ste_dma40.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/dmaengine.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/err.h>
  15. #include <plat/ste_dma40.h>
  16. #include "ste_dma40_ll.h"
  17. #define D40_NAME "dma40"
  18. #define D40_PHY_CHAN -1
  19. /* For masking out/in 2 bit channel positions */
  20. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  21. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  22. /* Maximum iterations taken before giving up suspending a channel */
  23. #define D40_SUSPEND_MAX_IT 500
  24. /* Hardware requirement on LCLA alignment */
  25. #define LCLA_ALIGNMENT 0x40000
  26. /* Max number of links per event group */
  27. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  28. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  29. /* Attempts before giving up to trying to get pages that are aligned */
  30. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  31. /* Bit markings for allocation map */
  32. #define D40_ALLOC_FREE (1 << 31)
  33. #define D40_ALLOC_PHY (1 << 30)
  34. #define D40_ALLOC_LOG_FREE 0
  35. /* Hardware designer of the block */
  36. #define D40_HW_DESIGNER 0x8
  37. /**
  38. * enum 40_command - The different commands and/or statuses.
  39. *
  40. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  41. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  42. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  43. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  44. */
  45. enum d40_command {
  46. D40_DMA_STOP = 0,
  47. D40_DMA_RUN = 1,
  48. D40_DMA_SUSPEND_REQ = 2,
  49. D40_DMA_SUSPENDED = 3
  50. };
  51. /**
  52. * struct d40_lli_pool - Structure for keeping LLIs in memory
  53. *
  54. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  55. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  56. * pre_alloc_lli is used.
  57. * @dma_addr: DMA address, if mapped
  58. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  59. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  60. * one buffer to one buffer.
  61. */
  62. struct d40_lli_pool {
  63. void *base;
  64. int size;
  65. dma_addr_t dma_addr;
  66. /* Space for dst and src, plus an extra for padding */
  67. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  68. };
  69. /**
  70. * struct d40_desc - A descriptor is one DMA job.
  71. *
  72. * @lli_phy: LLI settings for physical channel. Both src and dst=
  73. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  74. * lli_len equals one.
  75. * @lli_log: Same as above but for logical channels.
  76. * @lli_pool: The pool with two entries pre-allocated.
  77. * @lli_len: Number of llis of current descriptor.
  78. * @lli_current: Number of transferred llis.
  79. * @lcla_alloc: Number of LCLA entries allocated.
  80. * @txd: DMA engine struct. Used for among other things for communication
  81. * during a transfer.
  82. * @node: List entry.
  83. * @is_in_client_list: true if the client owns this descriptor.
  84. * the previous one.
  85. *
  86. * This descriptor is used for both logical and physical transfers.
  87. */
  88. struct d40_desc {
  89. /* LLI physical */
  90. struct d40_phy_lli_bidir lli_phy;
  91. /* LLI logical */
  92. struct d40_log_lli_bidir lli_log;
  93. struct d40_lli_pool lli_pool;
  94. int lli_len;
  95. int lli_current;
  96. int lcla_alloc;
  97. struct dma_async_tx_descriptor txd;
  98. struct list_head node;
  99. bool is_in_client_list;
  100. bool cyclic;
  101. };
  102. /**
  103. * struct d40_lcla_pool - LCLA pool settings and data.
  104. *
  105. * @base: The virtual address of LCLA. 18 bit aligned.
  106. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  107. * This pointer is only there for clean-up on error.
  108. * @pages: The number of pages needed for all physical channels.
  109. * Only used later for clean-up on error
  110. * @lock: Lock to protect the content in this struct.
  111. * @alloc_map: big map over which LCLA entry is own by which job.
  112. */
  113. struct d40_lcla_pool {
  114. void *base;
  115. dma_addr_t dma_addr;
  116. void *base_unaligned;
  117. int pages;
  118. spinlock_t lock;
  119. struct d40_desc **alloc_map;
  120. };
  121. /**
  122. * struct d40_phy_res - struct for handling eventlines mapped to physical
  123. * channels.
  124. *
  125. * @lock: A lock protection this entity.
  126. * @num: The physical channel number of this entity.
  127. * @allocated_src: Bit mapped to show which src event line's are mapped to
  128. * this physical channel. Can also be free or physically allocated.
  129. * @allocated_dst: Same as for src but is dst.
  130. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  131. * event line number.
  132. */
  133. struct d40_phy_res {
  134. spinlock_t lock;
  135. int num;
  136. u32 allocated_src;
  137. u32 allocated_dst;
  138. };
  139. struct d40_base;
  140. /**
  141. * struct d40_chan - Struct that describes a channel.
  142. *
  143. * @lock: A spinlock to protect this struct.
  144. * @log_num: The logical number, if any of this channel.
  145. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  146. * current cookie.
  147. * @pending_tx: The number of pending transfers. Used between interrupt handler
  148. * and tasklet.
  149. * @busy: Set to true when transfer is ongoing on this channel.
  150. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  151. * point is NULL, then the channel is not allocated.
  152. * @chan: DMA engine handle.
  153. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  154. * transfer and call client callback.
  155. * @client: Cliented owned descriptor list.
  156. * @active: Active descriptor.
  157. * @queue: Queued jobs.
  158. * @dma_cfg: The client configuration of this dma channel.
  159. * @configured: whether the dma_cfg configuration is valid
  160. * @base: Pointer to the device instance struct.
  161. * @src_def_cfg: Default cfg register setting for src.
  162. * @dst_def_cfg: Default cfg register setting for dst.
  163. * @log_def: Default logical channel settings.
  164. * @lcla: Space for one dst src pair for logical channel transfers.
  165. * @lcpa: Pointer to dst and src lcpa settings.
  166. *
  167. * This struct can either "be" a logical or a physical channel.
  168. */
  169. struct d40_chan {
  170. spinlock_t lock;
  171. int log_num;
  172. /* ID of the most recent completed transfer */
  173. int completed;
  174. int pending_tx;
  175. bool busy;
  176. struct d40_phy_res *phy_chan;
  177. struct dma_chan chan;
  178. struct tasklet_struct tasklet;
  179. struct list_head client;
  180. struct list_head active;
  181. struct list_head queue;
  182. struct stedma40_chan_cfg dma_cfg;
  183. bool configured;
  184. struct d40_base *base;
  185. /* Default register configurations */
  186. u32 src_def_cfg;
  187. u32 dst_def_cfg;
  188. struct d40_def_lcsp log_def;
  189. struct d40_log_lli_full *lcpa;
  190. /* Runtime reconfiguration */
  191. dma_addr_t runtime_addr;
  192. enum dma_data_direction runtime_direction;
  193. };
  194. /**
  195. * struct d40_base - The big global struct, one for each probe'd instance.
  196. *
  197. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  198. * @execmd_lock: Lock for execute command usage since several channels share
  199. * the same physical register.
  200. * @dev: The device structure.
  201. * @virtbase: The virtual base address of the DMA's register.
  202. * @rev: silicon revision detected.
  203. * @clk: Pointer to the DMA clock structure.
  204. * @phy_start: Physical memory start of the DMA registers.
  205. * @phy_size: Size of the DMA register map.
  206. * @irq: The IRQ number.
  207. * @num_phy_chans: The number of physical channels. Read from HW. This
  208. * is the number of available channels for this driver, not counting "Secure
  209. * mode" allocated physical channels.
  210. * @num_log_chans: The number of logical channels. Calculated from
  211. * num_phy_chans.
  212. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  213. * @dma_slave: dma_device channels that can do only do slave transfers.
  214. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  215. * @log_chans: Room for all possible logical channels in system.
  216. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  217. * to log_chans entries.
  218. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  219. * to phy_chans entries.
  220. * @plat_data: Pointer to provided platform_data which is the driver
  221. * configuration.
  222. * @phy_res: Vector containing all physical channels.
  223. * @lcla_pool: lcla pool settings and data.
  224. * @lcpa_base: The virtual mapped address of LCPA.
  225. * @phy_lcpa: The physical address of the LCPA.
  226. * @lcpa_size: The size of the LCPA area.
  227. * @desc_slab: cache for descriptors.
  228. */
  229. struct d40_base {
  230. spinlock_t interrupt_lock;
  231. spinlock_t execmd_lock;
  232. struct device *dev;
  233. void __iomem *virtbase;
  234. u8 rev:4;
  235. struct clk *clk;
  236. phys_addr_t phy_start;
  237. resource_size_t phy_size;
  238. int irq;
  239. int num_phy_chans;
  240. int num_log_chans;
  241. struct dma_device dma_both;
  242. struct dma_device dma_slave;
  243. struct dma_device dma_memcpy;
  244. struct d40_chan *phy_chans;
  245. struct d40_chan *log_chans;
  246. struct d40_chan **lookup_log_chans;
  247. struct d40_chan **lookup_phy_chans;
  248. struct stedma40_platform_data *plat_data;
  249. /* Physical half channels */
  250. struct d40_phy_res *phy_res;
  251. struct d40_lcla_pool lcla_pool;
  252. void *lcpa_base;
  253. dma_addr_t phy_lcpa;
  254. resource_size_t lcpa_size;
  255. struct kmem_cache *desc_slab;
  256. };
  257. /**
  258. * struct d40_interrupt_lookup - lookup table for interrupt handler
  259. *
  260. * @src: Interrupt mask register.
  261. * @clr: Interrupt clear register.
  262. * @is_error: true if this is an error interrupt.
  263. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  264. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  265. */
  266. struct d40_interrupt_lookup {
  267. u32 src;
  268. u32 clr;
  269. bool is_error;
  270. int offset;
  271. };
  272. /**
  273. * struct d40_reg_val - simple lookup struct
  274. *
  275. * @reg: The register.
  276. * @val: The value that belongs to the register in reg.
  277. */
  278. struct d40_reg_val {
  279. unsigned int reg;
  280. unsigned int val;
  281. };
  282. static struct device *chan2dev(struct d40_chan *d40c)
  283. {
  284. return &d40c->chan.dev->device;
  285. }
  286. static bool chan_is_physical(struct d40_chan *chan)
  287. {
  288. return chan->log_num == D40_PHY_CHAN;
  289. }
  290. static bool chan_is_logical(struct d40_chan *chan)
  291. {
  292. return !chan_is_physical(chan);
  293. }
  294. static void __iomem *chan_base(struct d40_chan *chan)
  295. {
  296. return chan->base->virtbase + D40_DREG_PCBASE +
  297. chan->phy_chan->num * D40_DREG_PCDELTA;
  298. }
  299. #define d40_err(dev, format, arg...) \
  300. dev_err(dev, "[%s] " format, __func__, ## arg)
  301. #define chan_err(d40c, format, arg...) \
  302. d40_err(chan2dev(d40c), format, ## arg)
  303. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  304. int lli_len)
  305. {
  306. bool is_log = chan_is_logical(d40c);
  307. u32 align;
  308. void *base;
  309. if (is_log)
  310. align = sizeof(struct d40_log_lli);
  311. else
  312. align = sizeof(struct d40_phy_lli);
  313. if (lli_len == 1) {
  314. base = d40d->lli_pool.pre_alloc_lli;
  315. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  316. d40d->lli_pool.base = NULL;
  317. } else {
  318. d40d->lli_pool.size = lli_len * 2 * align;
  319. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  320. d40d->lli_pool.base = base;
  321. if (d40d->lli_pool.base == NULL)
  322. return -ENOMEM;
  323. }
  324. if (is_log) {
  325. d40d->lli_log.src = PTR_ALIGN(base, align);
  326. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  327. d40d->lli_pool.dma_addr = 0;
  328. } else {
  329. d40d->lli_phy.src = PTR_ALIGN(base, align);
  330. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  331. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  332. d40d->lli_phy.src,
  333. d40d->lli_pool.size,
  334. DMA_TO_DEVICE);
  335. if (dma_mapping_error(d40c->base->dev,
  336. d40d->lli_pool.dma_addr)) {
  337. kfree(d40d->lli_pool.base);
  338. d40d->lli_pool.base = NULL;
  339. d40d->lli_pool.dma_addr = 0;
  340. return -ENOMEM;
  341. }
  342. }
  343. return 0;
  344. }
  345. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  346. {
  347. if (d40d->lli_pool.dma_addr)
  348. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  349. d40d->lli_pool.size, DMA_TO_DEVICE);
  350. kfree(d40d->lli_pool.base);
  351. d40d->lli_pool.base = NULL;
  352. d40d->lli_pool.size = 0;
  353. d40d->lli_log.src = NULL;
  354. d40d->lli_log.dst = NULL;
  355. d40d->lli_phy.src = NULL;
  356. d40d->lli_phy.dst = NULL;
  357. }
  358. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  359. struct d40_desc *d40d)
  360. {
  361. unsigned long flags;
  362. int i;
  363. int ret = -EINVAL;
  364. int p;
  365. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  366. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  367. /*
  368. * Allocate both src and dst at the same time, therefore the half
  369. * start on 1 since 0 can't be used since zero is used as end marker.
  370. */
  371. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  372. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  373. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  374. d40d->lcla_alloc++;
  375. ret = i;
  376. break;
  377. }
  378. }
  379. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  380. return ret;
  381. }
  382. static int d40_lcla_free_all(struct d40_chan *d40c,
  383. struct d40_desc *d40d)
  384. {
  385. unsigned long flags;
  386. int i;
  387. int ret = -EINVAL;
  388. if (chan_is_physical(d40c))
  389. return 0;
  390. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  391. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  392. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  393. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  394. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  395. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  396. d40d->lcla_alloc--;
  397. if (d40d->lcla_alloc == 0) {
  398. ret = 0;
  399. break;
  400. }
  401. }
  402. }
  403. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  404. return ret;
  405. }
  406. static void d40_desc_remove(struct d40_desc *d40d)
  407. {
  408. list_del(&d40d->node);
  409. }
  410. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  411. {
  412. struct d40_desc *desc = NULL;
  413. if (!list_empty(&d40c->client)) {
  414. struct d40_desc *d;
  415. struct d40_desc *_d;
  416. list_for_each_entry_safe(d, _d, &d40c->client, node)
  417. if (async_tx_test_ack(&d->txd)) {
  418. d40_pool_lli_free(d40c, d);
  419. d40_desc_remove(d);
  420. desc = d;
  421. memset(desc, 0, sizeof(*desc));
  422. break;
  423. }
  424. }
  425. if (!desc)
  426. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  427. if (desc)
  428. INIT_LIST_HEAD(&desc->node);
  429. return desc;
  430. }
  431. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  432. {
  433. d40_pool_lli_free(d40c, d40d);
  434. d40_lcla_free_all(d40c, d40d);
  435. kmem_cache_free(d40c->base->desc_slab, d40d);
  436. }
  437. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  438. {
  439. list_add_tail(&desc->node, &d40c->active);
  440. }
  441. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  442. {
  443. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  444. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  445. void __iomem *base = chan_base(chan);
  446. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  447. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  448. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  449. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  450. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  451. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  452. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  453. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  454. }
  455. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  456. {
  457. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  458. struct d40_log_lli_bidir *lli = &desc->lli_log;
  459. int lli_current = desc->lli_current;
  460. int lli_len = desc->lli_len;
  461. bool cyclic = desc->cyclic;
  462. int curr_lcla = -EINVAL;
  463. int first_lcla = 0;
  464. bool linkback;
  465. /*
  466. * We may have partially running cyclic transfers, in case we did't get
  467. * enough LCLA entries.
  468. */
  469. linkback = cyclic && lli_current == 0;
  470. /*
  471. * For linkback, we need one LCLA even with only one link, because we
  472. * can't link back to the one in LCPA space
  473. */
  474. if (linkback || (lli_len - lli_current > 1)) {
  475. curr_lcla = d40_lcla_alloc_one(chan, desc);
  476. first_lcla = curr_lcla;
  477. }
  478. /*
  479. * For linkback, we normally load the LCPA in the loop since we need to
  480. * link it to the second LCLA and not the first. However, if we
  481. * couldn't even get a first LCLA, then we have to run in LCPA and
  482. * reload manually.
  483. */
  484. if (!linkback || curr_lcla == -EINVAL) {
  485. unsigned int flags = 0;
  486. if (curr_lcla == -EINVAL)
  487. flags |= LLI_TERM_INT;
  488. d40_log_lli_lcpa_write(chan->lcpa,
  489. &lli->dst[lli_current],
  490. &lli->src[lli_current],
  491. curr_lcla,
  492. flags);
  493. lli_current++;
  494. }
  495. if (curr_lcla < 0)
  496. goto out;
  497. for (; lli_current < lli_len; lli_current++) {
  498. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  499. 8 * curr_lcla * 2;
  500. struct d40_log_lli *lcla = pool->base + lcla_offset;
  501. unsigned int flags = 0;
  502. int next_lcla;
  503. if (lli_current + 1 < lli_len)
  504. next_lcla = d40_lcla_alloc_one(chan, desc);
  505. else
  506. next_lcla = linkback ? first_lcla : -EINVAL;
  507. if (cyclic || next_lcla == -EINVAL)
  508. flags |= LLI_TERM_INT;
  509. if (linkback && curr_lcla == first_lcla) {
  510. /* First link goes in both LCPA and LCLA */
  511. d40_log_lli_lcpa_write(chan->lcpa,
  512. &lli->dst[lli_current],
  513. &lli->src[lli_current],
  514. next_lcla, flags);
  515. }
  516. /*
  517. * One unused LCLA in the cyclic case if the very first
  518. * next_lcla fails...
  519. */
  520. d40_log_lli_lcla_write(lcla,
  521. &lli->dst[lli_current],
  522. &lli->src[lli_current],
  523. next_lcla, flags);
  524. dma_sync_single_range_for_device(chan->base->dev,
  525. pool->dma_addr, lcla_offset,
  526. 2 * sizeof(struct d40_log_lli),
  527. DMA_TO_DEVICE);
  528. curr_lcla = next_lcla;
  529. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  530. lli_current++;
  531. break;
  532. }
  533. }
  534. out:
  535. desc->lli_current = lli_current;
  536. }
  537. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  538. {
  539. if (chan_is_physical(d40c)) {
  540. d40_phy_lli_load(d40c, d40d);
  541. d40d->lli_current = d40d->lli_len;
  542. } else
  543. d40_log_lli_to_lcxa(d40c, d40d);
  544. }
  545. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  546. {
  547. struct d40_desc *d;
  548. if (list_empty(&d40c->active))
  549. return NULL;
  550. d = list_first_entry(&d40c->active,
  551. struct d40_desc,
  552. node);
  553. return d;
  554. }
  555. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  556. {
  557. list_add_tail(&desc->node, &d40c->queue);
  558. }
  559. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  560. {
  561. struct d40_desc *d;
  562. if (list_empty(&d40c->queue))
  563. return NULL;
  564. d = list_first_entry(&d40c->queue,
  565. struct d40_desc,
  566. node);
  567. return d;
  568. }
  569. static int d40_psize_2_burst_size(bool is_log, int psize)
  570. {
  571. if (is_log) {
  572. if (psize == STEDMA40_PSIZE_LOG_1)
  573. return 1;
  574. } else {
  575. if (psize == STEDMA40_PSIZE_PHY_1)
  576. return 1;
  577. }
  578. return 2 << psize;
  579. }
  580. /*
  581. * The dma only supports transmitting packages up to
  582. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  583. * dma elements required to send the entire sg list
  584. */
  585. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  586. {
  587. int dmalen;
  588. u32 max_w = max(data_width1, data_width2);
  589. u32 min_w = min(data_width1, data_width2);
  590. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  591. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  592. seg_max -= (1 << max_w);
  593. if (!IS_ALIGNED(size, 1 << max_w))
  594. return -EINVAL;
  595. if (size <= seg_max)
  596. dmalen = 1;
  597. else {
  598. dmalen = size / seg_max;
  599. if (dmalen * seg_max < size)
  600. dmalen++;
  601. }
  602. return dmalen;
  603. }
  604. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  605. u32 data_width1, u32 data_width2)
  606. {
  607. struct scatterlist *sg;
  608. int i;
  609. int len = 0;
  610. int ret;
  611. for_each_sg(sgl, sg, sg_len, i) {
  612. ret = d40_size_2_dmalen(sg_dma_len(sg),
  613. data_width1, data_width2);
  614. if (ret < 0)
  615. return ret;
  616. len += ret;
  617. }
  618. return len;
  619. }
  620. /* Support functions for logical channels */
  621. static int d40_channel_execute_command(struct d40_chan *d40c,
  622. enum d40_command command)
  623. {
  624. u32 status;
  625. int i;
  626. void __iomem *active_reg;
  627. int ret = 0;
  628. unsigned long flags;
  629. u32 wmask;
  630. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  631. if (d40c->phy_chan->num % 2 == 0)
  632. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  633. else
  634. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  635. if (command == D40_DMA_SUSPEND_REQ) {
  636. status = (readl(active_reg) &
  637. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  638. D40_CHAN_POS(d40c->phy_chan->num);
  639. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  640. goto done;
  641. }
  642. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  643. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  644. active_reg);
  645. if (command == D40_DMA_SUSPEND_REQ) {
  646. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  647. status = (readl(active_reg) &
  648. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  649. D40_CHAN_POS(d40c->phy_chan->num);
  650. cpu_relax();
  651. /*
  652. * Reduce the number of bus accesses while
  653. * waiting for the DMA to suspend.
  654. */
  655. udelay(3);
  656. if (status == D40_DMA_STOP ||
  657. status == D40_DMA_SUSPENDED)
  658. break;
  659. }
  660. if (i == D40_SUSPEND_MAX_IT) {
  661. chan_err(d40c,
  662. "unable to suspend the chl %d (log: %d) status %x\n",
  663. d40c->phy_chan->num, d40c->log_num,
  664. status);
  665. dump_stack();
  666. ret = -EBUSY;
  667. }
  668. }
  669. done:
  670. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  671. return ret;
  672. }
  673. static void d40_term_all(struct d40_chan *d40c)
  674. {
  675. struct d40_desc *d40d;
  676. /* Release active descriptors */
  677. while ((d40d = d40_first_active_get(d40c))) {
  678. d40_desc_remove(d40d);
  679. d40_desc_free(d40c, d40d);
  680. }
  681. /* Release queued descriptors waiting for transfer */
  682. while ((d40d = d40_first_queued(d40c))) {
  683. d40_desc_remove(d40d);
  684. d40_desc_free(d40c, d40d);
  685. }
  686. d40c->pending_tx = 0;
  687. d40c->busy = false;
  688. }
  689. static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
  690. u32 event, int reg)
  691. {
  692. void __iomem *addr = chan_base(d40c) + reg;
  693. int tries;
  694. if (!enable) {
  695. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  696. | ~D40_EVENTLINE_MASK(event), addr);
  697. return;
  698. }
  699. /*
  700. * The hardware sometimes doesn't register the enable when src and dst
  701. * event lines are active on the same logical channel. Retry to ensure
  702. * it does. Usually only one retry is sufficient.
  703. */
  704. tries = 100;
  705. while (--tries) {
  706. writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  707. | ~D40_EVENTLINE_MASK(event), addr);
  708. if (readl(addr) & D40_EVENTLINE_MASK(event))
  709. break;
  710. }
  711. if (tries != 99)
  712. dev_dbg(chan2dev(d40c),
  713. "[%s] workaround enable S%cLNK (%d tries)\n",
  714. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  715. 100 - tries);
  716. WARN_ON(!tries);
  717. }
  718. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  719. {
  720. unsigned long flags;
  721. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  722. /* Enable event line connected to device (or memcpy) */
  723. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  724. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  725. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  726. __d40_config_set_event(d40c, do_enable, event,
  727. D40_CHAN_REG_SSLNK);
  728. }
  729. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  730. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  731. __d40_config_set_event(d40c, do_enable, event,
  732. D40_CHAN_REG_SDLNK);
  733. }
  734. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  735. }
  736. static u32 d40_chan_has_events(struct d40_chan *d40c)
  737. {
  738. void __iomem *chanbase = chan_base(d40c);
  739. u32 val;
  740. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  741. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  742. return val;
  743. }
  744. static u32 d40_get_prmo(struct d40_chan *d40c)
  745. {
  746. static const unsigned int phy_map[] = {
  747. [STEDMA40_PCHAN_BASIC_MODE]
  748. = D40_DREG_PRMO_PCHAN_BASIC,
  749. [STEDMA40_PCHAN_MODULO_MODE]
  750. = D40_DREG_PRMO_PCHAN_MODULO,
  751. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  752. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  753. };
  754. static const unsigned int log_map[] = {
  755. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  756. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  757. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  758. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  759. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  760. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  761. };
  762. if (chan_is_physical(d40c))
  763. return phy_map[d40c->dma_cfg.mode_opt];
  764. else
  765. return log_map[d40c->dma_cfg.mode_opt];
  766. }
  767. static void d40_config_write(struct d40_chan *d40c)
  768. {
  769. u32 addr_base;
  770. u32 var;
  771. /* Odd addresses are even addresses + 4 */
  772. addr_base = (d40c->phy_chan->num % 2) * 4;
  773. /* Setup channel mode to logical or physical */
  774. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  775. D40_CHAN_POS(d40c->phy_chan->num);
  776. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  777. /* Setup operational mode option register */
  778. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  779. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  780. if (chan_is_logical(d40c)) {
  781. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  782. & D40_SREG_ELEM_LOG_LIDX_MASK;
  783. void __iomem *chanbase = chan_base(d40c);
  784. /* Set default config for CFG reg */
  785. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  786. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  787. /* Set LIDX for lcla */
  788. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  789. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  790. }
  791. }
  792. static u32 d40_residue(struct d40_chan *d40c)
  793. {
  794. u32 num_elt;
  795. if (chan_is_logical(d40c))
  796. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  797. >> D40_MEM_LCSP2_ECNT_POS;
  798. else {
  799. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  800. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  801. >> D40_SREG_ELEM_PHY_ECNT_POS;
  802. }
  803. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  804. }
  805. static bool d40_tx_is_linked(struct d40_chan *d40c)
  806. {
  807. bool is_link;
  808. if (chan_is_logical(d40c))
  809. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  810. else
  811. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  812. & D40_SREG_LNK_PHYS_LNK_MASK;
  813. return is_link;
  814. }
  815. static int d40_pause(struct d40_chan *d40c)
  816. {
  817. int res = 0;
  818. unsigned long flags;
  819. if (!d40c->busy)
  820. return 0;
  821. spin_lock_irqsave(&d40c->lock, flags);
  822. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  823. if (res == 0) {
  824. if (chan_is_logical(d40c)) {
  825. d40_config_set_event(d40c, false);
  826. /* Resume the other logical channels if any */
  827. if (d40_chan_has_events(d40c))
  828. res = d40_channel_execute_command(d40c,
  829. D40_DMA_RUN);
  830. }
  831. }
  832. spin_unlock_irqrestore(&d40c->lock, flags);
  833. return res;
  834. }
  835. static int d40_resume(struct d40_chan *d40c)
  836. {
  837. int res = 0;
  838. unsigned long flags;
  839. if (!d40c->busy)
  840. return 0;
  841. spin_lock_irqsave(&d40c->lock, flags);
  842. if (d40c->base->rev == 0)
  843. if (chan_is_logical(d40c)) {
  844. res = d40_channel_execute_command(d40c,
  845. D40_DMA_SUSPEND_REQ);
  846. goto no_suspend;
  847. }
  848. /* If bytes left to transfer or linked tx resume job */
  849. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  850. if (chan_is_logical(d40c))
  851. d40_config_set_event(d40c, true);
  852. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  853. }
  854. no_suspend:
  855. spin_unlock_irqrestore(&d40c->lock, flags);
  856. return res;
  857. }
  858. static int d40_terminate_all(struct d40_chan *chan)
  859. {
  860. unsigned long flags;
  861. int ret = 0;
  862. ret = d40_pause(chan);
  863. if (!ret && chan_is_physical(chan))
  864. ret = d40_channel_execute_command(chan, D40_DMA_STOP);
  865. spin_lock_irqsave(&chan->lock, flags);
  866. d40_term_all(chan);
  867. spin_unlock_irqrestore(&chan->lock, flags);
  868. return ret;
  869. }
  870. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  871. {
  872. struct d40_chan *d40c = container_of(tx->chan,
  873. struct d40_chan,
  874. chan);
  875. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  876. unsigned long flags;
  877. spin_lock_irqsave(&d40c->lock, flags);
  878. d40c->chan.cookie++;
  879. if (d40c->chan.cookie < 0)
  880. d40c->chan.cookie = 1;
  881. d40d->txd.cookie = d40c->chan.cookie;
  882. d40_desc_queue(d40c, d40d);
  883. spin_unlock_irqrestore(&d40c->lock, flags);
  884. return tx->cookie;
  885. }
  886. static int d40_start(struct d40_chan *d40c)
  887. {
  888. if (d40c->base->rev == 0) {
  889. int err;
  890. if (chan_is_logical(d40c)) {
  891. err = d40_channel_execute_command(d40c,
  892. D40_DMA_SUSPEND_REQ);
  893. if (err)
  894. return err;
  895. }
  896. }
  897. if (chan_is_logical(d40c))
  898. d40_config_set_event(d40c, true);
  899. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  900. }
  901. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  902. {
  903. struct d40_desc *d40d;
  904. int err;
  905. /* Start queued jobs, if any */
  906. d40d = d40_first_queued(d40c);
  907. if (d40d != NULL) {
  908. d40c->busy = true;
  909. /* Remove from queue */
  910. d40_desc_remove(d40d);
  911. /* Add to active queue */
  912. d40_desc_submit(d40c, d40d);
  913. /* Initiate DMA job */
  914. d40_desc_load(d40c, d40d);
  915. /* Start dma job */
  916. err = d40_start(d40c);
  917. if (err)
  918. return NULL;
  919. }
  920. return d40d;
  921. }
  922. /* called from interrupt context */
  923. static void dma_tc_handle(struct d40_chan *d40c)
  924. {
  925. struct d40_desc *d40d;
  926. /* Get first active entry from list */
  927. d40d = d40_first_active_get(d40c);
  928. if (d40d == NULL)
  929. return;
  930. if (d40d->cyclic) {
  931. /*
  932. * If this was a paritially loaded list, we need to reloaded
  933. * it, and only when the list is completed. We need to check
  934. * for done because the interrupt will hit for every link, and
  935. * not just the last one.
  936. */
  937. if (d40d->lli_current < d40d->lli_len
  938. && !d40_tx_is_linked(d40c)
  939. && !d40_residue(d40c)) {
  940. d40_lcla_free_all(d40c, d40d);
  941. d40_desc_load(d40c, d40d);
  942. (void) d40_start(d40c);
  943. if (d40d->lli_current == d40d->lli_len)
  944. d40d->lli_current = 0;
  945. }
  946. } else {
  947. d40_lcla_free_all(d40c, d40d);
  948. if (d40d->lli_current < d40d->lli_len) {
  949. d40_desc_load(d40c, d40d);
  950. /* Start dma job */
  951. (void) d40_start(d40c);
  952. return;
  953. }
  954. if (d40_queue_start(d40c) == NULL)
  955. d40c->busy = false;
  956. }
  957. d40c->pending_tx++;
  958. tasklet_schedule(&d40c->tasklet);
  959. }
  960. static void dma_tasklet(unsigned long data)
  961. {
  962. struct d40_chan *d40c = (struct d40_chan *) data;
  963. struct d40_desc *d40d;
  964. unsigned long flags;
  965. dma_async_tx_callback callback;
  966. void *callback_param;
  967. spin_lock_irqsave(&d40c->lock, flags);
  968. /* Get first active entry from list */
  969. d40d = d40_first_active_get(d40c);
  970. if (d40d == NULL)
  971. goto err;
  972. if (!d40d->cyclic)
  973. d40c->completed = d40d->txd.cookie;
  974. /*
  975. * If terminating a channel pending_tx is set to zero.
  976. * This prevents any finished active jobs to return to the client.
  977. */
  978. if (d40c->pending_tx == 0) {
  979. spin_unlock_irqrestore(&d40c->lock, flags);
  980. return;
  981. }
  982. /* Callback to client */
  983. callback = d40d->txd.callback;
  984. callback_param = d40d->txd.callback_param;
  985. if (!d40d->cyclic) {
  986. if (async_tx_test_ack(&d40d->txd)) {
  987. d40_pool_lli_free(d40c, d40d);
  988. d40_desc_remove(d40d);
  989. d40_desc_free(d40c, d40d);
  990. } else {
  991. if (!d40d->is_in_client_list) {
  992. d40_desc_remove(d40d);
  993. d40_lcla_free_all(d40c, d40d);
  994. list_add_tail(&d40d->node, &d40c->client);
  995. d40d->is_in_client_list = true;
  996. }
  997. }
  998. }
  999. d40c->pending_tx--;
  1000. if (d40c->pending_tx)
  1001. tasklet_schedule(&d40c->tasklet);
  1002. spin_unlock_irqrestore(&d40c->lock, flags);
  1003. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1004. callback(callback_param);
  1005. return;
  1006. err:
  1007. /* Rescue manoeuvre if receiving double interrupts */
  1008. if (d40c->pending_tx > 0)
  1009. d40c->pending_tx--;
  1010. spin_unlock_irqrestore(&d40c->lock, flags);
  1011. }
  1012. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1013. {
  1014. static const struct d40_interrupt_lookup il[] = {
  1015. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  1016. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  1017. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  1018. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  1019. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  1020. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  1021. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  1022. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  1023. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  1024. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  1025. };
  1026. int i;
  1027. u32 regs[ARRAY_SIZE(il)];
  1028. u32 idx;
  1029. u32 row;
  1030. long chan = -1;
  1031. struct d40_chan *d40c;
  1032. unsigned long flags;
  1033. struct d40_base *base = data;
  1034. spin_lock_irqsave(&base->interrupt_lock, flags);
  1035. /* Read interrupt status of both logical and physical channels */
  1036. for (i = 0; i < ARRAY_SIZE(il); i++)
  1037. regs[i] = readl(base->virtbase + il[i].src);
  1038. for (;;) {
  1039. chan = find_next_bit((unsigned long *)regs,
  1040. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  1041. /* No more set bits found? */
  1042. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  1043. break;
  1044. row = chan / BITS_PER_LONG;
  1045. idx = chan & (BITS_PER_LONG - 1);
  1046. /* ACK interrupt */
  1047. writel(1 << idx, base->virtbase + il[row].clr);
  1048. if (il[row].offset == D40_PHY_CHAN)
  1049. d40c = base->lookup_phy_chans[idx];
  1050. else
  1051. d40c = base->lookup_log_chans[il[row].offset + idx];
  1052. spin_lock(&d40c->lock);
  1053. if (!il[row].is_error)
  1054. dma_tc_handle(d40c);
  1055. else
  1056. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1057. chan, il[row].offset, idx);
  1058. spin_unlock(&d40c->lock);
  1059. }
  1060. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1061. return IRQ_HANDLED;
  1062. }
  1063. static int d40_validate_conf(struct d40_chan *d40c,
  1064. struct stedma40_chan_cfg *conf)
  1065. {
  1066. int res = 0;
  1067. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1068. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1069. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1070. if (!conf->dir) {
  1071. chan_err(d40c, "Invalid direction.\n");
  1072. res = -EINVAL;
  1073. }
  1074. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1075. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1076. d40c->runtime_addr == 0) {
  1077. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1078. conf->dst_dev_type);
  1079. res = -EINVAL;
  1080. }
  1081. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1082. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1083. d40c->runtime_addr == 0) {
  1084. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1085. conf->src_dev_type);
  1086. res = -EINVAL;
  1087. }
  1088. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1089. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1090. chan_err(d40c, "Invalid dst\n");
  1091. res = -EINVAL;
  1092. }
  1093. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1094. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1095. chan_err(d40c, "Invalid src\n");
  1096. res = -EINVAL;
  1097. }
  1098. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1099. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1100. chan_err(d40c, "No event line\n");
  1101. res = -EINVAL;
  1102. }
  1103. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1104. (src_event_group != dst_event_group)) {
  1105. chan_err(d40c, "Invalid event group\n");
  1106. res = -EINVAL;
  1107. }
  1108. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1109. /*
  1110. * DMAC HW supports it. Will be added to this driver,
  1111. * in case any dma client requires it.
  1112. */
  1113. chan_err(d40c, "periph to periph not supported\n");
  1114. res = -EINVAL;
  1115. }
  1116. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1117. (1 << conf->src_info.data_width) !=
  1118. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1119. (1 << conf->dst_info.data_width)) {
  1120. /*
  1121. * The DMAC hardware only supports
  1122. * src (burst x width) == dst (burst x width)
  1123. */
  1124. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1125. res = -EINVAL;
  1126. }
  1127. return res;
  1128. }
  1129. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1130. int log_event_line, bool is_log)
  1131. {
  1132. unsigned long flags;
  1133. spin_lock_irqsave(&phy->lock, flags);
  1134. if (!is_log) {
  1135. /* Physical interrupts are masked per physical full channel */
  1136. if (phy->allocated_src == D40_ALLOC_FREE &&
  1137. phy->allocated_dst == D40_ALLOC_FREE) {
  1138. phy->allocated_dst = D40_ALLOC_PHY;
  1139. phy->allocated_src = D40_ALLOC_PHY;
  1140. goto found;
  1141. } else
  1142. goto not_found;
  1143. }
  1144. /* Logical channel */
  1145. if (is_src) {
  1146. if (phy->allocated_src == D40_ALLOC_PHY)
  1147. goto not_found;
  1148. if (phy->allocated_src == D40_ALLOC_FREE)
  1149. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1150. if (!(phy->allocated_src & (1 << log_event_line))) {
  1151. phy->allocated_src |= 1 << log_event_line;
  1152. goto found;
  1153. } else
  1154. goto not_found;
  1155. } else {
  1156. if (phy->allocated_dst == D40_ALLOC_PHY)
  1157. goto not_found;
  1158. if (phy->allocated_dst == D40_ALLOC_FREE)
  1159. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1160. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1161. phy->allocated_dst |= 1 << log_event_line;
  1162. goto found;
  1163. } else
  1164. goto not_found;
  1165. }
  1166. not_found:
  1167. spin_unlock_irqrestore(&phy->lock, flags);
  1168. return false;
  1169. found:
  1170. spin_unlock_irqrestore(&phy->lock, flags);
  1171. return true;
  1172. }
  1173. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1174. int log_event_line)
  1175. {
  1176. unsigned long flags;
  1177. bool is_free = false;
  1178. spin_lock_irqsave(&phy->lock, flags);
  1179. if (!log_event_line) {
  1180. phy->allocated_dst = D40_ALLOC_FREE;
  1181. phy->allocated_src = D40_ALLOC_FREE;
  1182. is_free = true;
  1183. goto out;
  1184. }
  1185. /* Logical channel */
  1186. if (is_src) {
  1187. phy->allocated_src &= ~(1 << log_event_line);
  1188. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1189. phy->allocated_src = D40_ALLOC_FREE;
  1190. } else {
  1191. phy->allocated_dst &= ~(1 << log_event_line);
  1192. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1193. phy->allocated_dst = D40_ALLOC_FREE;
  1194. }
  1195. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1196. D40_ALLOC_FREE);
  1197. out:
  1198. spin_unlock_irqrestore(&phy->lock, flags);
  1199. return is_free;
  1200. }
  1201. static int d40_allocate_channel(struct d40_chan *d40c)
  1202. {
  1203. int dev_type;
  1204. int event_group;
  1205. int event_line;
  1206. struct d40_phy_res *phys;
  1207. int i;
  1208. int j;
  1209. int log_num;
  1210. bool is_src;
  1211. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1212. phys = d40c->base->phy_res;
  1213. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1214. dev_type = d40c->dma_cfg.src_dev_type;
  1215. log_num = 2 * dev_type;
  1216. is_src = true;
  1217. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1218. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1219. /* dst event lines are used for logical memcpy */
  1220. dev_type = d40c->dma_cfg.dst_dev_type;
  1221. log_num = 2 * dev_type + 1;
  1222. is_src = false;
  1223. } else
  1224. return -EINVAL;
  1225. event_group = D40_TYPE_TO_GROUP(dev_type);
  1226. event_line = D40_TYPE_TO_EVENT(dev_type);
  1227. if (!is_log) {
  1228. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1229. /* Find physical half channel */
  1230. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1231. if (d40_alloc_mask_set(&phys[i], is_src,
  1232. 0, is_log))
  1233. goto found_phy;
  1234. }
  1235. } else
  1236. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1237. int phy_num = j + event_group * 2;
  1238. for (i = phy_num; i < phy_num + 2; i++) {
  1239. if (d40_alloc_mask_set(&phys[i],
  1240. is_src,
  1241. 0,
  1242. is_log))
  1243. goto found_phy;
  1244. }
  1245. }
  1246. return -EINVAL;
  1247. found_phy:
  1248. d40c->phy_chan = &phys[i];
  1249. d40c->log_num = D40_PHY_CHAN;
  1250. goto out;
  1251. }
  1252. if (dev_type == -1)
  1253. return -EINVAL;
  1254. /* Find logical channel */
  1255. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1256. int phy_num = j + event_group * 2;
  1257. /*
  1258. * Spread logical channels across all available physical rather
  1259. * than pack every logical channel at the first available phy
  1260. * channels.
  1261. */
  1262. if (is_src) {
  1263. for (i = phy_num; i < phy_num + 2; i++) {
  1264. if (d40_alloc_mask_set(&phys[i], is_src,
  1265. event_line, is_log))
  1266. goto found_log;
  1267. }
  1268. } else {
  1269. for (i = phy_num + 1; i >= phy_num; i--) {
  1270. if (d40_alloc_mask_set(&phys[i], is_src,
  1271. event_line, is_log))
  1272. goto found_log;
  1273. }
  1274. }
  1275. }
  1276. return -EINVAL;
  1277. found_log:
  1278. d40c->phy_chan = &phys[i];
  1279. d40c->log_num = log_num;
  1280. out:
  1281. if (is_log)
  1282. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1283. else
  1284. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1285. return 0;
  1286. }
  1287. static int d40_config_memcpy(struct d40_chan *d40c)
  1288. {
  1289. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1290. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1291. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1292. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1293. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1294. memcpy[d40c->chan.chan_id];
  1295. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1296. dma_has_cap(DMA_SLAVE, cap)) {
  1297. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1298. } else {
  1299. chan_err(d40c, "No memcpy\n");
  1300. return -EINVAL;
  1301. }
  1302. return 0;
  1303. }
  1304. static int d40_free_dma(struct d40_chan *d40c)
  1305. {
  1306. int res = 0;
  1307. u32 event;
  1308. struct d40_phy_res *phy = d40c->phy_chan;
  1309. bool is_src;
  1310. struct d40_desc *d;
  1311. struct d40_desc *_d;
  1312. /* Terminate all queued and active transfers */
  1313. d40_term_all(d40c);
  1314. /* Release client owned descriptors */
  1315. if (!list_empty(&d40c->client))
  1316. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1317. d40_pool_lli_free(d40c, d);
  1318. d40_desc_remove(d);
  1319. d40_desc_free(d40c, d);
  1320. }
  1321. if (phy == NULL) {
  1322. chan_err(d40c, "phy == null\n");
  1323. return -EINVAL;
  1324. }
  1325. if (phy->allocated_src == D40_ALLOC_FREE &&
  1326. phy->allocated_dst == D40_ALLOC_FREE) {
  1327. chan_err(d40c, "channel already free\n");
  1328. return -EINVAL;
  1329. }
  1330. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1331. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1332. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1333. is_src = false;
  1334. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1335. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1336. is_src = true;
  1337. } else {
  1338. chan_err(d40c, "Unknown direction\n");
  1339. return -EINVAL;
  1340. }
  1341. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1342. if (res) {
  1343. chan_err(d40c, "suspend failed\n");
  1344. return res;
  1345. }
  1346. if (chan_is_logical(d40c)) {
  1347. /* Release logical channel, deactivate the event line */
  1348. d40_config_set_event(d40c, false);
  1349. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1350. /*
  1351. * Check if there are more logical allocation
  1352. * on this phy channel.
  1353. */
  1354. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1355. /* Resume the other logical channels if any */
  1356. if (d40_chan_has_events(d40c)) {
  1357. res = d40_channel_execute_command(d40c,
  1358. D40_DMA_RUN);
  1359. if (res) {
  1360. chan_err(d40c,
  1361. "Executing RUN command\n");
  1362. return res;
  1363. }
  1364. }
  1365. return 0;
  1366. }
  1367. } else {
  1368. (void) d40_alloc_mask_free(phy, is_src, 0);
  1369. }
  1370. /* Release physical channel */
  1371. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1372. if (res) {
  1373. chan_err(d40c, "Failed to stop channel\n");
  1374. return res;
  1375. }
  1376. d40c->phy_chan = NULL;
  1377. d40c->configured = false;
  1378. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1379. return 0;
  1380. }
  1381. static bool d40_is_paused(struct d40_chan *d40c)
  1382. {
  1383. void __iomem *chanbase = chan_base(d40c);
  1384. bool is_paused = false;
  1385. unsigned long flags;
  1386. void __iomem *active_reg;
  1387. u32 status;
  1388. u32 event;
  1389. spin_lock_irqsave(&d40c->lock, flags);
  1390. if (chan_is_physical(d40c)) {
  1391. if (d40c->phy_chan->num % 2 == 0)
  1392. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1393. else
  1394. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1395. status = (readl(active_reg) &
  1396. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1397. D40_CHAN_POS(d40c->phy_chan->num);
  1398. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1399. is_paused = true;
  1400. goto _exit;
  1401. }
  1402. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1403. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1404. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1405. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1406. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1407. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1408. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1409. } else {
  1410. chan_err(d40c, "Unknown direction\n");
  1411. goto _exit;
  1412. }
  1413. status = (status & D40_EVENTLINE_MASK(event)) >>
  1414. D40_EVENTLINE_POS(event);
  1415. if (status != D40_DMA_RUN)
  1416. is_paused = true;
  1417. _exit:
  1418. spin_unlock_irqrestore(&d40c->lock, flags);
  1419. return is_paused;
  1420. }
  1421. static u32 stedma40_residue(struct dma_chan *chan)
  1422. {
  1423. struct d40_chan *d40c =
  1424. container_of(chan, struct d40_chan, chan);
  1425. u32 bytes_left;
  1426. unsigned long flags;
  1427. spin_lock_irqsave(&d40c->lock, flags);
  1428. bytes_left = d40_residue(d40c);
  1429. spin_unlock_irqrestore(&d40c->lock, flags);
  1430. return bytes_left;
  1431. }
  1432. static int
  1433. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1434. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1435. unsigned int sg_len, dma_addr_t src_dev_addr,
  1436. dma_addr_t dst_dev_addr)
  1437. {
  1438. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1439. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1440. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1441. int ret;
  1442. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1443. src_dev_addr,
  1444. desc->lli_log.src,
  1445. chan->log_def.lcsp1,
  1446. src_info->data_width,
  1447. dst_info->data_width);
  1448. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1449. dst_dev_addr,
  1450. desc->lli_log.dst,
  1451. chan->log_def.lcsp3,
  1452. dst_info->data_width,
  1453. src_info->data_width);
  1454. return ret < 0 ? ret : 0;
  1455. }
  1456. static int
  1457. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1458. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1459. unsigned int sg_len, dma_addr_t src_dev_addr,
  1460. dma_addr_t dst_dev_addr)
  1461. {
  1462. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1463. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1464. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1465. unsigned long flags = 0;
  1466. int ret;
  1467. if (desc->cyclic)
  1468. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1469. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1470. desc->lli_phy.src,
  1471. virt_to_phys(desc->lli_phy.src),
  1472. chan->src_def_cfg,
  1473. src_info, dst_info, flags);
  1474. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1475. desc->lli_phy.dst,
  1476. virt_to_phys(desc->lli_phy.dst),
  1477. chan->dst_def_cfg,
  1478. dst_info, src_info, flags);
  1479. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1480. desc->lli_pool.size, DMA_TO_DEVICE);
  1481. return ret < 0 ? ret : 0;
  1482. }
  1483. static struct d40_desc *
  1484. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1485. unsigned int sg_len, unsigned long dma_flags)
  1486. {
  1487. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1488. struct d40_desc *desc;
  1489. int ret;
  1490. desc = d40_desc_get(chan);
  1491. if (!desc)
  1492. return NULL;
  1493. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1494. cfg->dst_info.data_width);
  1495. if (desc->lli_len < 0) {
  1496. chan_err(chan, "Unaligned size\n");
  1497. goto err;
  1498. }
  1499. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1500. if (ret < 0) {
  1501. chan_err(chan, "Could not allocate lli\n");
  1502. goto err;
  1503. }
  1504. desc->lli_current = 0;
  1505. desc->txd.flags = dma_flags;
  1506. desc->txd.tx_submit = d40_tx_submit;
  1507. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1508. return desc;
  1509. err:
  1510. d40_desc_free(chan, desc);
  1511. return NULL;
  1512. }
  1513. static dma_addr_t
  1514. d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
  1515. {
  1516. struct stedma40_platform_data *plat = chan->base->plat_data;
  1517. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1518. dma_addr_t addr = 0;
  1519. if (chan->runtime_addr)
  1520. return chan->runtime_addr;
  1521. if (direction == DMA_FROM_DEVICE)
  1522. addr = plat->dev_rx[cfg->src_dev_type];
  1523. else if (direction == DMA_TO_DEVICE)
  1524. addr = plat->dev_tx[cfg->dst_dev_type];
  1525. return addr;
  1526. }
  1527. static struct dma_async_tx_descriptor *
  1528. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1529. struct scatterlist *sg_dst, unsigned int sg_len,
  1530. enum dma_data_direction direction, unsigned long dma_flags)
  1531. {
  1532. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1533. dma_addr_t src_dev_addr = 0;
  1534. dma_addr_t dst_dev_addr = 0;
  1535. struct d40_desc *desc;
  1536. unsigned long flags;
  1537. int ret;
  1538. if (!chan->phy_chan) {
  1539. chan_err(chan, "Cannot prepare unallocated channel\n");
  1540. return NULL;
  1541. }
  1542. spin_lock_irqsave(&chan->lock, flags);
  1543. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1544. if (desc == NULL)
  1545. goto err;
  1546. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1547. desc->cyclic = true;
  1548. if (direction != DMA_NONE) {
  1549. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1550. if (direction == DMA_FROM_DEVICE)
  1551. src_dev_addr = dev_addr;
  1552. else if (direction == DMA_TO_DEVICE)
  1553. dst_dev_addr = dev_addr;
  1554. }
  1555. if (chan_is_logical(chan))
  1556. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1557. sg_len, src_dev_addr, dst_dev_addr);
  1558. else
  1559. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1560. sg_len, src_dev_addr, dst_dev_addr);
  1561. if (ret) {
  1562. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1563. chan_is_logical(chan) ? "log" : "phy", ret);
  1564. goto err;
  1565. }
  1566. spin_unlock_irqrestore(&chan->lock, flags);
  1567. return &desc->txd;
  1568. err:
  1569. if (desc)
  1570. d40_desc_free(chan, desc);
  1571. spin_unlock_irqrestore(&chan->lock, flags);
  1572. return NULL;
  1573. }
  1574. bool stedma40_filter(struct dma_chan *chan, void *data)
  1575. {
  1576. struct stedma40_chan_cfg *info = data;
  1577. struct d40_chan *d40c =
  1578. container_of(chan, struct d40_chan, chan);
  1579. int err;
  1580. if (data) {
  1581. err = d40_validate_conf(d40c, info);
  1582. if (!err)
  1583. d40c->dma_cfg = *info;
  1584. } else
  1585. err = d40_config_memcpy(d40c);
  1586. if (!err)
  1587. d40c->configured = true;
  1588. return err == 0;
  1589. }
  1590. EXPORT_SYMBOL(stedma40_filter);
  1591. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1592. {
  1593. bool realtime = d40c->dma_cfg.realtime;
  1594. bool highprio = d40c->dma_cfg.high_priority;
  1595. u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
  1596. u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
  1597. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1598. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1599. u32 bit = 1 << event;
  1600. /* Destination event lines are stored in the upper halfword */
  1601. if (!src)
  1602. bit <<= 16;
  1603. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1604. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1605. }
  1606. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1607. {
  1608. if (d40c->base->rev < 3)
  1609. return;
  1610. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1611. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1612. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1613. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1614. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1615. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  1616. }
  1617. /* DMA ENGINE functions */
  1618. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1619. {
  1620. int err;
  1621. unsigned long flags;
  1622. struct d40_chan *d40c =
  1623. container_of(chan, struct d40_chan, chan);
  1624. bool is_free_phy;
  1625. spin_lock_irqsave(&d40c->lock, flags);
  1626. d40c->completed = chan->cookie = 1;
  1627. /* If no dma configuration is set use default configuration (memcpy) */
  1628. if (!d40c->configured) {
  1629. err = d40_config_memcpy(d40c);
  1630. if (err) {
  1631. chan_err(d40c, "Failed to configure memcpy channel\n");
  1632. goto fail;
  1633. }
  1634. }
  1635. is_free_phy = (d40c->phy_chan == NULL);
  1636. err = d40_allocate_channel(d40c);
  1637. if (err) {
  1638. chan_err(d40c, "Failed to allocate channel\n");
  1639. goto fail;
  1640. }
  1641. /* Fill in basic CFG register values */
  1642. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1643. &d40c->dst_def_cfg, chan_is_logical(d40c));
  1644. d40_set_prio_realtime(d40c);
  1645. if (chan_is_logical(d40c)) {
  1646. d40_log_cfg(&d40c->dma_cfg,
  1647. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1648. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1649. d40c->lcpa = d40c->base->lcpa_base +
  1650. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1651. else
  1652. d40c->lcpa = d40c->base->lcpa_base +
  1653. d40c->dma_cfg.dst_dev_type *
  1654. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1655. }
  1656. /*
  1657. * Only write channel configuration to the DMA if the physical
  1658. * resource is free. In case of multiple logical channels
  1659. * on the same physical resource, only the first write is necessary.
  1660. */
  1661. if (is_free_phy)
  1662. d40_config_write(d40c);
  1663. fail:
  1664. spin_unlock_irqrestore(&d40c->lock, flags);
  1665. return err;
  1666. }
  1667. static void d40_free_chan_resources(struct dma_chan *chan)
  1668. {
  1669. struct d40_chan *d40c =
  1670. container_of(chan, struct d40_chan, chan);
  1671. int err;
  1672. unsigned long flags;
  1673. if (d40c->phy_chan == NULL) {
  1674. chan_err(d40c, "Cannot free unallocated channel\n");
  1675. return;
  1676. }
  1677. spin_lock_irqsave(&d40c->lock, flags);
  1678. err = d40_free_dma(d40c);
  1679. if (err)
  1680. chan_err(d40c, "Failed to free channel\n");
  1681. spin_unlock_irqrestore(&d40c->lock, flags);
  1682. }
  1683. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1684. dma_addr_t dst,
  1685. dma_addr_t src,
  1686. size_t size,
  1687. unsigned long dma_flags)
  1688. {
  1689. struct scatterlist dst_sg;
  1690. struct scatterlist src_sg;
  1691. sg_init_table(&dst_sg, 1);
  1692. sg_init_table(&src_sg, 1);
  1693. sg_dma_address(&dst_sg) = dst;
  1694. sg_dma_address(&src_sg) = src;
  1695. sg_dma_len(&dst_sg) = size;
  1696. sg_dma_len(&src_sg) = size;
  1697. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  1698. }
  1699. static struct dma_async_tx_descriptor *
  1700. d40_prep_memcpy_sg(struct dma_chan *chan,
  1701. struct scatterlist *dst_sg, unsigned int dst_nents,
  1702. struct scatterlist *src_sg, unsigned int src_nents,
  1703. unsigned long dma_flags)
  1704. {
  1705. if (dst_nents != src_nents)
  1706. return NULL;
  1707. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  1708. }
  1709. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1710. struct scatterlist *sgl,
  1711. unsigned int sg_len,
  1712. enum dma_data_direction direction,
  1713. unsigned long dma_flags)
  1714. {
  1715. if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
  1716. return NULL;
  1717. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  1718. }
  1719. static struct dma_async_tx_descriptor *
  1720. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  1721. size_t buf_len, size_t period_len,
  1722. enum dma_data_direction direction)
  1723. {
  1724. unsigned int periods = buf_len / period_len;
  1725. struct dma_async_tx_descriptor *txd;
  1726. struct scatterlist *sg;
  1727. int i;
  1728. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_KERNEL);
  1729. for (i = 0; i < periods; i++) {
  1730. sg_dma_address(&sg[i]) = dma_addr;
  1731. sg_dma_len(&sg[i]) = period_len;
  1732. dma_addr += period_len;
  1733. }
  1734. sg[periods].offset = 0;
  1735. sg[periods].length = 0;
  1736. sg[periods].page_link =
  1737. ((unsigned long)sg | 0x01) & ~0x02;
  1738. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  1739. DMA_PREP_INTERRUPT);
  1740. kfree(sg);
  1741. return txd;
  1742. }
  1743. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1744. dma_cookie_t cookie,
  1745. struct dma_tx_state *txstate)
  1746. {
  1747. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1748. dma_cookie_t last_used;
  1749. dma_cookie_t last_complete;
  1750. int ret;
  1751. if (d40c->phy_chan == NULL) {
  1752. chan_err(d40c, "Cannot read status of unallocated channel\n");
  1753. return -EINVAL;
  1754. }
  1755. last_complete = d40c->completed;
  1756. last_used = chan->cookie;
  1757. if (d40_is_paused(d40c))
  1758. ret = DMA_PAUSED;
  1759. else
  1760. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1761. dma_set_tx_state(txstate, last_complete, last_used,
  1762. stedma40_residue(chan));
  1763. return ret;
  1764. }
  1765. static void d40_issue_pending(struct dma_chan *chan)
  1766. {
  1767. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1768. unsigned long flags;
  1769. if (d40c->phy_chan == NULL) {
  1770. chan_err(d40c, "Channel is not allocated!\n");
  1771. return;
  1772. }
  1773. spin_lock_irqsave(&d40c->lock, flags);
  1774. /* Busy means that pending jobs are already being processed */
  1775. if (!d40c->busy)
  1776. (void) d40_queue_start(d40c);
  1777. spin_unlock_irqrestore(&d40c->lock, flags);
  1778. }
  1779. /* Runtime reconfiguration extension */
  1780. static void d40_set_runtime_config(struct dma_chan *chan,
  1781. struct dma_slave_config *config)
  1782. {
  1783. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1784. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1785. enum dma_slave_buswidth config_addr_width;
  1786. dma_addr_t config_addr;
  1787. u32 config_maxburst;
  1788. enum stedma40_periph_data_width addr_width;
  1789. int psize;
  1790. if (config->direction == DMA_FROM_DEVICE) {
  1791. dma_addr_t dev_addr_rx =
  1792. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1793. config_addr = config->src_addr;
  1794. if (dev_addr_rx)
  1795. dev_dbg(d40c->base->dev,
  1796. "channel has a pre-wired RX address %08x "
  1797. "overriding with %08x\n",
  1798. dev_addr_rx, config_addr);
  1799. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1800. dev_dbg(d40c->base->dev,
  1801. "channel was not configured for peripheral "
  1802. "to memory transfer (%d) overriding\n",
  1803. cfg->dir);
  1804. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1805. config_addr_width = config->src_addr_width;
  1806. config_maxburst = config->src_maxburst;
  1807. } else if (config->direction == DMA_TO_DEVICE) {
  1808. dma_addr_t dev_addr_tx =
  1809. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1810. config_addr = config->dst_addr;
  1811. if (dev_addr_tx)
  1812. dev_dbg(d40c->base->dev,
  1813. "channel has a pre-wired TX address %08x "
  1814. "overriding with %08x\n",
  1815. dev_addr_tx, config_addr);
  1816. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1817. dev_dbg(d40c->base->dev,
  1818. "channel was not configured for memory "
  1819. "to peripheral transfer (%d) overriding\n",
  1820. cfg->dir);
  1821. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1822. config_addr_width = config->dst_addr_width;
  1823. config_maxburst = config->dst_maxburst;
  1824. } else {
  1825. dev_err(d40c->base->dev,
  1826. "unrecognized channel direction %d\n",
  1827. config->direction);
  1828. return;
  1829. }
  1830. switch (config_addr_width) {
  1831. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1832. addr_width = STEDMA40_BYTE_WIDTH;
  1833. break;
  1834. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1835. addr_width = STEDMA40_HALFWORD_WIDTH;
  1836. break;
  1837. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1838. addr_width = STEDMA40_WORD_WIDTH;
  1839. break;
  1840. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1841. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1842. break;
  1843. default:
  1844. dev_err(d40c->base->dev,
  1845. "illegal peripheral address width "
  1846. "requested (%d)\n",
  1847. config->src_addr_width);
  1848. return;
  1849. }
  1850. if (chan_is_logical(d40c)) {
  1851. if (config_maxburst >= 16)
  1852. psize = STEDMA40_PSIZE_LOG_16;
  1853. else if (config_maxburst >= 8)
  1854. psize = STEDMA40_PSIZE_LOG_8;
  1855. else if (config_maxburst >= 4)
  1856. psize = STEDMA40_PSIZE_LOG_4;
  1857. else
  1858. psize = STEDMA40_PSIZE_LOG_1;
  1859. } else {
  1860. if (config_maxburst >= 16)
  1861. psize = STEDMA40_PSIZE_PHY_16;
  1862. else if (config_maxburst >= 8)
  1863. psize = STEDMA40_PSIZE_PHY_8;
  1864. else if (config_maxburst >= 4)
  1865. psize = STEDMA40_PSIZE_PHY_4;
  1866. else if (config_maxburst >= 2)
  1867. psize = STEDMA40_PSIZE_PHY_2;
  1868. else
  1869. psize = STEDMA40_PSIZE_PHY_1;
  1870. }
  1871. /* Set up all the endpoint configs */
  1872. cfg->src_info.data_width = addr_width;
  1873. cfg->src_info.psize = psize;
  1874. cfg->src_info.big_endian = false;
  1875. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1876. cfg->dst_info.data_width = addr_width;
  1877. cfg->dst_info.psize = psize;
  1878. cfg->dst_info.big_endian = false;
  1879. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1880. /* Fill in register values */
  1881. if (chan_is_logical(d40c))
  1882. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1883. else
  1884. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1885. &d40c->dst_def_cfg, false);
  1886. /* These settings will take precedence later */
  1887. d40c->runtime_addr = config_addr;
  1888. d40c->runtime_direction = config->direction;
  1889. dev_dbg(d40c->base->dev,
  1890. "configured channel %s for %s, data width %d, "
  1891. "maxburst %d bytes, LE, no flow control\n",
  1892. dma_chan_name(chan),
  1893. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1894. config_addr_width,
  1895. config_maxburst);
  1896. }
  1897. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1898. unsigned long arg)
  1899. {
  1900. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1901. if (d40c->phy_chan == NULL) {
  1902. chan_err(d40c, "Channel is not allocated!\n");
  1903. return -EINVAL;
  1904. }
  1905. switch (cmd) {
  1906. case DMA_TERMINATE_ALL:
  1907. return d40_terminate_all(d40c);
  1908. case DMA_PAUSE:
  1909. return d40_pause(d40c);
  1910. case DMA_RESUME:
  1911. return d40_resume(d40c);
  1912. case DMA_SLAVE_CONFIG:
  1913. d40_set_runtime_config(chan,
  1914. (struct dma_slave_config *) arg);
  1915. return 0;
  1916. default:
  1917. break;
  1918. }
  1919. /* Other commands are unimplemented */
  1920. return -ENXIO;
  1921. }
  1922. /* Initialization functions */
  1923. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1924. struct d40_chan *chans, int offset,
  1925. int num_chans)
  1926. {
  1927. int i = 0;
  1928. struct d40_chan *d40c;
  1929. INIT_LIST_HEAD(&dma->channels);
  1930. for (i = offset; i < offset + num_chans; i++) {
  1931. d40c = &chans[i];
  1932. d40c->base = base;
  1933. d40c->chan.device = dma;
  1934. spin_lock_init(&d40c->lock);
  1935. d40c->log_num = D40_PHY_CHAN;
  1936. INIT_LIST_HEAD(&d40c->active);
  1937. INIT_LIST_HEAD(&d40c->queue);
  1938. INIT_LIST_HEAD(&d40c->client);
  1939. tasklet_init(&d40c->tasklet, dma_tasklet,
  1940. (unsigned long) d40c);
  1941. list_add_tail(&d40c->chan.device_node,
  1942. &dma->channels);
  1943. }
  1944. }
  1945. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  1946. {
  1947. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  1948. dev->device_prep_slave_sg = d40_prep_slave_sg;
  1949. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  1950. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  1951. /*
  1952. * This controller can only access address at even
  1953. * 32bit boundaries, i.e. 2^2
  1954. */
  1955. dev->copy_align = 2;
  1956. }
  1957. if (dma_has_cap(DMA_SG, dev->cap_mask))
  1958. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  1959. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  1960. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  1961. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  1962. dev->device_free_chan_resources = d40_free_chan_resources;
  1963. dev->device_issue_pending = d40_issue_pending;
  1964. dev->device_tx_status = d40_tx_status;
  1965. dev->device_control = d40_control;
  1966. dev->dev = base->dev;
  1967. }
  1968. static int __init d40_dmaengine_init(struct d40_base *base,
  1969. int num_reserved_chans)
  1970. {
  1971. int err ;
  1972. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1973. 0, base->num_log_chans);
  1974. dma_cap_zero(base->dma_slave.cap_mask);
  1975. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1976. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  1977. d40_ops_init(base, &base->dma_slave);
  1978. err = dma_async_device_register(&base->dma_slave);
  1979. if (err) {
  1980. d40_err(base->dev, "Failed to register slave channels\n");
  1981. goto failure1;
  1982. }
  1983. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1984. base->num_log_chans, base->plat_data->memcpy_len);
  1985. dma_cap_zero(base->dma_memcpy.cap_mask);
  1986. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1987. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  1988. d40_ops_init(base, &base->dma_memcpy);
  1989. err = dma_async_device_register(&base->dma_memcpy);
  1990. if (err) {
  1991. d40_err(base->dev,
  1992. "Failed to regsiter memcpy only channels\n");
  1993. goto failure2;
  1994. }
  1995. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1996. 0, num_reserved_chans);
  1997. dma_cap_zero(base->dma_both.cap_mask);
  1998. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1999. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2000. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2001. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2002. d40_ops_init(base, &base->dma_both);
  2003. err = dma_async_device_register(&base->dma_both);
  2004. if (err) {
  2005. d40_err(base->dev,
  2006. "Failed to register logical and physical capable channels\n");
  2007. goto failure3;
  2008. }
  2009. return 0;
  2010. failure3:
  2011. dma_async_device_unregister(&base->dma_memcpy);
  2012. failure2:
  2013. dma_async_device_unregister(&base->dma_slave);
  2014. failure1:
  2015. return err;
  2016. }
  2017. /* Initialization functions. */
  2018. static int __init d40_phy_res_init(struct d40_base *base)
  2019. {
  2020. int i;
  2021. int num_phy_chans_avail = 0;
  2022. u32 val[2];
  2023. int odd_even_bit = -2;
  2024. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2025. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2026. for (i = 0; i < base->num_phy_chans; i++) {
  2027. base->phy_res[i].num = i;
  2028. odd_even_bit += 2 * ((i % 2) == 0);
  2029. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2030. /* Mark security only channels as occupied */
  2031. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2032. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2033. } else {
  2034. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2035. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2036. num_phy_chans_avail++;
  2037. }
  2038. spin_lock_init(&base->phy_res[i].lock);
  2039. }
  2040. /* Mark disabled channels as occupied */
  2041. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2042. int chan = base->plat_data->disabled_channels[i];
  2043. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2044. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2045. num_phy_chans_avail--;
  2046. }
  2047. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2048. num_phy_chans_avail, base->num_phy_chans);
  2049. /* Verify settings extended vs standard */
  2050. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2051. for (i = 0; i < base->num_phy_chans; i++) {
  2052. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2053. (val[0] & 0x3) != 1)
  2054. dev_info(base->dev,
  2055. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2056. __func__, i, val[0] & 0x3);
  2057. val[0] = val[0] >> 2;
  2058. }
  2059. return num_phy_chans_avail;
  2060. }
  2061. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2062. {
  2063. static const struct d40_reg_val dma_id_regs[] = {
  2064. /* Peripheral Id */
  2065. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2066. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2067. /*
  2068. * D40_DREG_PERIPHID2 Depends on HW revision:
  2069. * DB8500ed has 0x0008,
  2070. * ? has 0x0018,
  2071. * DB8500v1 has 0x0028
  2072. * DB8500v2 has 0x0038
  2073. */
  2074. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2075. /* PCell Id */
  2076. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2077. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2078. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2079. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2080. };
  2081. struct stedma40_platform_data *plat_data;
  2082. struct clk *clk = NULL;
  2083. void __iomem *virtbase = NULL;
  2084. struct resource *res = NULL;
  2085. struct d40_base *base = NULL;
  2086. int num_log_chans = 0;
  2087. int num_phy_chans;
  2088. int i;
  2089. u32 val;
  2090. u32 rev;
  2091. clk = clk_get(&pdev->dev, NULL);
  2092. if (IS_ERR(clk)) {
  2093. d40_err(&pdev->dev, "No matching clock found\n");
  2094. goto failure;
  2095. }
  2096. clk_enable(clk);
  2097. /* Get IO for DMAC base address */
  2098. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2099. if (!res)
  2100. goto failure;
  2101. if (request_mem_region(res->start, resource_size(res),
  2102. D40_NAME " I/O base") == NULL)
  2103. goto failure;
  2104. virtbase = ioremap(res->start, resource_size(res));
  2105. if (!virtbase)
  2106. goto failure;
  2107. /* HW version check */
  2108. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2109. if (dma_id_regs[i].val !=
  2110. readl(virtbase + dma_id_regs[i].reg)) {
  2111. d40_err(&pdev->dev,
  2112. "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2113. dma_id_regs[i].val,
  2114. dma_id_regs[i].reg,
  2115. readl(virtbase + dma_id_regs[i].reg));
  2116. goto failure;
  2117. }
  2118. }
  2119. /* Get silicon revision and designer */
  2120. val = readl(virtbase + D40_DREG_PERIPHID2);
  2121. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2122. D40_HW_DESIGNER) {
  2123. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2124. val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2125. D40_HW_DESIGNER);
  2126. goto failure;
  2127. }
  2128. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2129. D40_DREG_PERIPHID2_REV_POS;
  2130. /* The number of physical channels on this HW */
  2131. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2132. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2133. rev, res->start);
  2134. plat_data = pdev->dev.platform_data;
  2135. /* Count the number of logical channels in use */
  2136. for (i = 0; i < plat_data->dev_len; i++)
  2137. if (plat_data->dev_rx[i] != 0)
  2138. num_log_chans++;
  2139. for (i = 0; i < plat_data->dev_len; i++)
  2140. if (plat_data->dev_tx[i] != 0)
  2141. num_log_chans++;
  2142. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2143. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2144. sizeof(struct d40_chan), GFP_KERNEL);
  2145. if (base == NULL) {
  2146. d40_err(&pdev->dev, "Out of memory\n");
  2147. goto failure;
  2148. }
  2149. base->rev = rev;
  2150. base->clk = clk;
  2151. base->num_phy_chans = num_phy_chans;
  2152. base->num_log_chans = num_log_chans;
  2153. base->phy_start = res->start;
  2154. base->phy_size = resource_size(res);
  2155. base->virtbase = virtbase;
  2156. base->plat_data = plat_data;
  2157. base->dev = &pdev->dev;
  2158. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2159. base->log_chans = &base->phy_chans[num_phy_chans];
  2160. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2161. GFP_KERNEL);
  2162. if (!base->phy_res)
  2163. goto failure;
  2164. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2165. sizeof(struct d40_chan *),
  2166. GFP_KERNEL);
  2167. if (!base->lookup_phy_chans)
  2168. goto failure;
  2169. if (num_log_chans + plat_data->memcpy_len) {
  2170. /*
  2171. * The max number of logical channels are event lines for all
  2172. * src devices and dst devices
  2173. */
  2174. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2175. sizeof(struct d40_chan *),
  2176. GFP_KERNEL);
  2177. if (!base->lookup_log_chans)
  2178. goto failure;
  2179. }
  2180. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2181. sizeof(struct d40_desc *) *
  2182. D40_LCLA_LINK_PER_EVENT_GRP,
  2183. GFP_KERNEL);
  2184. if (!base->lcla_pool.alloc_map)
  2185. goto failure;
  2186. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2187. 0, SLAB_HWCACHE_ALIGN,
  2188. NULL);
  2189. if (base->desc_slab == NULL)
  2190. goto failure;
  2191. return base;
  2192. failure:
  2193. if (!IS_ERR(clk)) {
  2194. clk_disable(clk);
  2195. clk_put(clk);
  2196. }
  2197. if (virtbase)
  2198. iounmap(virtbase);
  2199. if (res)
  2200. release_mem_region(res->start,
  2201. resource_size(res));
  2202. if (virtbase)
  2203. iounmap(virtbase);
  2204. if (base) {
  2205. kfree(base->lcla_pool.alloc_map);
  2206. kfree(base->lookup_log_chans);
  2207. kfree(base->lookup_phy_chans);
  2208. kfree(base->phy_res);
  2209. kfree(base);
  2210. }
  2211. return NULL;
  2212. }
  2213. static void __init d40_hw_init(struct d40_base *base)
  2214. {
  2215. static const struct d40_reg_val dma_init_reg[] = {
  2216. /* Clock every part of the DMA block from start */
  2217. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2218. /* Interrupts on all logical channels */
  2219. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2220. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2221. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2222. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2223. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2224. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2225. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2226. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2227. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2228. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2229. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2230. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2231. };
  2232. int i;
  2233. u32 prmseo[2] = {0, 0};
  2234. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2235. u32 pcmis = 0;
  2236. u32 pcicr = 0;
  2237. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2238. writel(dma_init_reg[i].val,
  2239. base->virtbase + dma_init_reg[i].reg);
  2240. /* Configure all our dma channels to default settings */
  2241. for (i = 0; i < base->num_phy_chans; i++) {
  2242. activeo[i % 2] = activeo[i % 2] << 2;
  2243. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2244. == D40_ALLOC_PHY) {
  2245. activeo[i % 2] |= 3;
  2246. continue;
  2247. }
  2248. /* Enable interrupt # */
  2249. pcmis = (pcmis << 1) | 1;
  2250. /* Clear interrupt # */
  2251. pcicr = (pcicr << 1) | 1;
  2252. /* Set channel to physical mode */
  2253. prmseo[i % 2] = prmseo[i % 2] << 2;
  2254. prmseo[i % 2] |= 1;
  2255. }
  2256. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2257. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2258. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2259. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2260. /* Write which interrupt to enable */
  2261. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2262. /* Write which interrupt to clear */
  2263. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2264. }
  2265. static int __init d40_lcla_allocate(struct d40_base *base)
  2266. {
  2267. struct d40_lcla_pool *pool = &base->lcla_pool;
  2268. unsigned long *page_list;
  2269. int i, j;
  2270. int ret = 0;
  2271. /*
  2272. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2273. * To full fill this hardware requirement without wasting 256 kb
  2274. * we allocate pages until we get an aligned one.
  2275. */
  2276. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2277. GFP_KERNEL);
  2278. if (!page_list) {
  2279. ret = -ENOMEM;
  2280. goto failure;
  2281. }
  2282. /* Calculating how many pages that are required */
  2283. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2284. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2285. page_list[i] = __get_free_pages(GFP_KERNEL,
  2286. base->lcla_pool.pages);
  2287. if (!page_list[i]) {
  2288. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2289. base->lcla_pool.pages);
  2290. for (j = 0; j < i; j++)
  2291. free_pages(page_list[j], base->lcla_pool.pages);
  2292. goto failure;
  2293. }
  2294. if ((virt_to_phys((void *)page_list[i]) &
  2295. (LCLA_ALIGNMENT - 1)) == 0)
  2296. break;
  2297. }
  2298. for (j = 0; j < i; j++)
  2299. free_pages(page_list[j], base->lcla_pool.pages);
  2300. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2301. base->lcla_pool.base = (void *)page_list[i];
  2302. } else {
  2303. /*
  2304. * After many attempts and no succees with finding the correct
  2305. * alignment, try with allocating a big buffer.
  2306. */
  2307. dev_warn(base->dev,
  2308. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2309. __func__, base->lcla_pool.pages);
  2310. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2311. base->num_phy_chans +
  2312. LCLA_ALIGNMENT,
  2313. GFP_KERNEL);
  2314. if (!base->lcla_pool.base_unaligned) {
  2315. ret = -ENOMEM;
  2316. goto failure;
  2317. }
  2318. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2319. LCLA_ALIGNMENT);
  2320. }
  2321. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2322. SZ_1K * base->num_phy_chans,
  2323. DMA_TO_DEVICE);
  2324. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2325. pool->dma_addr = 0;
  2326. ret = -ENOMEM;
  2327. goto failure;
  2328. }
  2329. writel(virt_to_phys(base->lcla_pool.base),
  2330. base->virtbase + D40_DREG_LCLA);
  2331. failure:
  2332. kfree(page_list);
  2333. return ret;
  2334. }
  2335. static int __init d40_probe(struct platform_device *pdev)
  2336. {
  2337. int err;
  2338. int ret = -ENOENT;
  2339. struct d40_base *base;
  2340. struct resource *res = NULL;
  2341. int num_reserved_chans;
  2342. u32 val;
  2343. base = d40_hw_detect_init(pdev);
  2344. if (!base)
  2345. goto failure;
  2346. num_reserved_chans = d40_phy_res_init(base);
  2347. platform_set_drvdata(pdev, base);
  2348. spin_lock_init(&base->interrupt_lock);
  2349. spin_lock_init(&base->execmd_lock);
  2350. /* Get IO for logical channel parameter address */
  2351. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2352. if (!res) {
  2353. ret = -ENOENT;
  2354. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2355. goto failure;
  2356. }
  2357. base->lcpa_size = resource_size(res);
  2358. base->phy_lcpa = res->start;
  2359. if (request_mem_region(res->start, resource_size(res),
  2360. D40_NAME " I/O lcpa") == NULL) {
  2361. ret = -EBUSY;
  2362. d40_err(&pdev->dev,
  2363. "Failed to request LCPA region 0x%x-0x%x\n",
  2364. res->start, res->end);
  2365. goto failure;
  2366. }
  2367. /* We make use of ESRAM memory for this. */
  2368. val = readl(base->virtbase + D40_DREG_LCPA);
  2369. if (res->start != val && val != 0) {
  2370. dev_warn(&pdev->dev,
  2371. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2372. __func__, val, res->start);
  2373. } else
  2374. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2375. base->lcpa_base = ioremap(res->start, resource_size(res));
  2376. if (!base->lcpa_base) {
  2377. ret = -ENOMEM;
  2378. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2379. goto failure;
  2380. }
  2381. ret = d40_lcla_allocate(base);
  2382. if (ret) {
  2383. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2384. goto failure;
  2385. }
  2386. spin_lock_init(&base->lcla_pool.lock);
  2387. base->irq = platform_get_irq(pdev, 0);
  2388. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2389. if (ret) {
  2390. d40_err(&pdev->dev, "No IRQ defined\n");
  2391. goto failure;
  2392. }
  2393. err = d40_dmaengine_init(base, num_reserved_chans);
  2394. if (err)
  2395. goto failure;
  2396. d40_hw_init(base);
  2397. dev_info(base->dev, "initialized\n");
  2398. return 0;
  2399. failure:
  2400. if (base) {
  2401. if (base->desc_slab)
  2402. kmem_cache_destroy(base->desc_slab);
  2403. if (base->virtbase)
  2404. iounmap(base->virtbase);
  2405. if (base->lcla_pool.dma_addr)
  2406. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  2407. SZ_1K * base->num_phy_chans,
  2408. DMA_TO_DEVICE);
  2409. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2410. free_pages((unsigned long)base->lcla_pool.base,
  2411. base->lcla_pool.pages);
  2412. kfree(base->lcla_pool.base_unaligned);
  2413. if (base->phy_lcpa)
  2414. release_mem_region(base->phy_lcpa,
  2415. base->lcpa_size);
  2416. if (base->phy_start)
  2417. release_mem_region(base->phy_start,
  2418. base->phy_size);
  2419. if (base->clk) {
  2420. clk_disable(base->clk);
  2421. clk_put(base->clk);
  2422. }
  2423. kfree(base->lcla_pool.alloc_map);
  2424. kfree(base->lookup_log_chans);
  2425. kfree(base->lookup_phy_chans);
  2426. kfree(base->phy_res);
  2427. kfree(base);
  2428. }
  2429. d40_err(&pdev->dev, "probe failed\n");
  2430. return ret;
  2431. }
  2432. static struct platform_driver d40_driver = {
  2433. .driver = {
  2434. .owner = THIS_MODULE,
  2435. .name = D40_NAME,
  2436. },
  2437. };
  2438. static int __init stedma40_init(void)
  2439. {
  2440. return platform_driver_probe(&d40_driver, d40_probe);
  2441. }
  2442. subsys_initcall(stedma40_init);