sbp2.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660
  1. /*
  2. * SBP2 driver (SCSI over IEEE1394)
  3. *
  4. * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. /*
  21. * The basic structure of this driver is based on the old storage driver,
  22. * drivers/ieee1394/sbp2.c, originally written by
  23. * James Goodwin <jamesg@filanet.com>
  24. * with later contributions and ongoing maintenance from
  25. * Ben Collins <bcollins@debian.org>,
  26. * Stefan Richter <stefanr@s5r6.in-berlin.de>
  27. * and many others.
  28. */
  29. #include <linux/blkdev.h>
  30. #include <linux/bug.h>
  31. #include <linux/completion.h>
  32. #include <linux/delay.h>
  33. #include <linux/device.h>
  34. #include <linux/dma-mapping.h>
  35. #include <linux/firewire.h>
  36. #include <linux/firewire-constants.h>
  37. #include <linux/init.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/kernel.h>
  40. #include <linux/kref.h>
  41. #include <linux/list.h>
  42. #include <linux/mod_devicetable.h>
  43. #include <linux/module.h>
  44. #include <linux/moduleparam.h>
  45. #include <linux/scatterlist.h>
  46. #include <linux/slab.h>
  47. #include <linux/spinlock.h>
  48. #include <linux/string.h>
  49. #include <linux/stringify.h>
  50. #include <linux/workqueue.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/system.h>
  53. #include <scsi/scsi.h>
  54. #include <scsi/scsi_cmnd.h>
  55. #include <scsi/scsi_device.h>
  56. #include <scsi/scsi_host.h>
  57. /*
  58. * So far only bridges from Oxford Semiconductor are known to support
  59. * concurrent logins. Depending on firmware, four or two concurrent logins
  60. * are possible on OXFW911 and newer Oxsemi bridges.
  61. *
  62. * Concurrent logins are useful together with cluster filesystems.
  63. */
  64. static int sbp2_param_exclusive_login = 1;
  65. module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
  66. MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
  67. "(default = Y, use N for concurrent initiators)");
  68. /*
  69. * Flags for firmware oddities
  70. *
  71. * - 128kB max transfer
  72. * Limit transfer size. Necessary for some old bridges.
  73. *
  74. * - 36 byte inquiry
  75. * When scsi_mod probes the device, let the inquiry command look like that
  76. * from MS Windows.
  77. *
  78. * - skip mode page 8
  79. * Suppress sending of mode_sense for mode page 8 if the device pretends to
  80. * support the SCSI Primary Block commands instead of Reduced Block Commands.
  81. *
  82. * - fix capacity
  83. * Tell sd_mod to correct the last sector number reported by read_capacity.
  84. * Avoids access beyond actual disk limits on devices with an off-by-one bug.
  85. * Don't use this with devices which don't have this bug.
  86. *
  87. * - delay inquiry
  88. * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
  89. *
  90. * - power condition
  91. * Set the power condition field in the START STOP UNIT commands sent by
  92. * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
  93. * Some disks need this to spin down or to resume properly.
  94. *
  95. * - override internal blacklist
  96. * Instead of adding to the built-in blacklist, use only the workarounds
  97. * specified in the module load parameter.
  98. * Useful if a blacklist entry interfered with a non-broken device.
  99. */
  100. #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
  101. #define SBP2_WORKAROUND_INQUIRY_36 0x2
  102. #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
  103. #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
  104. #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
  105. #define SBP2_INQUIRY_DELAY 12
  106. #define SBP2_WORKAROUND_POWER_CONDITION 0x20
  107. #define SBP2_WORKAROUND_OVERRIDE 0x100
  108. static int sbp2_param_workarounds;
  109. module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
  110. MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
  111. ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
  112. ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
  113. ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
  114. ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
  115. ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
  116. ", set power condition in start stop unit = "
  117. __stringify(SBP2_WORKAROUND_POWER_CONDITION)
  118. ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
  119. ", or a combination)");
  120. static const char sbp2_driver_name[] = "sbp2";
  121. /*
  122. * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
  123. * and one struct scsi_device per sbp2_logical_unit.
  124. */
  125. struct sbp2_logical_unit {
  126. struct sbp2_target *tgt;
  127. struct list_head link;
  128. struct fw_address_handler address_handler;
  129. struct list_head orb_list;
  130. u64 command_block_agent_address;
  131. u16 lun;
  132. int login_id;
  133. /*
  134. * The generation is updated once we've logged in or reconnected
  135. * to the logical unit. Thus, I/O to the device will automatically
  136. * fail and get retried if it happens in a window where the device
  137. * is not ready, e.g. after a bus reset but before we reconnect.
  138. */
  139. int generation;
  140. int retries;
  141. struct delayed_work work;
  142. bool has_sdev;
  143. bool blocked;
  144. };
  145. /*
  146. * We create one struct sbp2_target per IEEE 1212 Unit Directory
  147. * and one struct Scsi_Host per sbp2_target.
  148. */
  149. struct sbp2_target {
  150. struct kref kref;
  151. struct fw_unit *unit;
  152. const char *bus_id;
  153. struct list_head lu_list;
  154. u64 management_agent_address;
  155. u64 guid;
  156. int directory_id;
  157. int node_id;
  158. int address_high;
  159. unsigned int workarounds;
  160. unsigned int mgt_orb_timeout;
  161. unsigned int max_payload;
  162. int dont_block; /* counter for each logical unit */
  163. int blocked; /* ditto */
  164. };
  165. static struct fw_device *target_device(struct sbp2_target *tgt)
  166. {
  167. return fw_parent_device(tgt->unit);
  168. }
  169. /* Impossible login_id, to detect logout attempt before successful login */
  170. #define INVALID_LOGIN_ID 0x10000
  171. #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
  172. #define SBP2_ORB_NULL 0x80000000
  173. #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
  174. #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
  175. /*
  176. * There is no transport protocol limit to the CDB length, but we implement
  177. * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
  178. */
  179. #define SBP2_MAX_CDB_SIZE 16
  180. /*
  181. * The default maximum s/g segment size of a FireWire controller is
  182. * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
  183. * be quadlet-aligned, we set the length limit to 0xffff & ~3.
  184. */
  185. #define SBP2_MAX_SEG_SIZE 0xfffc
  186. /* Unit directory keys */
  187. #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
  188. #define SBP2_CSR_FIRMWARE_REVISION 0x3c
  189. #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
  190. #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
  191. /* Management orb opcodes */
  192. #define SBP2_LOGIN_REQUEST 0x0
  193. #define SBP2_QUERY_LOGINS_REQUEST 0x1
  194. #define SBP2_RECONNECT_REQUEST 0x3
  195. #define SBP2_SET_PASSWORD_REQUEST 0x4
  196. #define SBP2_LOGOUT_REQUEST 0x7
  197. #define SBP2_ABORT_TASK_REQUEST 0xb
  198. #define SBP2_ABORT_TASK_SET 0xc
  199. #define SBP2_LOGICAL_UNIT_RESET 0xe
  200. #define SBP2_TARGET_RESET_REQUEST 0xf
  201. /* Offsets for command block agent registers */
  202. #define SBP2_AGENT_STATE 0x00
  203. #define SBP2_AGENT_RESET 0x04
  204. #define SBP2_ORB_POINTER 0x08
  205. #define SBP2_DOORBELL 0x10
  206. #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
  207. /* Status write response codes */
  208. #define SBP2_STATUS_REQUEST_COMPLETE 0x0
  209. #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
  210. #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
  211. #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
  212. #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
  213. #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
  214. #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
  215. #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
  216. #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
  217. #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
  218. #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
  219. #define STATUS_GET_DATA(v) ((v).data)
  220. struct sbp2_status {
  221. u32 status;
  222. u32 orb_low;
  223. u8 data[24];
  224. };
  225. struct sbp2_pointer {
  226. __be32 high;
  227. __be32 low;
  228. };
  229. struct sbp2_orb {
  230. struct fw_transaction t;
  231. struct kref kref;
  232. dma_addr_t request_bus;
  233. int rcode;
  234. void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
  235. struct list_head link;
  236. };
  237. #define MANAGEMENT_ORB_LUN(v) ((v))
  238. #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
  239. #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
  240. #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
  241. #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
  242. #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
  243. #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
  244. #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
  245. struct sbp2_management_orb {
  246. struct sbp2_orb base;
  247. struct {
  248. struct sbp2_pointer password;
  249. struct sbp2_pointer response;
  250. __be32 misc;
  251. __be32 length;
  252. struct sbp2_pointer status_fifo;
  253. } request;
  254. __be32 response[4];
  255. dma_addr_t response_bus;
  256. struct completion done;
  257. struct sbp2_status status;
  258. };
  259. struct sbp2_login_response {
  260. __be32 misc;
  261. struct sbp2_pointer command_block_agent;
  262. __be32 reconnect_hold;
  263. };
  264. #define COMMAND_ORB_DATA_SIZE(v) ((v))
  265. #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
  266. #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
  267. #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
  268. #define COMMAND_ORB_SPEED(v) ((v) << 24)
  269. #define COMMAND_ORB_DIRECTION ((1) << 27)
  270. #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
  271. #define COMMAND_ORB_NOTIFY ((1) << 31)
  272. struct sbp2_command_orb {
  273. struct sbp2_orb base;
  274. struct {
  275. struct sbp2_pointer next;
  276. struct sbp2_pointer data_descriptor;
  277. __be32 misc;
  278. u8 command_block[SBP2_MAX_CDB_SIZE];
  279. } request;
  280. struct scsi_cmnd *cmd;
  281. struct sbp2_logical_unit *lu;
  282. struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
  283. dma_addr_t page_table_bus;
  284. };
  285. #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
  286. #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
  287. /*
  288. * List of devices with known bugs.
  289. *
  290. * The firmware_revision field, masked with 0xffff00, is the best
  291. * indicator for the type of bridge chip of a device. It yields a few
  292. * false positives but this did not break correctly behaving devices
  293. * so far.
  294. */
  295. static const struct {
  296. u32 firmware_revision;
  297. u32 model;
  298. unsigned int workarounds;
  299. } sbp2_workarounds_table[] = {
  300. /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
  301. .firmware_revision = 0x002800,
  302. .model = 0x001010,
  303. .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
  304. SBP2_WORKAROUND_MODE_SENSE_8 |
  305. SBP2_WORKAROUND_POWER_CONDITION,
  306. },
  307. /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
  308. .firmware_revision = 0x002800,
  309. .model = 0x000000,
  310. .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
  311. },
  312. /* Initio bridges, actually only needed for some older ones */ {
  313. .firmware_revision = 0x000200,
  314. .model = SBP2_ROM_VALUE_WILDCARD,
  315. .workarounds = SBP2_WORKAROUND_INQUIRY_36,
  316. },
  317. /* PL-3507 bridge with Prolific firmware */ {
  318. .firmware_revision = 0x012800,
  319. .model = SBP2_ROM_VALUE_WILDCARD,
  320. .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
  321. },
  322. /* Symbios bridge */ {
  323. .firmware_revision = 0xa0b800,
  324. .model = SBP2_ROM_VALUE_WILDCARD,
  325. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
  326. },
  327. /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
  328. .firmware_revision = 0x002600,
  329. .model = SBP2_ROM_VALUE_WILDCARD,
  330. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
  331. },
  332. /*
  333. * iPod 2nd generation: needs 128k max transfer size workaround
  334. * iPod 3rd generation: needs fix capacity workaround
  335. */
  336. {
  337. .firmware_revision = 0x0a2700,
  338. .model = 0x000000,
  339. .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
  340. SBP2_WORKAROUND_FIX_CAPACITY,
  341. },
  342. /* iPod 4th generation */ {
  343. .firmware_revision = 0x0a2700,
  344. .model = 0x000021,
  345. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  346. },
  347. /* iPod mini */ {
  348. .firmware_revision = 0x0a2700,
  349. .model = 0x000022,
  350. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  351. },
  352. /* iPod mini */ {
  353. .firmware_revision = 0x0a2700,
  354. .model = 0x000023,
  355. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  356. },
  357. /* iPod Photo */ {
  358. .firmware_revision = 0x0a2700,
  359. .model = 0x00007e,
  360. .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
  361. }
  362. };
  363. static void free_orb(struct kref *kref)
  364. {
  365. struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
  366. kfree(orb);
  367. }
  368. static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
  369. int tcode, int destination, int source,
  370. int generation, unsigned long long offset,
  371. void *payload, size_t length, void *callback_data)
  372. {
  373. struct sbp2_logical_unit *lu = callback_data;
  374. struct sbp2_orb *orb;
  375. struct sbp2_status status;
  376. unsigned long flags;
  377. if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
  378. length < 8 || length > sizeof(status)) {
  379. fw_send_response(card, request, RCODE_TYPE_ERROR);
  380. return;
  381. }
  382. status.status = be32_to_cpup(payload);
  383. status.orb_low = be32_to_cpup(payload + 4);
  384. memset(status.data, 0, sizeof(status.data));
  385. if (length > 8)
  386. memcpy(status.data, payload + 8, length - 8);
  387. if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
  388. fw_notify("non-orb related status write, not handled\n");
  389. fw_send_response(card, request, RCODE_COMPLETE);
  390. return;
  391. }
  392. /* Lookup the orb corresponding to this status write. */
  393. spin_lock_irqsave(&card->lock, flags);
  394. list_for_each_entry(orb, &lu->orb_list, link) {
  395. if (STATUS_GET_ORB_HIGH(status) == 0 &&
  396. STATUS_GET_ORB_LOW(status) == orb->request_bus) {
  397. orb->rcode = RCODE_COMPLETE;
  398. list_del(&orb->link);
  399. break;
  400. }
  401. }
  402. spin_unlock_irqrestore(&card->lock, flags);
  403. if (&orb->link != &lu->orb_list) {
  404. orb->callback(orb, &status);
  405. kref_put(&orb->kref, free_orb); /* orb callback reference */
  406. } else {
  407. fw_error("status write for unknown orb\n");
  408. }
  409. fw_send_response(card, request, RCODE_COMPLETE);
  410. }
  411. static void complete_transaction(struct fw_card *card, int rcode,
  412. void *payload, size_t length, void *data)
  413. {
  414. struct sbp2_orb *orb = data;
  415. unsigned long flags;
  416. /*
  417. * This is a little tricky. We can get the status write for
  418. * the orb before we get this callback. The status write
  419. * handler above will assume the orb pointer transaction was
  420. * successful and set the rcode to RCODE_COMPLETE for the orb.
  421. * So this callback only sets the rcode if it hasn't already
  422. * been set and only does the cleanup if the transaction
  423. * failed and we didn't already get a status write.
  424. */
  425. spin_lock_irqsave(&card->lock, flags);
  426. if (orb->rcode == -1)
  427. orb->rcode = rcode;
  428. if (orb->rcode != RCODE_COMPLETE) {
  429. list_del(&orb->link);
  430. spin_unlock_irqrestore(&card->lock, flags);
  431. orb->callback(orb, NULL);
  432. kref_put(&orb->kref, free_orb); /* orb callback reference */
  433. } else {
  434. spin_unlock_irqrestore(&card->lock, flags);
  435. }
  436. kref_put(&orb->kref, free_orb); /* transaction callback reference */
  437. }
  438. static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
  439. int node_id, int generation, u64 offset)
  440. {
  441. struct fw_device *device = target_device(lu->tgt);
  442. struct sbp2_pointer orb_pointer;
  443. unsigned long flags;
  444. orb_pointer.high = 0;
  445. orb_pointer.low = cpu_to_be32(orb->request_bus);
  446. spin_lock_irqsave(&device->card->lock, flags);
  447. list_add_tail(&orb->link, &lu->orb_list);
  448. spin_unlock_irqrestore(&device->card->lock, flags);
  449. kref_get(&orb->kref); /* transaction callback reference */
  450. kref_get(&orb->kref); /* orb callback reference */
  451. fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
  452. node_id, generation, device->max_speed, offset,
  453. &orb_pointer, 8, complete_transaction, orb);
  454. }
  455. static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
  456. {
  457. struct fw_device *device = target_device(lu->tgt);
  458. struct sbp2_orb *orb, *next;
  459. struct list_head list;
  460. unsigned long flags;
  461. int retval = -ENOENT;
  462. INIT_LIST_HEAD(&list);
  463. spin_lock_irqsave(&device->card->lock, flags);
  464. list_splice_init(&lu->orb_list, &list);
  465. spin_unlock_irqrestore(&device->card->lock, flags);
  466. list_for_each_entry_safe(orb, next, &list, link) {
  467. retval = 0;
  468. if (fw_cancel_transaction(device->card, &orb->t) == 0)
  469. continue;
  470. orb->rcode = RCODE_CANCELLED;
  471. orb->callback(orb, NULL);
  472. kref_put(&orb->kref, free_orb); /* orb callback reference */
  473. }
  474. return retval;
  475. }
  476. static void complete_management_orb(struct sbp2_orb *base_orb,
  477. struct sbp2_status *status)
  478. {
  479. struct sbp2_management_orb *orb =
  480. container_of(base_orb, struct sbp2_management_orb, base);
  481. if (status)
  482. memcpy(&orb->status, status, sizeof(*status));
  483. complete(&orb->done);
  484. }
  485. static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
  486. int generation, int function,
  487. int lun_or_login_id, void *response)
  488. {
  489. struct fw_device *device = target_device(lu->tgt);
  490. struct sbp2_management_orb *orb;
  491. unsigned int timeout;
  492. int retval = -ENOMEM;
  493. if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
  494. return 0;
  495. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  496. if (orb == NULL)
  497. return -ENOMEM;
  498. kref_init(&orb->base.kref);
  499. orb->response_bus =
  500. dma_map_single(device->card->device, &orb->response,
  501. sizeof(orb->response), DMA_FROM_DEVICE);
  502. if (dma_mapping_error(device->card->device, orb->response_bus))
  503. goto fail_mapping_response;
  504. orb->request.response.high = 0;
  505. orb->request.response.low = cpu_to_be32(orb->response_bus);
  506. orb->request.misc = cpu_to_be32(
  507. MANAGEMENT_ORB_NOTIFY |
  508. MANAGEMENT_ORB_FUNCTION(function) |
  509. MANAGEMENT_ORB_LUN(lun_or_login_id));
  510. orb->request.length = cpu_to_be32(
  511. MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
  512. orb->request.status_fifo.high =
  513. cpu_to_be32(lu->address_handler.offset >> 32);
  514. orb->request.status_fifo.low =
  515. cpu_to_be32(lu->address_handler.offset);
  516. if (function == SBP2_LOGIN_REQUEST) {
  517. /* Ask for 2^2 == 4 seconds reconnect grace period */
  518. orb->request.misc |= cpu_to_be32(
  519. MANAGEMENT_ORB_RECONNECT(2) |
  520. MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
  521. timeout = lu->tgt->mgt_orb_timeout;
  522. } else {
  523. timeout = SBP2_ORB_TIMEOUT;
  524. }
  525. init_completion(&orb->done);
  526. orb->base.callback = complete_management_orb;
  527. orb->base.request_bus =
  528. dma_map_single(device->card->device, &orb->request,
  529. sizeof(orb->request), DMA_TO_DEVICE);
  530. if (dma_mapping_error(device->card->device, orb->base.request_bus))
  531. goto fail_mapping_request;
  532. sbp2_send_orb(&orb->base, lu, node_id, generation,
  533. lu->tgt->management_agent_address);
  534. wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
  535. retval = -EIO;
  536. if (sbp2_cancel_orbs(lu) == 0) {
  537. fw_error("%s: orb reply timed out, rcode=0x%02x\n",
  538. lu->tgt->bus_id, orb->base.rcode);
  539. goto out;
  540. }
  541. if (orb->base.rcode != RCODE_COMPLETE) {
  542. fw_error("%s: management write failed, rcode 0x%02x\n",
  543. lu->tgt->bus_id, orb->base.rcode);
  544. goto out;
  545. }
  546. if (STATUS_GET_RESPONSE(orb->status) != 0 ||
  547. STATUS_GET_SBP_STATUS(orb->status) != 0) {
  548. fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
  549. STATUS_GET_RESPONSE(orb->status),
  550. STATUS_GET_SBP_STATUS(orb->status));
  551. goto out;
  552. }
  553. retval = 0;
  554. out:
  555. dma_unmap_single(device->card->device, orb->base.request_bus,
  556. sizeof(orb->request), DMA_TO_DEVICE);
  557. fail_mapping_request:
  558. dma_unmap_single(device->card->device, orb->response_bus,
  559. sizeof(orb->response), DMA_FROM_DEVICE);
  560. fail_mapping_response:
  561. if (response)
  562. memcpy(response, orb->response, sizeof(orb->response));
  563. kref_put(&orb->base.kref, free_orb);
  564. return retval;
  565. }
  566. static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
  567. {
  568. struct fw_device *device = target_device(lu->tgt);
  569. __be32 d = 0;
  570. fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
  571. lu->tgt->node_id, lu->generation, device->max_speed,
  572. lu->command_block_agent_address + SBP2_AGENT_RESET,
  573. &d, 4);
  574. }
  575. static void complete_agent_reset_write_no_wait(struct fw_card *card,
  576. int rcode, void *payload, size_t length, void *data)
  577. {
  578. kfree(data);
  579. }
  580. static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
  581. {
  582. struct fw_device *device = target_device(lu->tgt);
  583. struct fw_transaction *t;
  584. static __be32 d;
  585. t = kmalloc(sizeof(*t), GFP_ATOMIC);
  586. if (t == NULL)
  587. return;
  588. fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
  589. lu->tgt->node_id, lu->generation, device->max_speed,
  590. lu->command_block_agent_address + SBP2_AGENT_RESET,
  591. &d, 4, complete_agent_reset_write_no_wait, t);
  592. }
  593. static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
  594. {
  595. /*
  596. * We may access dont_block without taking card->lock here:
  597. * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
  598. * are currently serialized against each other.
  599. * And a wrong result in sbp2_conditionally_block()'s access of
  600. * dont_block is rather harmless, it simply misses its first chance.
  601. */
  602. --lu->tgt->dont_block;
  603. }
  604. /*
  605. * Blocks lu->tgt if all of the following conditions are met:
  606. * - Login, INQUIRY, and high-level SCSI setup of all of the target's
  607. * logical units have been finished (indicated by dont_block == 0).
  608. * - lu->generation is stale.
  609. *
  610. * Note, scsi_block_requests() must be called while holding card->lock,
  611. * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
  612. * unblock the target.
  613. */
  614. static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
  615. {
  616. struct sbp2_target *tgt = lu->tgt;
  617. struct fw_card *card = target_device(tgt)->card;
  618. struct Scsi_Host *shost =
  619. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  620. unsigned long flags;
  621. spin_lock_irqsave(&card->lock, flags);
  622. if (!tgt->dont_block && !lu->blocked &&
  623. lu->generation != card->generation) {
  624. lu->blocked = true;
  625. if (++tgt->blocked == 1)
  626. scsi_block_requests(shost);
  627. }
  628. spin_unlock_irqrestore(&card->lock, flags);
  629. }
  630. /*
  631. * Unblocks lu->tgt as soon as all its logical units can be unblocked.
  632. * Note, it is harmless to run scsi_unblock_requests() outside the
  633. * card->lock protected section. On the other hand, running it inside
  634. * the section might clash with shost->host_lock.
  635. */
  636. static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
  637. {
  638. struct sbp2_target *tgt = lu->tgt;
  639. struct fw_card *card = target_device(tgt)->card;
  640. struct Scsi_Host *shost =
  641. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  642. unsigned long flags;
  643. bool unblock = false;
  644. spin_lock_irqsave(&card->lock, flags);
  645. if (lu->blocked && lu->generation == card->generation) {
  646. lu->blocked = false;
  647. unblock = --tgt->blocked == 0;
  648. }
  649. spin_unlock_irqrestore(&card->lock, flags);
  650. if (unblock)
  651. scsi_unblock_requests(shost);
  652. }
  653. /*
  654. * Prevents future blocking of tgt and unblocks it.
  655. * Note, it is harmless to run scsi_unblock_requests() outside the
  656. * card->lock protected section. On the other hand, running it inside
  657. * the section might clash with shost->host_lock.
  658. */
  659. static void sbp2_unblock(struct sbp2_target *tgt)
  660. {
  661. struct fw_card *card = target_device(tgt)->card;
  662. struct Scsi_Host *shost =
  663. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  664. unsigned long flags;
  665. spin_lock_irqsave(&card->lock, flags);
  666. ++tgt->dont_block;
  667. spin_unlock_irqrestore(&card->lock, flags);
  668. scsi_unblock_requests(shost);
  669. }
  670. static int sbp2_lun2int(u16 lun)
  671. {
  672. struct scsi_lun eight_bytes_lun;
  673. memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
  674. eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
  675. eight_bytes_lun.scsi_lun[1] = lun & 0xff;
  676. return scsilun_to_int(&eight_bytes_lun);
  677. }
  678. static void sbp2_release_target(struct kref *kref)
  679. {
  680. struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
  681. struct sbp2_logical_unit *lu, *next;
  682. struct Scsi_Host *shost =
  683. container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  684. struct scsi_device *sdev;
  685. struct fw_device *device = target_device(tgt);
  686. /* prevent deadlocks */
  687. sbp2_unblock(tgt);
  688. list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
  689. sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
  690. if (sdev) {
  691. scsi_remove_device(sdev);
  692. scsi_device_put(sdev);
  693. }
  694. if (lu->login_id != INVALID_LOGIN_ID) {
  695. int generation, node_id;
  696. /*
  697. * tgt->node_id may be obsolete here if we failed
  698. * during initial login or after a bus reset where
  699. * the topology changed.
  700. */
  701. generation = device->generation;
  702. smp_rmb(); /* node_id vs. generation */
  703. node_id = device->node_id;
  704. sbp2_send_management_orb(lu, node_id, generation,
  705. SBP2_LOGOUT_REQUEST,
  706. lu->login_id, NULL);
  707. }
  708. fw_core_remove_address_handler(&lu->address_handler);
  709. list_del(&lu->link);
  710. kfree(lu);
  711. }
  712. scsi_remove_host(shost);
  713. fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
  714. fw_unit_put(tgt->unit);
  715. scsi_host_put(shost);
  716. fw_device_put(device);
  717. }
  718. static void sbp2_target_get(struct sbp2_target *tgt)
  719. {
  720. kref_get(&tgt->kref);
  721. }
  722. static void sbp2_target_put(struct sbp2_target *tgt)
  723. {
  724. kref_put(&tgt->kref, sbp2_release_target);
  725. }
  726. /*
  727. * Always get the target's kref when scheduling work on one its units.
  728. * Each workqueue job is responsible to call sbp2_target_put() upon return.
  729. */
  730. static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
  731. {
  732. sbp2_target_get(lu->tgt);
  733. if (!queue_delayed_work(fw_workqueue, &lu->work, delay))
  734. sbp2_target_put(lu->tgt);
  735. }
  736. /*
  737. * Write retransmit retry values into the BUSY_TIMEOUT register.
  738. * - The single-phase retry protocol is supported by all SBP-2 devices, but the
  739. * default retry_limit value is 0 (i.e. never retry transmission). We write a
  740. * saner value after logging into the device.
  741. * - The dual-phase retry protocol is optional to implement, and if not
  742. * supported, writes to the dual-phase portion of the register will be
  743. * ignored. We try to write the original 1394-1995 default here.
  744. * - In the case of devices that are also SBP-3-compliant, all writes are
  745. * ignored, as the register is read-only, but contains single-phase retry of
  746. * 15, which is what we're trying to set for all SBP-2 device anyway, so this
  747. * write attempt is safe and yields more consistent behavior for all devices.
  748. *
  749. * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
  750. * and section 6.4 of the SBP-3 spec for further details.
  751. */
  752. static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
  753. {
  754. struct fw_device *device = target_device(lu->tgt);
  755. __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
  756. fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
  757. lu->tgt->node_id, lu->generation, device->max_speed,
  758. CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
  759. }
  760. static void sbp2_reconnect(struct work_struct *work);
  761. static void sbp2_login(struct work_struct *work)
  762. {
  763. struct sbp2_logical_unit *lu =
  764. container_of(work, struct sbp2_logical_unit, work.work);
  765. struct sbp2_target *tgt = lu->tgt;
  766. struct fw_device *device = target_device(tgt);
  767. struct Scsi_Host *shost;
  768. struct scsi_device *sdev;
  769. struct sbp2_login_response response;
  770. int generation, node_id, local_node_id;
  771. if (fw_device_is_shutdown(device))
  772. goto out;
  773. generation = device->generation;
  774. smp_rmb(); /* node IDs must not be older than generation */
  775. node_id = device->node_id;
  776. local_node_id = device->card->node_id;
  777. /* If this is a re-login attempt, log out, or we might be rejected. */
  778. if (lu->has_sdev)
  779. sbp2_send_management_orb(lu, device->node_id, generation,
  780. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  781. if (sbp2_send_management_orb(lu, node_id, generation,
  782. SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
  783. if (lu->retries++ < 5) {
  784. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  785. } else {
  786. fw_error("%s: failed to login to LUN %04x\n",
  787. tgt->bus_id, lu->lun);
  788. /* Let any waiting I/O fail from now on. */
  789. sbp2_unblock(lu->tgt);
  790. }
  791. goto out;
  792. }
  793. tgt->node_id = node_id;
  794. tgt->address_high = local_node_id << 16;
  795. smp_wmb(); /* node IDs must not be older than generation */
  796. lu->generation = generation;
  797. lu->command_block_agent_address =
  798. ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
  799. << 32) | be32_to_cpu(response.command_block_agent.low);
  800. lu->login_id = be32_to_cpu(response.misc) & 0xffff;
  801. fw_notify("%s: logged in to LUN %04x (%d retries)\n",
  802. tgt->bus_id, lu->lun, lu->retries);
  803. /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
  804. sbp2_set_busy_timeout(lu);
  805. PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
  806. sbp2_agent_reset(lu);
  807. /* This was a re-login. */
  808. if (lu->has_sdev) {
  809. sbp2_cancel_orbs(lu);
  810. sbp2_conditionally_unblock(lu);
  811. goto out;
  812. }
  813. if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
  814. ssleep(SBP2_INQUIRY_DELAY);
  815. shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
  816. sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
  817. /*
  818. * FIXME: We are unable to perform reconnects while in sbp2_login().
  819. * Therefore __scsi_add_device() will get into trouble if a bus reset
  820. * happens in parallel. It will either fail or leave us with an
  821. * unusable sdev. As a workaround we check for this and retry the
  822. * whole login and SCSI probing.
  823. */
  824. /* Reported error during __scsi_add_device() */
  825. if (IS_ERR(sdev))
  826. goto out_logout_login;
  827. /* Unreported error during __scsi_add_device() */
  828. smp_rmb(); /* get current card generation */
  829. if (generation != device->card->generation) {
  830. scsi_remove_device(sdev);
  831. scsi_device_put(sdev);
  832. goto out_logout_login;
  833. }
  834. /* No error during __scsi_add_device() */
  835. lu->has_sdev = true;
  836. scsi_device_put(sdev);
  837. sbp2_allow_block(lu);
  838. goto out;
  839. out_logout_login:
  840. smp_rmb(); /* generation may have changed */
  841. generation = device->generation;
  842. smp_rmb(); /* node_id must not be older than generation */
  843. sbp2_send_management_orb(lu, device->node_id, generation,
  844. SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
  845. /*
  846. * If a bus reset happened, sbp2_update will have requeued
  847. * lu->work already. Reset the work from reconnect to login.
  848. */
  849. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  850. out:
  851. sbp2_target_put(tgt);
  852. }
  853. static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
  854. {
  855. struct sbp2_logical_unit *lu;
  856. lu = kmalloc(sizeof(*lu), GFP_KERNEL);
  857. if (!lu)
  858. return -ENOMEM;
  859. lu->address_handler.length = 0x100;
  860. lu->address_handler.address_callback = sbp2_status_write;
  861. lu->address_handler.callback_data = lu;
  862. if (fw_core_add_address_handler(&lu->address_handler,
  863. &fw_high_memory_region) < 0) {
  864. kfree(lu);
  865. return -ENOMEM;
  866. }
  867. lu->tgt = tgt;
  868. lu->lun = lun_entry & 0xffff;
  869. lu->login_id = INVALID_LOGIN_ID;
  870. lu->retries = 0;
  871. lu->has_sdev = false;
  872. lu->blocked = false;
  873. ++tgt->dont_block;
  874. INIT_LIST_HEAD(&lu->orb_list);
  875. INIT_DELAYED_WORK(&lu->work, sbp2_login);
  876. list_add_tail(&lu->link, &tgt->lu_list);
  877. return 0;
  878. }
  879. static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
  880. const u32 *directory)
  881. {
  882. struct fw_csr_iterator ci;
  883. int key, value;
  884. fw_csr_iterator_init(&ci, directory);
  885. while (fw_csr_iterator_next(&ci, &key, &value))
  886. if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
  887. sbp2_add_logical_unit(tgt, value) < 0)
  888. return -ENOMEM;
  889. return 0;
  890. }
  891. static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
  892. u32 *model, u32 *firmware_revision)
  893. {
  894. struct fw_csr_iterator ci;
  895. int key, value;
  896. fw_csr_iterator_init(&ci, directory);
  897. while (fw_csr_iterator_next(&ci, &key, &value)) {
  898. switch (key) {
  899. case CSR_DEPENDENT_INFO | CSR_OFFSET:
  900. tgt->management_agent_address =
  901. CSR_REGISTER_BASE + 4 * value;
  902. break;
  903. case CSR_DIRECTORY_ID:
  904. tgt->directory_id = value;
  905. break;
  906. case CSR_MODEL:
  907. *model = value;
  908. break;
  909. case SBP2_CSR_FIRMWARE_REVISION:
  910. *firmware_revision = value;
  911. break;
  912. case SBP2_CSR_UNIT_CHARACTERISTICS:
  913. /* the timeout value is stored in 500ms units */
  914. tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
  915. break;
  916. case SBP2_CSR_LOGICAL_UNIT_NUMBER:
  917. if (sbp2_add_logical_unit(tgt, value) < 0)
  918. return -ENOMEM;
  919. break;
  920. case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
  921. /* Adjust for the increment in the iterator */
  922. if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
  923. return -ENOMEM;
  924. break;
  925. }
  926. }
  927. return 0;
  928. }
  929. /*
  930. * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
  931. * provided in the config rom. Most devices do provide a value, which
  932. * we'll use for login management orbs, but with some sane limits.
  933. */
  934. static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
  935. {
  936. unsigned int timeout = tgt->mgt_orb_timeout;
  937. if (timeout > 40000)
  938. fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
  939. tgt->bus_id, timeout / 1000);
  940. tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
  941. }
  942. static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
  943. u32 firmware_revision)
  944. {
  945. int i;
  946. unsigned int w = sbp2_param_workarounds;
  947. if (w)
  948. fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
  949. "if you need the workarounds parameter for %s\n",
  950. tgt->bus_id);
  951. if (w & SBP2_WORKAROUND_OVERRIDE)
  952. goto out;
  953. for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
  954. if (sbp2_workarounds_table[i].firmware_revision !=
  955. (firmware_revision & 0xffffff00))
  956. continue;
  957. if (sbp2_workarounds_table[i].model != model &&
  958. sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
  959. continue;
  960. w |= sbp2_workarounds_table[i].workarounds;
  961. break;
  962. }
  963. out:
  964. if (w)
  965. fw_notify("Workarounds for %s: 0x%x "
  966. "(firmware_revision 0x%06x, model_id 0x%06x)\n",
  967. tgt->bus_id, w, firmware_revision, model);
  968. tgt->workarounds = w;
  969. }
  970. static struct scsi_host_template scsi_driver_template;
  971. static int sbp2_probe(struct device *dev)
  972. {
  973. struct fw_unit *unit = fw_unit(dev);
  974. struct fw_device *device = fw_parent_device(unit);
  975. struct sbp2_target *tgt;
  976. struct sbp2_logical_unit *lu;
  977. struct Scsi_Host *shost;
  978. u32 model, firmware_revision;
  979. if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
  980. BUG_ON(dma_set_max_seg_size(device->card->device,
  981. SBP2_MAX_SEG_SIZE));
  982. shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
  983. if (shost == NULL)
  984. return -ENOMEM;
  985. tgt = (struct sbp2_target *)shost->hostdata;
  986. dev_set_drvdata(&unit->device, tgt);
  987. tgt->unit = unit;
  988. kref_init(&tgt->kref);
  989. INIT_LIST_HEAD(&tgt->lu_list);
  990. tgt->bus_id = dev_name(&unit->device);
  991. tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
  992. if (fw_device_enable_phys_dma(device) < 0)
  993. goto fail_shost_put;
  994. shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
  995. if (scsi_add_host(shost, &unit->device) < 0)
  996. goto fail_shost_put;
  997. fw_device_get(device);
  998. fw_unit_get(unit);
  999. /* implicit directory ID */
  1000. tgt->directory_id = ((unit->directory - device->config_rom) * 4
  1001. + CSR_CONFIG_ROM) & 0xffffff;
  1002. firmware_revision = SBP2_ROM_VALUE_MISSING;
  1003. model = SBP2_ROM_VALUE_MISSING;
  1004. if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
  1005. &firmware_revision) < 0)
  1006. goto fail_tgt_put;
  1007. sbp2_clamp_management_orb_timeout(tgt);
  1008. sbp2_init_workarounds(tgt, model, firmware_revision);
  1009. /*
  1010. * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
  1011. * and so on up to 4096 bytes. The SBP-2 max_payload field
  1012. * specifies the max payload size as 2 ^ (max_payload + 2), so
  1013. * if we set this to max_speed + 7, we get the right value.
  1014. */
  1015. tgt->max_payload = min(device->max_speed + 7, 10U);
  1016. tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
  1017. /* Do the login in a workqueue so we can easily reschedule retries. */
  1018. list_for_each_entry(lu, &tgt->lu_list, link)
  1019. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  1020. return 0;
  1021. fail_tgt_put:
  1022. sbp2_target_put(tgt);
  1023. return -ENOMEM;
  1024. fail_shost_put:
  1025. scsi_host_put(shost);
  1026. return -ENOMEM;
  1027. }
  1028. static int sbp2_remove(struct device *dev)
  1029. {
  1030. struct fw_unit *unit = fw_unit(dev);
  1031. struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
  1032. struct sbp2_logical_unit *lu;
  1033. list_for_each_entry(lu, &tgt->lu_list, link)
  1034. cancel_delayed_work_sync(&lu->work);
  1035. sbp2_target_put(tgt);
  1036. return 0;
  1037. }
  1038. static void sbp2_reconnect(struct work_struct *work)
  1039. {
  1040. struct sbp2_logical_unit *lu =
  1041. container_of(work, struct sbp2_logical_unit, work.work);
  1042. struct sbp2_target *tgt = lu->tgt;
  1043. struct fw_device *device = target_device(tgt);
  1044. int generation, node_id, local_node_id;
  1045. if (fw_device_is_shutdown(device))
  1046. goto out;
  1047. generation = device->generation;
  1048. smp_rmb(); /* node IDs must not be older than generation */
  1049. node_id = device->node_id;
  1050. local_node_id = device->card->node_id;
  1051. if (sbp2_send_management_orb(lu, node_id, generation,
  1052. SBP2_RECONNECT_REQUEST,
  1053. lu->login_id, NULL) < 0) {
  1054. /*
  1055. * If reconnect was impossible even though we are in the
  1056. * current generation, fall back and try to log in again.
  1057. *
  1058. * We could check for "Function rejected" status, but
  1059. * looking at the bus generation as simpler and more general.
  1060. */
  1061. smp_rmb(); /* get current card generation */
  1062. if (generation == device->card->generation ||
  1063. lu->retries++ >= 5) {
  1064. fw_error("%s: failed to reconnect\n", tgt->bus_id);
  1065. lu->retries = 0;
  1066. PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
  1067. }
  1068. sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
  1069. goto out;
  1070. }
  1071. tgt->node_id = node_id;
  1072. tgt->address_high = local_node_id << 16;
  1073. smp_wmb(); /* node IDs must not be older than generation */
  1074. lu->generation = generation;
  1075. fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
  1076. tgt->bus_id, lu->lun, lu->retries);
  1077. sbp2_agent_reset(lu);
  1078. sbp2_cancel_orbs(lu);
  1079. sbp2_conditionally_unblock(lu);
  1080. out:
  1081. sbp2_target_put(tgt);
  1082. }
  1083. static void sbp2_update(struct fw_unit *unit)
  1084. {
  1085. struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
  1086. struct sbp2_logical_unit *lu;
  1087. fw_device_enable_phys_dma(fw_parent_device(unit));
  1088. /*
  1089. * Fw-core serializes sbp2_update() against sbp2_remove().
  1090. * Iteration over tgt->lu_list is therefore safe here.
  1091. */
  1092. list_for_each_entry(lu, &tgt->lu_list, link) {
  1093. sbp2_conditionally_block(lu);
  1094. lu->retries = 0;
  1095. sbp2_queue_work(lu, 0);
  1096. }
  1097. }
  1098. #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
  1099. #define SBP2_SW_VERSION_ENTRY 0x00010483
  1100. static const struct ieee1394_device_id sbp2_id_table[] = {
  1101. {
  1102. .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
  1103. IEEE1394_MATCH_VERSION,
  1104. .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
  1105. .version = SBP2_SW_VERSION_ENTRY,
  1106. },
  1107. { }
  1108. };
  1109. static struct fw_driver sbp2_driver = {
  1110. .driver = {
  1111. .owner = THIS_MODULE,
  1112. .name = sbp2_driver_name,
  1113. .bus = &fw_bus_type,
  1114. .probe = sbp2_probe,
  1115. .remove = sbp2_remove,
  1116. },
  1117. .update = sbp2_update,
  1118. .id_table = sbp2_id_table,
  1119. };
  1120. static void sbp2_unmap_scatterlist(struct device *card_device,
  1121. struct sbp2_command_orb *orb)
  1122. {
  1123. if (scsi_sg_count(orb->cmd))
  1124. dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
  1125. scsi_sg_count(orb->cmd),
  1126. orb->cmd->sc_data_direction);
  1127. if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
  1128. dma_unmap_single(card_device, orb->page_table_bus,
  1129. sizeof(orb->page_table), DMA_TO_DEVICE);
  1130. }
  1131. static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
  1132. {
  1133. int sam_status;
  1134. sense_data[0] = 0x70;
  1135. sense_data[1] = 0x0;
  1136. sense_data[2] = sbp2_status[1];
  1137. sense_data[3] = sbp2_status[4];
  1138. sense_data[4] = sbp2_status[5];
  1139. sense_data[5] = sbp2_status[6];
  1140. sense_data[6] = sbp2_status[7];
  1141. sense_data[7] = 10;
  1142. sense_data[8] = sbp2_status[8];
  1143. sense_data[9] = sbp2_status[9];
  1144. sense_data[10] = sbp2_status[10];
  1145. sense_data[11] = sbp2_status[11];
  1146. sense_data[12] = sbp2_status[2];
  1147. sense_data[13] = sbp2_status[3];
  1148. sense_data[14] = sbp2_status[12];
  1149. sense_data[15] = sbp2_status[13];
  1150. sam_status = sbp2_status[0] & 0x3f;
  1151. switch (sam_status) {
  1152. case SAM_STAT_GOOD:
  1153. case SAM_STAT_CHECK_CONDITION:
  1154. case SAM_STAT_CONDITION_MET:
  1155. case SAM_STAT_BUSY:
  1156. case SAM_STAT_RESERVATION_CONFLICT:
  1157. case SAM_STAT_COMMAND_TERMINATED:
  1158. return DID_OK << 16 | sam_status;
  1159. default:
  1160. return DID_ERROR << 16;
  1161. }
  1162. }
  1163. static void complete_command_orb(struct sbp2_orb *base_orb,
  1164. struct sbp2_status *status)
  1165. {
  1166. struct sbp2_command_orb *orb =
  1167. container_of(base_orb, struct sbp2_command_orb, base);
  1168. struct fw_device *device = target_device(orb->lu->tgt);
  1169. int result;
  1170. if (status != NULL) {
  1171. if (STATUS_GET_DEAD(*status))
  1172. sbp2_agent_reset_no_wait(orb->lu);
  1173. switch (STATUS_GET_RESPONSE(*status)) {
  1174. case SBP2_STATUS_REQUEST_COMPLETE:
  1175. result = DID_OK << 16;
  1176. break;
  1177. case SBP2_STATUS_TRANSPORT_FAILURE:
  1178. result = DID_BUS_BUSY << 16;
  1179. break;
  1180. case SBP2_STATUS_ILLEGAL_REQUEST:
  1181. case SBP2_STATUS_VENDOR_DEPENDENT:
  1182. default:
  1183. result = DID_ERROR << 16;
  1184. break;
  1185. }
  1186. if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
  1187. result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
  1188. orb->cmd->sense_buffer);
  1189. } else {
  1190. /*
  1191. * If the orb completes with status == NULL, something
  1192. * went wrong, typically a bus reset happened mid-orb
  1193. * or when sending the write (less likely).
  1194. */
  1195. result = DID_BUS_BUSY << 16;
  1196. sbp2_conditionally_block(orb->lu);
  1197. }
  1198. dma_unmap_single(device->card->device, orb->base.request_bus,
  1199. sizeof(orb->request), DMA_TO_DEVICE);
  1200. sbp2_unmap_scatterlist(device->card->device, orb);
  1201. orb->cmd->result = result;
  1202. orb->cmd->scsi_done(orb->cmd);
  1203. }
  1204. static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
  1205. struct fw_device *device, struct sbp2_logical_unit *lu)
  1206. {
  1207. struct scatterlist *sg = scsi_sglist(orb->cmd);
  1208. int i, n;
  1209. n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
  1210. orb->cmd->sc_data_direction);
  1211. if (n == 0)
  1212. goto fail;
  1213. /*
  1214. * Handle the special case where there is only one element in
  1215. * the scatter list by converting it to an immediate block
  1216. * request. This is also a workaround for broken devices such
  1217. * as the second generation iPod which doesn't support page
  1218. * tables.
  1219. */
  1220. if (n == 1) {
  1221. orb->request.data_descriptor.high =
  1222. cpu_to_be32(lu->tgt->address_high);
  1223. orb->request.data_descriptor.low =
  1224. cpu_to_be32(sg_dma_address(sg));
  1225. orb->request.misc |=
  1226. cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
  1227. return 0;
  1228. }
  1229. for_each_sg(sg, sg, n, i) {
  1230. orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
  1231. orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
  1232. }
  1233. orb->page_table_bus =
  1234. dma_map_single(device->card->device, orb->page_table,
  1235. sizeof(orb->page_table), DMA_TO_DEVICE);
  1236. if (dma_mapping_error(device->card->device, orb->page_table_bus))
  1237. goto fail_page_table;
  1238. /*
  1239. * The data_descriptor pointer is the one case where we need
  1240. * to fill in the node ID part of the address. All other
  1241. * pointers assume that the data referenced reside on the
  1242. * initiator (i.e. us), but data_descriptor can refer to data
  1243. * on other nodes so we need to put our ID in descriptor.high.
  1244. */
  1245. orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
  1246. orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
  1247. orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
  1248. COMMAND_ORB_DATA_SIZE(n));
  1249. return 0;
  1250. fail_page_table:
  1251. dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
  1252. scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
  1253. fail:
  1254. return -ENOMEM;
  1255. }
  1256. /* SCSI stack integration */
  1257. static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
  1258. struct scsi_cmnd *cmd)
  1259. {
  1260. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1261. struct fw_device *device = target_device(lu->tgt);
  1262. struct sbp2_command_orb *orb;
  1263. int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
  1264. /*
  1265. * Bidirectional commands are not yet implemented, and unknown
  1266. * transfer direction not handled.
  1267. */
  1268. if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
  1269. fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
  1270. cmd->result = DID_ERROR << 16;
  1271. cmd->scsi_done(cmd);
  1272. return 0;
  1273. }
  1274. orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
  1275. if (orb == NULL) {
  1276. fw_notify("failed to alloc orb\n");
  1277. return SCSI_MLQUEUE_HOST_BUSY;
  1278. }
  1279. /* Initialize rcode to something not RCODE_COMPLETE. */
  1280. orb->base.rcode = -1;
  1281. kref_init(&orb->base.kref);
  1282. orb->lu = lu;
  1283. orb->cmd = cmd;
  1284. orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
  1285. orb->request.misc = cpu_to_be32(
  1286. COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
  1287. COMMAND_ORB_SPEED(device->max_speed) |
  1288. COMMAND_ORB_NOTIFY);
  1289. if (cmd->sc_data_direction == DMA_FROM_DEVICE)
  1290. orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
  1291. generation = device->generation;
  1292. smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
  1293. if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
  1294. goto out;
  1295. memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
  1296. orb->base.callback = complete_command_orb;
  1297. orb->base.request_bus =
  1298. dma_map_single(device->card->device, &orb->request,
  1299. sizeof(orb->request), DMA_TO_DEVICE);
  1300. if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
  1301. sbp2_unmap_scatterlist(device->card->device, orb);
  1302. goto out;
  1303. }
  1304. sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
  1305. lu->command_block_agent_address + SBP2_ORB_POINTER);
  1306. retval = 0;
  1307. out:
  1308. kref_put(&orb->base.kref, free_orb);
  1309. return retval;
  1310. }
  1311. static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
  1312. {
  1313. struct sbp2_logical_unit *lu = sdev->hostdata;
  1314. /* (Re-)Adding logical units via the SCSI stack is not supported. */
  1315. if (!lu)
  1316. return -ENOSYS;
  1317. sdev->allow_restart = 1;
  1318. /* SBP-2 requires quadlet alignment of the data buffers. */
  1319. blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
  1320. if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
  1321. sdev->inquiry_len = 36;
  1322. return 0;
  1323. }
  1324. static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
  1325. {
  1326. struct sbp2_logical_unit *lu = sdev->hostdata;
  1327. sdev->use_10_for_rw = 1;
  1328. if (sbp2_param_exclusive_login)
  1329. sdev->manage_start_stop = 1;
  1330. if (sdev->type == TYPE_ROM)
  1331. sdev->use_10_for_ms = 1;
  1332. if (sdev->type == TYPE_DISK &&
  1333. lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
  1334. sdev->skip_ms_page_8 = 1;
  1335. if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
  1336. sdev->fix_capacity = 1;
  1337. if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
  1338. sdev->start_stop_pwr_cond = 1;
  1339. if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
  1340. blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
  1341. blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
  1342. return 0;
  1343. }
  1344. /*
  1345. * Called by scsi stack when something has really gone wrong. Usually
  1346. * called when a command has timed-out for some reason.
  1347. */
  1348. static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
  1349. {
  1350. struct sbp2_logical_unit *lu = cmd->device->hostdata;
  1351. fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
  1352. sbp2_agent_reset(lu);
  1353. sbp2_cancel_orbs(lu);
  1354. return SUCCESS;
  1355. }
  1356. /*
  1357. * Format of /sys/bus/scsi/devices/.../ieee1394_id:
  1358. * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
  1359. *
  1360. * This is the concatenation of target port identifier and logical unit
  1361. * identifier as per SAM-2...SAM-4 annex A.
  1362. */
  1363. static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
  1364. struct device_attribute *attr, char *buf)
  1365. {
  1366. struct scsi_device *sdev = to_scsi_device(dev);
  1367. struct sbp2_logical_unit *lu;
  1368. if (!sdev)
  1369. return 0;
  1370. lu = sdev->hostdata;
  1371. return sprintf(buf, "%016llx:%06x:%04x\n",
  1372. (unsigned long long)lu->tgt->guid,
  1373. lu->tgt->directory_id, lu->lun);
  1374. }
  1375. static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
  1376. static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
  1377. &dev_attr_ieee1394_id,
  1378. NULL
  1379. };
  1380. static struct scsi_host_template scsi_driver_template = {
  1381. .module = THIS_MODULE,
  1382. .name = "SBP-2 IEEE-1394",
  1383. .proc_name = sbp2_driver_name,
  1384. .queuecommand = sbp2_scsi_queuecommand,
  1385. .slave_alloc = sbp2_scsi_slave_alloc,
  1386. .slave_configure = sbp2_scsi_slave_configure,
  1387. .eh_abort_handler = sbp2_scsi_abort,
  1388. .this_id = -1,
  1389. .sg_tablesize = SG_ALL,
  1390. .use_clustering = ENABLE_CLUSTERING,
  1391. .cmd_per_lun = 1,
  1392. .can_queue = 1,
  1393. .sdev_attrs = sbp2_scsi_sysfs_attrs,
  1394. };
  1395. MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
  1396. MODULE_DESCRIPTION("SCSI over IEEE1394");
  1397. MODULE_LICENSE("GPL");
  1398. MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
  1399. /* Provide a module alias so root-on-sbp2 initrds don't break. */
  1400. #ifndef CONFIG_IEEE1394_SBP2_MODULE
  1401. MODULE_ALIAS("sbp2");
  1402. #endif
  1403. static int __init sbp2_init(void)
  1404. {
  1405. return driver_register(&sbp2_driver.driver);
  1406. }
  1407. static void __exit sbp2_cleanup(void)
  1408. {
  1409. driver_unregister(&sbp2_driver.driver);
  1410. }
  1411. module_init(sbp2_init);
  1412. module_exit(sbp2_cleanup);