ucb1400_ts.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487
  1. /*
  2. * Philips UCB1400 touchscreen driver
  3. *
  4. * Author: Nicolas Pitre
  5. * Created: September 25, 2006
  6. * Copyright: MontaVista Software, Inc.
  7. *
  8. * Spliting done by: Marek Vasut <marek.vasut@gmail.com>
  9. * If something doesn't work and it worked before spliting, e-mail me,
  10. * dont bother Nicolas please ;-)
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
  17. * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
  18. * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/completion.h>
  23. #include <linux/delay.h>
  24. #include <linux/input.h>
  25. #include <linux/device.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/suspend.h>
  28. #include <linux/kthread.h>
  29. #include <linux/freezer.h>
  30. #include <linux/ucb1400.h>
  31. static int adcsync;
  32. static int ts_delay = 55; /* us */
  33. static int ts_delay_pressure; /* us */
  34. /* Switch to interrupt mode. */
  35. static inline void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
  36. {
  37. ucb1400_reg_write(ac97, UCB_TS_CR,
  38. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  39. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  40. UCB_TS_CR_MODE_INT);
  41. }
  42. /*
  43. * Switch to pressure mode, and read pressure. We don't need to wait
  44. * here, since both plates are being driven.
  45. */
  46. static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
  47. {
  48. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  49. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  50. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  51. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  52. udelay(ts_delay_pressure);
  53. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
  54. }
  55. /*
  56. * Switch to X position mode and measure Y plate. We switch the plate
  57. * configuration in pressure mode, then switch to position mode. This
  58. * gives a faster response time. Even so, we need to wait about 55us
  59. * for things to stabilise.
  60. */
  61. static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
  62. {
  63. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  64. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  65. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  66. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  67. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  68. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  69. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  70. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  71. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  72. udelay(ts_delay);
  73. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
  74. }
  75. /*
  76. * Switch to Y position mode and measure X plate. We switch the plate
  77. * configuration in pressure mode, then switch to position mode. This
  78. * gives a faster response time. Even so, we need to wait about 55us
  79. * for things to stabilise.
  80. */
  81. static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
  82. {
  83. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  84. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  85. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  86. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  87. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  88. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  89. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  90. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  91. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  92. udelay(ts_delay);
  93. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
  94. }
  95. /*
  96. * Switch to X plate resistance mode. Set MX to ground, PX to
  97. * supply. Measure current.
  98. */
  99. static inline unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
  100. {
  101. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  102. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  103. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  104. return ucb1400_adc_read(ucb->ac97, 0, adcsync);
  105. }
  106. /*
  107. * Switch to Y plate resistance mode. Set MY to ground, PY to
  108. * supply. Measure current.
  109. */
  110. static inline unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
  111. {
  112. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  113. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  114. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  115. return ucb1400_adc_read(ucb->ac97, 0, adcsync);
  116. }
  117. static inline int ucb1400_ts_pen_up(struct snd_ac97 *ac97)
  118. {
  119. unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
  120. return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
  121. }
  122. static inline void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
  123. {
  124. ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
  125. ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
  126. ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
  127. }
  128. static inline void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
  129. {
  130. ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
  131. }
  132. static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
  133. {
  134. input_report_abs(idev, ABS_X, x);
  135. input_report_abs(idev, ABS_Y, y);
  136. input_report_abs(idev, ABS_PRESSURE, pressure);
  137. input_report_key(idev, BTN_TOUCH, 1);
  138. input_sync(idev);
  139. }
  140. static void ucb1400_ts_event_release(struct input_dev *idev)
  141. {
  142. input_report_abs(idev, ABS_PRESSURE, 0);
  143. input_report_key(idev, BTN_TOUCH, 0);
  144. input_sync(idev);
  145. }
  146. static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
  147. {
  148. unsigned int isr;
  149. isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
  150. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
  151. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  152. if (isr & UCB_IE_TSPX)
  153. ucb1400_ts_irq_disable(ucb->ac97);
  154. else
  155. dev_dbg(&ucb->ts_idev->dev, "ucb1400: unexpected IE_STATUS = %#x\n", isr);
  156. enable_irq(ucb->irq);
  157. }
  158. static int ucb1400_ts_thread(void *_ucb)
  159. {
  160. struct ucb1400_ts *ucb = _ucb;
  161. struct task_struct *tsk = current;
  162. int valid = 0;
  163. struct sched_param param = { .sched_priority = 1 };
  164. sched_setscheduler(tsk, SCHED_FIFO, &param);
  165. set_freezable();
  166. while (!kthread_should_stop()) {
  167. unsigned int x, y, p;
  168. long timeout;
  169. ucb->ts_restart = 0;
  170. if (ucb->irq_pending) {
  171. ucb->irq_pending = 0;
  172. ucb1400_handle_pending_irq(ucb);
  173. }
  174. ucb1400_adc_enable(ucb->ac97);
  175. x = ucb1400_ts_read_xpos(ucb);
  176. y = ucb1400_ts_read_ypos(ucb);
  177. p = ucb1400_ts_read_pressure(ucb);
  178. ucb1400_adc_disable(ucb->ac97);
  179. /* Switch back to interrupt mode. */
  180. ucb1400_ts_mode_int(ucb->ac97);
  181. msleep(10);
  182. if (ucb1400_ts_pen_up(ucb->ac97)) {
  183. ucb1400_ts_irq_enable(ucb->ac97);
  184. /*
  185. * If we spat out a valid sample set last time,
  186. * spit out a "pen off" sample here.
  187. */
  188. if (valid) {
  189. ucb1400_ts_event_release(ucb->ts_idev);
  190. valid = 0;
  191. }
  192. timeout = MAX_SCHEDULE_TIMEOUT;
  193. } else {
  194. valid = 1;
  195. ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
  196. timeout = msecs_to_jiffies(10);
  197. }
  198. wait_event_freezable_timeout(ucb->ts_wait,
  199. ucb->irq_pending || ucb->ts_restart ||
  200. kthread_should_stop(), timeout);
  201. }
  202. /* Send the "pen off" if we are stopping with the pen still active */
  203. if (valid)
  204. ucb1400_ts_event_release(ucb->ts_idev);
  205. ucb->ts_task = NULL;
  206. return 0;
  207. }
  208. /*
  209. * A restriction with interrupts exists when using the ucb1400, as
  210. * the codec read/write routines may sleep while waiting for codec
  211. * access completion and uses semaphores for access control to the
  212. * AC97 bus. A complete codec read cycle could take anywhere from
  213. * 60 to 100uSec so we *definitely* don't want to spin inside the
  214. * interrupt handler waiting for codec access. So, we handle the
  215. * interrupt by scheduling a RT kernel thread to run in process
  216. * context instead of interrupt context.
  217. */
  218. static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
  219. {
  220. struct ucb1400_ts *ucb = devid;
  221. if (irqnr == ucb->irq) {
  222. disable_irq_nosync(ucb->irq);
  223. ucb->irq_pending = 1;
  224. wake_up(&ucb->ts_wait);
  225. return IRQ_HANDLED;
  226. }
  227. return IRQ_NONE;
  228. }
  229. static int ucb1400_ts_open(struct input_dev *idev)
  230. {
  231. struct ucb1400_ts *ucb = input_get_drvdata(idev);
  232. int ret = 0;
  233. BUG_ON(ucb->ts_task);
  234. ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
  235. if (IS_ERR(ucb->ts_task)) {
  236. ret = PTR_ERR(ucb->ts_task);
  237. ucb->ts_task = NULL;
  238. }
  239. return ret;
  240. }
  241. static void ucb1400_ts_close(struct input_dev *idev)
  242. {
  243. struct ucb1400_ts *ucb = input_get_drvdata(idev);
  244. if (ucb->ts_task)
  245. kthread_stop(ucb->ts_task);
  246. ucb1400_ts_irq_disable(ucb->ac97);
  247. ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
  248. }
  249. #ifndef NO_IRQ
  250. #define NO_IRQ 0
  251. #endif
  252. /*
  253. * Try to probe our interrupt, rather than relying on lots of
  254. * hard-coded machine dependencies.
  255. */
  256. static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
  257. {
  258. unsigned long mask, timeout;
  259. mask = probe_irq_on();
  260. /* Enable the ADC interrupt. */
  261. ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
  262. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
  263. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
  264. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  265. /* Cause an ADC interrupt. */
  266. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
  267. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
  268. /* Wait for the conversion to complete. */
  269. timeout = jiffies + HZ/2;
  270. while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
  271. UCB_ADC_DAT_VALID)) {
  272. cpu_relax();
  273. if (time_after(jiffies, timeout)) {
  274. printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
  275. probe_irq_off(mask);
  276. return -ENODEV;
  277. }
  278. }
  279. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
  280. /* Disable and clear interrupt. */
  281. ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
  282. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
  283. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
  284. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  285. /* Read triggered interrupt. */
  286. ucb->irq = probe_irq_off(mask);
  287. if (ucb->irq < 0 || ucb->irq == NO_IRQ)
  288. return -ENODEV;
  289. return 0;
  290. }
  291. static int ucb1400_ts_probe(struct platform_device *dev)
  292. {
  293. int error, x_res, y_res;
  294. u16 fcsr;
  295. struct ucb1400_ts *ucb = dev->dev.platform_data;
  296. ucb->ts_idev = input_allocate_device();
  297. if (!ucb->ts_idev) {
  298. error = -ENOMEM;
  299. goto err;
  300. }
  301. /* Only in case the IRQ line wasn't supplied, try detecting it */
  302. if (ucb->irq < 0) {
  303. error = ucb1400_ts_detect_irq(ucb);
  304. if (error) {
  305. printk(KERN_ERR "UCB1400: IRQ probe failed\n");
  306. goto err_free_devs;
  307. }
  308. }
  309. init_waitqueue_head(&ucb->ts_wait);
  310. error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
  311. "UCB1400", ucb);
  312. if (error) {
  313. printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
  314. ucb->irq, error);
  315. goto err_free_devs;
  316. }
  317. printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
  318. input_set_drvdata(ucb->ts_idev, ucb);
  319. ucb->ts_idev->dev.parent = &dev->dev;
  320. ucb->ts_idev->name = "UCB1400 touchscreen interface";
  321. ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
  322. AC97_VENDOR_ID1);
  323. ucb->ts_idev->id.product = ucb->id;
  324. ucb->ts_idev->open = ucb1400_ts_open;
  325. ucb->ts_idev->close = ucb1400_ts_close;
  326. ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
  327. ucb->ts_idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
  328. /*
  329. * Enable ADC filter to prevent horrible jitter on Colibri.
  330. * This also further reduces jitter on boards where ADCSYNC
  331. * pin is connected.
  332. */
  333. fcsr = ucb1400_reg_read(ucb->ac97, UCB_FCSR);
  334. ucb1400_reg_write(ucb->ac97, UCB_FCSR, fcsr | UCB_FCSR_AVE);
  335. ucb1400_adc_enable(ucb->ac97);
  336. x_res = ucb1400_ts_read_xres(ucb);
  337. y_res = ucb1400_ts_read_yres(ucb);
  338. ucb1400_adc_disable(ucb->ac97);
  339. printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
  340. input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
  341. input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
  342. input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
  343. error = input_register_device(ucb->ts_idev);
  344. if (error)
  345. goto err_free_irq;
  346. return 0;
  347. err_free_irq:
  348. free_irq(ucb->irq, ucb);
  349. err_free_devs:
  350. input_free_device(ucb->ts_idev);
  351. err:
  352. return error;
  353. }
  354. static int ucb1400_ts_remove(struct platform_device *dev)
  355. {
  356. struct ucb1400_ts *ucb = dev->dev.platform_data;
  357. free_irq(ucb->irq, ucb);
  358. input_unregister_device(ucb->ts_idev);
  359. return 0;
  360. }
  361. #ifdef CONFIG_PM
  362. static int ucb1400_ts_resume(struct platform_device *dev)
  363. {
  364. struct ucb1400_ts *ucb = dev->dev.platform_data;
  365. if (ucb->ts_task) {
  366. /*
  367. * Restart the TS thread to ensure the
  368. * TS interrupt mode is set up again
  369. * after sleep.
  370. */
  371. ucb->ts_restart = 1;
  372. wake_up(&ucb->ts_wait);
  373. }
  374. return 0;
  375. }
  376. #else
  377. #define ucb1400_ts_resume NULL
  378. #endif
  379. static struct platform_driver ucb1400_ts_driver = {
  380. .probe = ucb1400_ts_probe,
  381. .remove = ucb1400_ts_remove,
  382. .resume = ucb1400_ts_resume,
  383. .driver = {
  384. .name = "ucb1400_ts",
  385. },
  386. };
  387. static int __init ucb1400_ts_init(void)
  388. {
  389. return platform_driver_register(&ucb1400_ts_driver);
  390. }
  391. static void __exit ucb1400_ts_exit(void)
  392. {
  393. platform_driver_unregister(&ucb1400_ts_driver);
  394. }
  395. module_param(adcsync, bool, 0444);
  396. MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
  397. module_param(ts_delay, int, 0444);
  398. MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
  399. " position read. Default = 55us.");
  400. module_param(ts_delay_pressure, int, 0444);
  401. MODULE_PARM_DESC(ts_delay_pressure,
  402. "delay between panel setup and pressure read."
  403. " Default = 0us.");
  404. module_init(ucb1400_ts_init);
  405. module_exit(ucb1400_ts_exit);
  406. MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
  407. MODULE_LICENSE("GPL");