_pgdir(cpu, pgtable, &repin);
- /* Change the current pgd index to the new one. */
- cpu->cpu_pgd = newpgdir;
- /* If it was completely blank, we map in the Guest kernel stack */
- if (repin)
- pin_stack_pages(cpu);
- }
- /*H:470
- * Finally, a routine which throws away everything: all PGD entries in all
- * the shadow page tables, including the Guest's kernel mappings. This is used
- * when we destroy the Guest.
- */
- static void release_all_pagetables(struct lguest *lg)
- {
- unsigned int i, j;
- /* Every shadow pagetable this Guest has */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir) {
- #ifdef CONFIG_X86_PAE
- pgd_t *spgd;
- pmd_t *pmdpage;
- unsigned int k;
- /* Get the last pmd page. */
- spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
- pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- /*
- * And release the pmd entries of that pmd page,
- * except for the switcher pmd.
- */
- for (k = 0; k < SWITCHER_PMD_INDEX; k++)
- release_pmd(&pmdpage[k]);
- #endif
- /* Every PGD entry except the Switcher at the top */
- for (j = 0; j < SWITCHER_PGD_INDEX; j++)
- release_pgd(lg->pgdirs[i].pgdir + j);
- }
- }
- /*
- * We also throw away everything when a Guest tells us it's changed a kernel
- * mapping. Since kernel mappings are in every page table, it's easiest to
- * throw them all away. This traps the Guest in amber for a while as
- * everything faults back in, but it's rare.
- */
- void guest_pagetable_clear_all(struct lg_cpu *cpu)
- {
- release_all_pagetables(cpu->lg);
- /* We need the Guest kernel stack mapped again. */
- pin_stack_pages(cpu);
- }
- /*:*/
- /*M:009
- * Since we throw away all mappings when a kernel mapping changes, our
- * performance sucks for guests using highmem. In fact, a guest with
- * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
- * usually slower than a Guest with less memory.
- *
- * This, of course, cannot be fixed. It would take some kind of... well, I
- * don't know, but the term "puissant code-fu" comes to mind.
- :*/
- /*H:420
- * This is the routine which actually sets the page table entry for then
- * "idx"'th shadow page table.
- *
- * Normally, we can just throw out the old entry and replace it with 0: if they
- * use it demand_page() will put the new entry in. We need to do this anyway:
- * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
- * is read from, and _PAGE_DIRTY when it's written to.
- *
- * But Avi Kivity pointed out that most Operating Systems (Linux included) set
- * these bits on PTEs immediately anyway. This is done to save the CPU from
- * having to update them, but it helps us the same way: if they set
- * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
- * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
- */
- static void do_set_pte(struct lg_cpu *cpu, int idx,
- unsigned long vaddr, pte_t gpte)
- {
- /* Look up the matching shadow page directory entry. */
- pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
- #ifdef CONFIG_X86_PAE
- pmd_t *spmd;
- #endif
- /* If the top level isn't present, there's no entry to update. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- #ifdef CONFIG_X86_PAE
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (pmd_flags(*spmd) & _PAGE_PRESENT) {
- #endif
- /* Otherwise, start by releasing the existing entry. */
- pte_t *spte = spte_addr(cpu, *spgd, vaddr);
- release_pte(*spte);
- /*
- * If they're setting this entry as dirty or accessed,
- * we might as well put that entry they've given us in
- * now. This shaves 10% off a copy-on-write
- * micro-benchmark.
- */
- if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
- check_gpte(cpu, gpte);
- set_pte(spte,
- gpte_to_spte(cpu, gpte,
- pte_flags(gpte) & _PAGE_DIRTY));
- } else {
- /*
- * Otherwise kill it and we can demand_page()
- * it in later.
- */
- set_pte(spte, __pte(0));
- }
- #ifdef CONFIG_X86_PAE
- }
- #endif
- }
- }
- /*H:410
- * Updating a PTE entry is a little trickier.
- *
- * We keep track of several different page tables (the Guest uses one for each
- * process, so it makes sense to cache at least a few). Each of these have
- * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
- * all processes. So when the page table above that address changes, we update
- * all the page tables, not just the current one. This is rare.
- *
- * The benefit is that when we have to track a new page table, we can keep all
- * the kernel mappings. This speeds up context switch immensely.
- */
- void guest_set_pte(struct lg_cpu *cpu,
- unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
- {
- /*
- * Kernel mappings must be changed on all top levels. Slow, but doesn't
- * happen often.
- */
- if (vaddr >= cpu->lg->kernel_address) {
- unsigned int i;
- for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
- if (cpu->lg->pgdirs[i].pgdir)
- do_set_pte(cpu, i, vaddr, gpte);
- } else {
- /* Is this page table one we have a shadow for? */
- int pgdir = find_pgdir(cpu->lg, gpgdir);
- if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
- /* If so, do the update. */
- do_set_pte(cpu, pgdir, vaddr, gpte);
- }
- }
- /*H:400
- * (iii) Setting up a page table entry when the Guest tells us one has changed.
- *
- * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
- * with the other side of page tables while we're here: what happens when the
- * Guest asks for a page table to be updated?
- *
- * We already saw that demand_page() will fill in the shadow page tables when
- * needed, so we can simply remove shadow page table entries whenever the Guest
- * tells us they've changed. When the Guest tries to use the new entry it will
- * fault and demand_page() will fix it up.
- *
- * So with that in mind here's our code to update a (top-level) PGD entry:
- */
- void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
- {
- int pgdir;
- if (idx >= SWITCHER_PGD_INDEX)
- return;
- /* If they're talking about a page table we have a shadow for... */
- pgdir = find_pgdir(lg, gpgdir);
- if (pgdir < ARRAY_SIZE(lg->pgdirs))
- /* ... throw it away. */
- release_pgd(lg->pgdirs[pgdir].pgdir + idx);
- }
- #ifdef CONFIG_X86_PAE
- /* For setting a mid-level, we just throw everything away. It's easy. */
- void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
- {
- guest_pagetable_clear_all(&lg->cpus[0]);
- }
- #endif
- /*H:505
- * To get through boot, we construct simple identity page mappings (which
- * set virtual == physical) and linear mappings which will get the Guest far
- * enough into the boot to create its own. The linear mapping means we
- * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
- * as you'll see.
- *
- * We lay them out of the way, just below the initrd (which is why we need to
- * know its size here).
- */
- static unsigned long setup_pagetables(struct lguest *lg,
- unsigned long mem,
- unsigned long initrd_size)
- {
- pgd_t __user *pgdir;
- pte_t __user *linear;
- unsigned long mem_base = (unsigned long)lg->mem_base;
- unsigned int mapped_pages, i, linear_pages;
- #ifdef CONFIG_X86_PAE
- pmd_t __user *pmds;
- unsigned int j;
- pgd_t pgd;
- pmd_t pmd;
- #else
- unsigned int phys_linear;
- #endif
- /*
- * We have mapped_pages frames to map, so we need linear_pages page
- * tables to map them.
- */
- mapped_pages = mem / PAGE_SIZE;
- linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
- /* We put the toplevel page directory page at the top of memory. */
- pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
- /* Now we use the next linear_pages pages as pte pages */
- linear = (void *)pgdir - linear_pages * PAGE_SIZE;
- #ifdef CONFIG_X86_PAE
- /*
- * And the single mid page goes below that. We only use one, but
- * that's enough to map 1G, which definitely gets us through boot.
- */
- pmds = (void *)linear - PAGE_SIZE;
- #endif
- /*
- * Linear mapping is easy: put every page's address into the
- * mapping in order.
- */
- for (i = 0; i < mapped_pages; i++) {
- pte_t pte;
- pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
- if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
- return -EFAULT;
- }
- #ifdef CONFIG_X86_PAE
- /*
- * Make the Guest PMD entries point to the corresponding place in the
- * linear mapping (up to one page worth of PMD).
- */
- for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
- i += PTRS_PER_PTE, j++) {
- pmd = pfn_pmd(((unsigned long)&linear[i] - mem_base)/PAGE_SIZE,
- __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
- if (copy_to_user(&pmds[j], &pmd, sizeof(pmd)) != 0)
- return -EFAULT;
- }
- /* One PGD entry, pointing to that PMD page. */
- pgd = __pgd(((unsigned long)pmds - mem_base) | _PAGE_PRESENT);
- /* Copy it in as the first PGD entry (ie. addresses 0-1G). */
- if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
- return -EFAULT;
- /*
- * And the other PGD entry to make the linear mapping at PAGE_OFFSET
- */
- if (copy_to_user(&pgdir[KERNEL_PGD_BOUNDARY], &pgd, sizeof(pgd)))
- return -EFAULT;
- #else
- /*
- * The top level points to the linear page table pages above.
- * We setup the identity and linear mappings here.
- */
- phys_linear = (unsigned long)linear - mem_base;
- for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
- pgd_t pgd;
- /*
- * Create a PGD entry which points to the right part of the
- * linear PTE pages.
- */
- pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
- (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
- /*
- * Copy it into the PGD page at 0 and PAGE_OFFSET.
- */
- if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
- || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
- + i / PTRS_PER_PTE],
- &pgd, sizeof(pgd)))
- return -EFAULT;
- }
- #endif
- /*
- * We return the top level (guest-physical) address: we remember where
- * this is to write it into lguest_data when the Guest initializes.
- */
- return (unsigned long)pgdir - mem_base;
- }
- /*H:500
- * (vii) Setting up the page tables initially.
- *
- * When a Guest is first created, the Launcher tells us where the toplevel of
- * its first page table is. We set some things up here:
- */
- int init_guest_pagetable(struct lguest *lg)
- {
- u64 mem;
- u32 initrd_size;
- struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
- #ifdef CONFIG_X86_PAE
- pgd_t *pgd;
- pmd_t *pmd_table;
- #endif
- /*
- * Get the Guest memory size and the ramdisk size from the boot header
- * located at lg->mem_base (Guest address 0).
- */
- if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
- || get_user(initrd_size, &boot->hdr.ramdisk_size))
- return -EFAULT;
- /*
- * We start on the first shadow page table, and give it a blank PGD
- * page.
- */
- lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
- if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
- return lg->pgdirs[0].gpgdir;
- lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
- if (!lg->pgdirs[0].pgdir)
- return -ENOMEM;
- #ifdef CONFIG_X86_PAE
- /* For PAE, we also create the initial mid-level. */
- pgd = lg->pgdirs[0].pgdir;
- pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
- if (!pmd_table)
- return -ENOMEM;
- set_pgd(pgd + SWITCHER_PGD_INDEX,
- __pgd(__pa(pmd_table) | _PAGE_PRESENT));
- #endif
- /* This is the current page table. */
- lg->cpus[0].cpu_pgd = 0;
- return 0;
- }
- /*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
- void page_table_guest_data_init(struct lg_cpu *cpu)
- {
- /* We get the kernel address: above this is all kernel memory. */
- if (get_user(cpu->lg->kernel_address,
- &cpu->lg->lguest_data->kernel_address)
- /*
- * We tell the Guest that it can't use the top 2 or 4 MB
- * of virtual addresses used by the Switcher.
- */
- || put_user(RESERVE_MEM * 1024 * 1024,
- &cpu->lg->lguest_data->reserve_mem)
- || put_user(cpu->lg->pgdirs[0].gpgdir,
- &cpu->lg->lguest_data->pgdir))
- kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
- /*
- * In flush_user_mappings() we loop from 0 to
- * "pgd_index(lg->kernel_address)". This assumes it won't hit the
- * Switcher mappings, so check that now.
- */
- #ifdef CONFIG_X86_PAE
- if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
- pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
- #else
- if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
- #endif
- kill_guest(cpu, "bad kernel address %#lx",
- cpu->lg->kernel_address);
- }
- /* When a Guest dies, our cleanup is fairly simple. */
- void free_guest_pagetable(struct lguest *lg)
- {
- unsigned int i;
- /* Throw away all page table pages. */
- release_all_pagetables(lg);
- /* Now free the top levels: free_page() can handle 0 just fine. */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- free_page((long)lg->pgdirs[i].pgdir);
- }
- /*H:480
- * (vi) Mapping the Switcher when the Guest is about to run.
- *
- * The Switcher and the two pages for this CPU need to be visible in the
- * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
- * for each CPU already set up, we just need to hook them in now we know which
- * Guest is about to run on this CPU.
- */
- void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
- {
- pte_t *switcher_pte_page = __this_cpu_read(switcher_pte_pages);
- pte_t regs_pte;
- #ifdef CONFIG_X86_PAE
- pmd_t switcher_pmd;
- pmd_t *pmd_table;
- switcher_pmd = pfn_pmd(__pa(switcher_pte_page) >> PAGE_SHIFT,
- PAGE_KERNEL_EXEC);
- /* Figure out where the pmd page is, by reading the PGD, and converting
- * it to a virtual address. */
- pmd_table = __va(pgd_pfn(cpu->lg->
- pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
- << PAGE_SHIFT);
- /* Now write it into the shadow page table. */
- set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
- #else
- pgd_t switcher_pgd;
- /*
- * Make the last PGD entry for this Guest point to the Switcher's PTE
- * page for this CPU (with appropriate flags).
- */
- switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
- cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
- #endif
- /*
- * We also change the Switcher PTE page. When we're running the Guest,
- * we want the Guest's "regs" page to appear where the first Switcher
- * page for this CPU is. This is an optimization: when the Switcher
- * saves the Guest registers, it saves them into the first page of this
- * CPU's "struct lguest_pages": if we make sure the Guest's register
- * page is already mapped there, we don't have to copy them out
- * again.
- */
- regs_pte = pfn_pte(__pa(cpu->regs_page) >> PAGE_SHIFT, PAGE_KERNEL);
- set_pte(&switcher_pte_page[pte_index((unsigned long)pages)], regs_pte);
- }
- /*:*/
- static void free_switcher_pte_pages(void)
- {
- unsigned int i;
- for_each_possible_cpu(i)
- free_page((long)switcher_pte_page(i));
- }
- /*H:520
- * Setting up the Switcher PTE page for given CPU is fairly easy, given
- * the CPU number and the "struct page"s for the Switcher code itself.
- *
- * Currently the Switcher is less than a page long, so "pages" is always 1.
- */
- static __init void populate_switcher_pte_page(unsigned int cpu,
- struct page *switcher_page[],
- unsigned int pages)
- {
- unsigned int i;
- pte_t *pte = switcher_pte_page(cpu);
- /* The first entries are easy: they map the Switcher code. */
- for (i = 0; i < pages; i++) {
- set_pte(&pte[i], mk_pte(switcher_page[i],
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
- }
- /* The only other thing we map is this CPU's pair of pages. */
- i = pages + cpu*2;
- /* First page (Guest registers) is writable from the Guest */
- set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
- /*
- * The second page contains the "struct lguest_ro_state", and is
- * read-only.
- */
- set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
- __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
- }
- /*
- * We've made it through the page table code. Perhaps our tired brains are
- * still processing the details, or perhaps we're simply glad it's over.
- *
- * If nothing else, note that all this complexity in juggling shadow page tables
- * in sync with the Guest's page tables is for one reason: for most Guests this
- * page table dance determines how bad performance will be. This is why Xen
- * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
- * have implemented shadow page table support directly into hardware.
- *
- * There is just one file remaining in the Host.
- */
- /*H:510
- * At boot or module load time, init_pagetables() allocates and populates
- * the Switcher PTE page for each CPU.
- */
- __init int init_pagetables(struct page **switcher_page, unsigned int pages)
- {
- unsigned int i;
- for_each_possible_cpu(i) {
- switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
- if (!switcher_pte_page(i)) {
- free_switcher_pte_pages();
- return -ENOMEM;
- }
- populate_switcher_pte_page(i, switcher_page, pages);
- }
- return 0;
- }
- /*:*/
- /* Cleaning up simply involves freeing the PTE page for each CPU. */
- void free_pagetables(void)
- {
- free_switcher_pte_pages();
- }
|